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Korrelationsfunktion eines klassischen Heisenberg

Ferromagneten in der paramagnetischen Phase

von U. Teilenbach

Institut für Reaktortechnik ETHZ, E.I.R., CH-5303 Würenlingen/Schweiz

(20.1. 75)

Zusammenfassung. Für die Korrelationsfunktion eines klassischen Heisenberg Ferromagneten
wird mit Hilfe des sogenannten 'Random Coupling Model' eine geschlossene Gleichung hergeleitet.

1. Einführung

In den letzten Jahren sind mit Hilfe der Neutronenstreuung eine grosse Zahl
magnetischer Substanzen im paramagnetischen Zustand und in der Nähe des Ordnungspunktes

untersucht worden. Dementsprechend gross ist auch die Zahl der Theorien,
welche die experimentellen Resultate zu erklären versuchen [1]. Wir zeigen nun in
dieser Arbeit, wie man mit Hilfe des sogenannten 'Random Coupling Model', welches
urprünglich von Kraichnan [2] zur Behandlung des Turbulenzproblems entwickelt
wurde, die dynamische Spin-Korrelationsfunktion berechnen kann.

2. Definitionen

In der paramagnetischen Phase hat der différentielle Streuquerschnitt die folgende
Form:

-j^cc-{ßh(o/(l - exp(-ßh(D)]}-XqFq((o). (1)

Hier bedeuten

Xq <siqs;y (2)

die statische Korrelationsfunktion und FJco) ist die Fouriertransformierte der
Relaxationsfunktion FJt)

FqXt) <S*q SKtfylXq Cq(t)lxq (3)
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und SJt) ist eine Fourierkomponente der Spindichte :

Sq(t) N'1 2 St(t)exp(iq-Rt). (4)
t

In der paramagnetischen Phase ist keine Richtung ausgezeichnet. Es gilt also :

Q(0 Q(0 (<* x,y,z) (5)

F'(t) Fq(t).

Aus der Definition des Hamiltonoperators

H=-i2J,JSfSJ (6)
i,J

folgen die Bewegungsgleichungen für die Spins :

sq(t) -42 /,.,. sq.(t) x sq_q.(t) 0)
v

mit

Jq,q- =Jq- — Jq-q-

jq 2Jij^p(i9-(Rt-Rj))- (8)
j

Es ist klar, dass die Bewegungsgleichungen (7) auch wie folgt formuliert werden können :

t

sxq(t) + i\dx2 </:;. s;.(x) S!„(x) sx(o) (9)

ß.y

wobei die Koeffizienten Mx,J,\l„ sich aus (7) ergeben. Da die Gleichung (9) etwas
umständlich zu handhaben ist, formulieren wir sie in operationeller Form :

S + L(S,S) S0 (10)

wobei S=(S%(t)), S0 (S^(0)) und L ist ein bilinearer Operator.
Eine infinitesimale Störung der Anfangsbedingungen bewirkt eine infinitesimale

Variation der Lösungen, welche linear von der Störung abhängt

ÔS g-ÔS0 (11)

womit wir den Green'schen Operator g definiert haben.
Der Green'sche Operator erfüllt die linearisierte Gleichung

g + 2L(S,g) I 1= Identität. (12)

Wir nehmen an, dass wir die statistische Verteilung der Spins zur Zeit t 0 kennen,
und setzen uns zum Ziel, die Kovarianz (,Sq(t)Sq,(t')y ö(q + q')(Sq(t — t')S_q(0)y,
die wir im folgenden mit <S ® S> bezeichnen, und den Mittelwert <g> des Green'schen
Operators zu berechnen.
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3. Das 'Random Coupling Model' von Kraichnan

Kraichnan hat eine systematische Methode entwickelt, welche erlaubt,
geschlossene Gleichungen für die Kovarianz und den Mittelwert der Green'schen Funktion
herzuleiten. Zu diesem Zweck betrachtet er N statistisch unabhängige Versionen

SX + L(SX,SX) SX (13)

(ohne Summation über a) der Bewegungsgleichung. In einem zweiten Schritt führt
er eine Kopplung zwischen diesen N Gleichungen ein

Sx + -^cbxßyL(Sß,S") SS (14)

wobei die Kopplungskoefnzienten cpxßy, welche invariant bezüglich einer Permutation
der Indizes sein sollen, eine Kollektion von Gauss'schen Zufallsgrössen mit Mittelwert
Null und Varianz Eins darstellen. Es ist eine bemerkenswerte Tatsache, dass man nun
exakte Gleichungen für die Kovarianz (1/N) 2 a (Sx®Sxy und den Mittelwert des
Green'schen Operators (.gxßy <g> öxß herleiten kann. Die Lösungen dieser Gleichungen

ergeben dann Näherungslösungen für die 'wahre' Bewegungsgleichung (10).
Eine sehr ausführliche Diskussion der Methode von Kraichnan findet man in [3].
Deshalb seien im folgenden nur die Schulssresultate angegeben :

<s <g> sy <s0 <g> sy + 2l(s, s) <g><g> l(s, s)
+ 4L«gyL(S,S),S)®S (15)

<g> - AL(S,(gyL(S, <_-») /. (16)

Dabei benützen wir die Konvention, dass der Erwartungswert separat zu nehmen ist
für Terme, welche durch verschiedene Klammern verbunden sind; beispielweise

s <g> s ® s ® s=<js (g) <s ® sy <8) sy.

4. Berechnung der Korrelationsfunktion

Wir wenden den Operator d/dt aufbeide Seiten der Gleichung (15) an, und benützen
(9). Dann ergibt sich:

TCq(t) A-i\dx2Mqx:qß,;lq,gß.(t-x) 2 Mßqf
at J ß,y tz--,y"

q- 1"

x iSiJxysT.-qjx) sujpfy sxqy
t

[yMx'ß,y -Mß-"-y -eß,(t-xl— J __ 1Y1q,q',q-q- "1q-.«,«-«' 5«'V« V
0

xCî(x)C^q.(t-x)dx.
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Aus (5) und (7) folgt weiter:

d- Cq(t) -2 2 f Jq.q, ¦J.-.qgqXt ' t) Cq-q,(t ~ X) Cq(x) dx
dt qi J

jCq(t) -2 2 Kq,qj jgq.qi(t - x) CqJt - x) Cq(x)dx (17)

mit

K =J J (18)

-r&(0 -2 2 *,,,, J ««,« - t) C4i(f - t)*€(t)A (19)

Eine analoge Rechnung für g, <g>9 ergibt:

d

mit

*_(0)-l.

Das Gleichungssystem (17) und (19) besitzt Lösungen von der Form

Cq(t) f(q)gq(t) (20)

wof(q) eine Konstante ist. Aus x« Q(0) =f(q)gq(0) folgt

cjLt) x,gJLt). (21)

Aus (3) und (21) folgt F„(î) g„(r) und daraus das Schlussresultat:

d }
-Fq(t) -2 2 A,.,.• x,. J Fq,(t - x)¦ Fq_q,(t - x)Fq(x)dx. (22)

5. Bemerkungen

Wir weisen zunächst daraufhin, dass unser Schlussresultat (22) übereinstimmt mit
den Resultaten von Blume and McLean [4] u.a. Es ist auch bekannt, dass Gleichung (22)
bei hoher Temperatur sehr gute Resultate liefert, andererseits aber bei der
Beschreibung von Spinwellen in eindimensionalen Systemen versagt [4]. Ferner sei noch
erwähnt, dass man mit denselben Methoden auch magnetische Systeme in geordnetem
Zustand behandeln kann. (Die Rechnung ist weitgehend identisch mit derjenigen im
Abschnitt 4.)
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