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Charge-Independent Analysis of Low Energy =N Scattering Data

by H. Zimmermann

Institut fiir theoretische Physik, Universitat Zirich, Schonberggasse 9, CH-8001 Ziirich, Switzerland

(6.1.75)

Abstract. We investigate the determination of charge-independent phase shifts from low energy
hadron-hadron scattering data. For a many-channel system at low energies we present a simple formu-
lation of a well-known method, which allows us to calculate an isospin-mixing matrix and the phase
shift corrections due to both the electromagnetic interaction and the electromagnetic mass differences.
A potential model is used together with a relativistically modified Schrédinger equation. In the case of
the nN system, explicit formulae are derived for the phase shift corrections and the mixing parameter.
Itresults thata charge-independent phase shift analysis is only possible by including not just the Coulomb
corrections but also the electromagnetic mass difference corrections. The results of such an analysis
will here be presented.

1. Introduction

It became evident from the work of Carter et al. [1] that, with the usual methods
of calculating the electromagnetic corrections, it was not possible to achieve a charge-
independent partial-wave analysis of pion-nucleon scattering experiments below 300
MeV. The importance of the electromagnetic corrections has also been emphasized
by Woolcock [2], who points out the influence that these effects might have on the
evaluation of /% and a,-a;.

One of the reasons for the unsatisfactory state of affairs in the analysis of the
experimental data is certainly the neglect of the electromagnetic mass differences of the
nucleons and of the pions. In the present paper we therefore take this effect into account
using the model of Oades and Rasche [3, 4]. The result is that the data can indeed be
analysed with charge-independent strictly nuclear phases.

: The complications in the analysis of the data come mainly from the =~ p initial
state, which leads to three possible final two-particle states at low energies, namely
n~p, n°n and yn. We therefore have to deal with a coupled three-channel problem.
The general formalism for including the effect of the yn channel on the analysis of the
7~ p experiments was worked out for the first time by Rasche and Woolcock [5]. But,
given the experimental accuracy presently attainable, there is no hope of including
the yn channel in the analysis of #~ p experiments. We therefore keep to the two-channel
approximation

np —

L—s 7%
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and neglect the yn channel, except for a phenomenological modification to be described
later.

Even in this approximation it is not easy to extract the charge-independent phases
from the experiments. To achieve this, one has to understand the electromagnetic
corrections, which consist mainly of the Coulomb corrections and the dynamical effect
of the mass difference between the = p and n°n states. Auvil, in the appendix of Ref.
[6], considers the inclusion of mass difference effects in a two-channel problem. He
arrives at a Schrodinger-like equation, with some relativistic modifications, which
contains terms which take account of mass differences in a very approximate way.
However, he makes no attempt to show how to calculate electromagnetic corrections
from this equation. On the other hand, Oades and Rasche [3] had previously given a
consistent formulation of Coulomb and mass difference corrections in a potential
theory model. They show in detail how to calculate these corrections, and we have
therefore chosen their model as the basis for the numerical calculations in this paper.

One can also try to separate out the electromagnetic effects in a relativistic, dis-
persion-theoretic approach. The first steps in this direction were taken by Sauter
[7, 8], who handles the Coulomb corrections in a non-relativistic, dispersion-theoretic
way. Sauter states that the numerical agreement with the potential model of Oades
and Rasche is good in both the one-channel (n*p — n* p) and the two-channel (7~ p —
n~p,n°n) cases for low energies. Hamilton et al. [9] have pointed out that Sauter’s
formulae are useful only for small energies and they have given a different non-relativistic
dispersion-theoretic treatment of the Coulomb corrections for the one- and two-channel
problems. They planned to generalize their method to a relativistic treatment of the
electromagnetic effects. This has been achieved for the one-channel problem by Trom-
borg and Hamilton [10]. But they have not yet treated the coupled-channel case with
mass differences in a dispersion-theoretic way, so that there is at present no alternative
to the potential model of Ref. [3].

In Ref. [3] a distinction is made between ‘inner’ and ‘outer’ Coulomb corrections.
There were two reasons for doing this. First, the outer Coulomb corrections are to a
large extent model independent and can be calculated to all orders in the Coulomb
parameter without solving a differential equation. Second, one can apply a prescription
of van Hove [11] to take into account relativistic effects in the outer corrections; this is
not possible for the inner corrections. In the present calculations we do not make
explicit the distinction between inner and outer corrections and try rather to formulate
the problem in a way more suitable for practical calculations. Furthermore, in Ref. [3]
the so-called ‘additive electromagnetic amplitude’ is that corresponding to a pure
point-charge Coulomb potential. But the analysis in Ref. [1] uses an additive electro-
magnetic amplitude corresponding to a form factor for the charge distribution and we
have to adapt the results of Ref. [3] slightly to take this fact into account. In a previous
paper [12] we considered this problem in the single-channel case and pointed out an
inconsistency connected with it in the calculations by Bugg [13] of the Coulomb
corrections which were used in the analysis of Ref. [1].

In Section 2 we therefore describe briefly the general formalism for the coupled-
channel problem, assuming that the given data correspond to an arbitrary additive
electromagnetic amplitude. In Section 3 the electromagnetic corrections to the charge-
independent phase shifts are given. In Section 4 the question of relativistic effects is
considered, while Section 5 gives the perturbation expressions for the one- and two-
channel cases. Section 6 is devoted to a review of the special potentials used in the
numerical calculations and Section 7 describes the details of our phase shift analysis
and gives the corrections for energies up to 250 MeV.
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2. Many-Channel Formalism

2.1. The total scattering amplitude

We present here the general formalism for n coupled two-particle states. We assume
that one of the particles has spin 0 and the other has spin 4 and we work in the c.m.
frame. The scattering and reaction processes are described by a generalized Schrddinger
equation in matrix form, with a separate hadronic potential U for each partial wave
of orbital angular momentum / and total angular momentum j. In what follows we
drop the superscripts (/j) and carry the calculations through for the s-wave (01). The
generalizations to arbitrary (Jf) are evident and are stated without derivation. The
hadronic potential U is then an n#n matrix and the same is true for the electromagnetic
potential, which we call V.

Throughout the paper we assume rotation invariance, parity conservation and
time-reversal invariance. The last condition implies that U is a real and symmetric
matrix. It would be possible, without difficulty, to generalize the results to the case of
complex potentials; this would be a phenomenological way to take inelasticities into
account. Butin our case the inelasticities are small even at the highest energy considered,
so that it is justified to neglect them in calculating the phase shift corrections.

We assume that the hadronic potential is charge independent. The total potential
U + V thus consists of a part U, which decomposes in the basis of isospin eigenstates
into submatrices with definite isospin, and a part V, which is diagonal in the physical
basis (where each particle in every two-particle state has a definite charge). This is the
basic physical assumption made in [3] and [4] and we refer to [4] and [14] for a more
detailed discussion and for the application to K~ p scattering.

It is convenient to assume that

U(r)=0 r>ry
Vir)=gqiyi(mry™ r>r. (2.1)

Here V(r) is the diagonal element of V(r) for the ith physical channel, with g; the cor-
responding ¢.m. momentum, m; the corresponding reduced mass and y; the correspond-
ing Coulomb parameter; thus

—_ 2 -
Vi=2z,e*m;q;?,

where z; is the product of the charge numbers in the ith channel (e.g. z; = —1 for n7p,
z; = 0 for n°n). Equation (2.1) facilitates some general statements and is used through-
out the numerical calculations. We define

ro = max(ry, rc). . (2.2)

For r < rc we assume some spherically symmetric charge distribution for the particles
which takes into account their form factors. The case re = 0 gives the pure Coulomb
potential corresponding to the electromagnetic interaction of point charges.

The radial Schrodinger equation for-the s-wave then reads (see e.g. Refs. [3, 4])

(D+ Q*—2MU —2MV)|R) =0, (2.3)
where
d? |
D=1,— (2.4)

" dr?
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and Q? and M are diagonal matrices in the physical basis, with diagonal elements g?
and m;, respectively. Equation (2.3) has n linearly independent regular solutions |R},
(e = 1,...n) vanishing at r = 0. Calling the vectors of the basis consisting of the physical
states |i) (i = 1,...n), the components R,,(r) of the solution |R), are defined by

|R>,=§1R,a|i> a=1,...n. | 2.5)

Let us now define the functions
ﬁ;(") = (my/q;)"'? sin(g; r — 7, In(2g;r))

Gi(r) = (milg)* cos(gy r — y:In(2g, 7). 2.6)

It is well known that, due to the short range of the hadronic potential, the R,, can be
expanded asymptotically in terms of the F, and G, as

Ri(r) ~ F( g+ Gir)éis  i,a=1,...n. @2.7)

The matrices x© and & corresponding to the expansion coefficients determine the
partial-wave scattering matrix 4 for the total potential (see e.g. Ref. [14]). The connec-
tion is established most easily in terms of the matrix

K =6k, (2.8)

K is the matrix which transforms the expansion coefficients %;, for a given regular
solution of (2.3) into the corresponding &;,. It is a consequence of time-reversal invari-
ance that K is a real symmetric matrix. In Appendix I we show explicitly how this
property follows from (2.3) and (2.7). The partial-wave scattering matrix 4 is given in
terms of K by

d=Q V2K —iK)1 Q12 2.9)

Appendix II gives the differential cross-sections in terms of the elements of the matrix 4.

2.2. The additive electromagnetic and the nuclear scattering amplitudes

Let ¥ be any electromagnetic potential with the same behaviour as ¥ forr > rc; ¥
might differ from V for r < r¢. The Schrodinger equation

(D+ Q*—2MV)|Ry=0 (2.10)

has n regular solutions |R), (x=1,...n). The components R, (r) (i=1,...n) of these
solutions in the physical basis can be taken to have the asymptotic behaviour

Ry (r) = (mi/q)"? sin(g,r — y,In Qq,r) + ;) a=i

Ri(r)=0 o 2.11)
For later reference we define

F, =R, ' (2.12)
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The irregular solution corresponding to F, we call G;; it has the asymptotic behaviour

Gi("),_’:';, (m,/q,)'"* cos(q;r — y;In(2g; r) + ;). (2.13)
In the case r = 0 of a pure Coulomb potential we have

and £, and G, are multiples of the usual Coulomb wave functions (as tabulated e.g. in
[15)) or the spherical Bessel and Neumann functions when y, = 0.

The functions R,, can be expanded asymptotically in terms of F,and G,. This gives
certain expansion coefficients as in (2.7), the matrices of which we call £ and &. Again
we define as in (2.8) and (2.9) the symmetric matrix

K=5-#%1 (2.15)
and the electromagnetic partial-wave scattering matrix '
a=Q 2 KA1 —iK)t Q1. (2.16)

We see from (2.11) that & and £ are diagonal matrices in the physical basis, with matrix
elements

&” _ Sin Gl ie“ = COS _“;i‘ (2.17)
It follows from (2.13) that
Gy(r) e —F, 6, + éi K- (2.18)

In view of (2.1) and (2.2) the functions Ry,(r) can be expanded for r > r, in terms
of the £,(r) and G,(r)

Ri(r) = F(r) kg + G((r) 610 7> 1o (2.19)

The expansion coefficients are the elements of nuclear matrices x and . They are distinct
from the hadronic (purely nuclear), charge-independent matrices  and & to be defined
later. From x and ¢ we define the real symmetric matrix

K=ox1. (2.20)

To get the connection between x, K, k, &, 6 and ¢ we compare (2.7) with (2.19),
using (2.11), (2.12) and (2.18); the result is

K = KK — G0
¢ = 6k + Ko. (2.21)

Using (2.21) we can separate the electromagnetic partial-wave amplitude from the
total partial-wave amplitude; we have

K@ —iK)™ = é(k — i6)~!
= (G + RK) (k — 6K — i — iRK)™?
=6+ RK)(1 — iK)1 (& — i6)~*
= [6 + (RK + i6K) (1 — iK)™') (R — i)~*
=K —iK)™ + (k + i6) K1 — iK)™ ' (R — i)™, (2.22)
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Using (2.22), (2.9) and (2.16) we obtain

G=a+ Q" V2R +i6) K( — iKY\ (k — i6)* Q"2 (2.23)

Appendix II gives (2.23) in explicit form and shows how to get the electromagnetic
scattering amplitude corresponding to 4.

The nuclear quantities x, o and K obviously depend on the choice of ¥; in other
words, they depend on the choice of the additive electromagnetic amplitude used in the
analysis of the experiments. This makes it quite clear that they are not the hadronic
(purely nuclear) quantities &, & and K which we are going to define in the next section.

3. Corrections to Charge-Independent Quantities

We now define the charge-independent quantities ¥, @ and K. To do this, we start
from the Schrédinger equation

(D + Q*—-2MU)|R)> =0. (3.1

Here again @ and M are diagonal matrices in the physical basis. In addition the matrix
elements corresponding to states belonging to the same isospin multiplet are put
equal; this means that the electromagnetic mass differences have been neglected. From
this and the charge independence of U it follows that, in the basis of isospin eigenstates,
the system of coupled equations (3.1) decomposes into decoupled subsystems corres-
ponding to definite isospin.

Equation (3.1) has n independent regular solutions |R)>, (¢ = 1,...n). Defining

Fi(") = (m;q,)'* rjo(g;r)

G_i(") = —(m,;q,)""* rno(g; r) (3.2)
we can expand the components R;, of |R), in the charge basis for r > r, in the form
Eia(") = Fi(r) % + Ei(r)b—-ia rzro. (3.3)

Again we define a real symmetric matrix K by

K=ok L (3.4)
In the basis of isospin eigenstates, &, K and K decompose into direct sums of submatrices
corresponding to definite isospin.

It is our aim to calculate K from K, thus obtaining the charge-independent (i.e.
purely nuclear) scattering quantities from the nuclear ones. For this purpose we use
the fact that every real symmetric matrix can be diagonalized by a real orthogonal
transformation. Calling the transformation matrices 7 and 7 for K and K respectively,
and calling the eigenvalues tan d; and tand; (i = 1,...n), we have

Kfi = Z de tan 6¢ Tia TTr = 1] (3'5)
a=1

Kfi = z %j‘a tan gﬁ Tiac fft = ‘H (3'6)
a=1

Comparing (3.5), (2.19) and (2.20), we see that the most suitable way of fixing
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the n linearly independent column vectors (R;,) is to put

Kig = Tiq COS 0, Oy = Ty, SINJ, (3.7
and correspondingly

Kig=Tiq COSOy Tig = T;q SiN O,. (3.8)

The next step consists in rewriting (2.3) for the regular solution |R ), in the form

M~ D+ Q% - 2MU)|R>,= M1 4|R>, (3.9)
with

A=2MV +2(M - M)U - (Q? — 0?) | (3.10)
and rewriting (3.1) for the regular solution |R); in the form

M~Y(D+ Q*—2MU)|R); =0. (3.11)

Multiplying (3.9) by z;(R| and (3.11) by ,(R| and subtracting the resulting equations
from each other gives

n d
2: i d W[Riﬁa m]_B<R|M 1A|R>u ‘ (312)

i=1

where W,[R;, R,.] is defined as in equation (A2). Integrating (3.12) from O to r, gives

-Z my' W, [Rig, Ryl =JP,;<R |M~14|R>,. (3.13)

i=1 0
Using (2.19) and (3.3), the left-hand side of (3.13) can be expressed in terms of the
known functions F;, G,, F,, G,, the measured nuclear quantities ¢ and x and the charge-
independent quantities & and &, which are to be determined. Equation (3.13) is the basic
equation which will be used to relate the nuclear quantities to the charge-independent
ones. These relations then depend on some model-dependent integral over the nuclear
region.

The general procedure for calculating é, and z;, can be described as follows. Starting
from the charge-independent parameters 8, and 7,,, one chooses some hadronic potential
U which reproduces these parameters via equations (3.1), (3.3), (3.4) and (3.6). In the
next step one calculates a set of » linearly independent regular solutions R;, of (2.3)
at r = ry by integrating (2.3) from 0 to r,; one also calculates their derivatives at r = ry,.
This set of linearly independent regular solutions for r < r, will match smoothly at
r =r, to the solutions of the form (2.19) for r > r, if x,, and o;, are chosen correctly.
This determines J, and 7;, via the equations (2.20) and (3.5).

For later reference we define the electromagnetic corrections ¢, to &, by

0y = 0y + Ca (3.14)
Similarly we define the electromagnetic correction matrix C to 7 by

t=%(1 + C). (3.15)
Since 7 and 7 are both orthogonal matrices it follows that |

C+C'=-—C'C. (3.16)
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If one is interested only in electromagnetic perturbation results (3.16) becomes
C=-C" 3.17

Because the matrix A ~'4 is not symmetric it is convenient for later purposes to
derive an antisymmetry relation. Starting from (3.9) and using (2.19) and (3.7), one
finds by calculating >; W, [R;,, Rys]

r° .

j dr(CR|M~* A|R>p — (R| M1 4|RY,) = sin(d, — 8;) 5 Am; 11 7oy (3.18)

0 i .
where

Am; = (m, — m,)/m,. (3.19)

4. Relativistic Modifications

It has been pointed out in the introduction, the question of taking into account
relativistic corrections is very delicate. In Ref. [16] the modification of the additive
electromagnetic amplitude is described; if applied correctly it gives this amplitude
non-relativistically up to all orders and relativistically up to first order in the fine struc-
ture constant.

How to make relativistic corrections in order to go from the nuclear to the charge-
independent quantities in a potential model is much more doubtful. This question is
considered in [17] and in the appendix of [6]. Without further justification, we simply
state that we try to take these relativistic effects into account by substituting the relativ-
istic energy in the lab system of each particle for its non-relativistic mass. This means
that the reduced mass m, is replaced by the reduced energy in the lab system. The some-
what different procedure proposed in [6] would result only in minute changes (of the
order (¢'#*)?/s) in our numerical applications to the N system.

5. Perturbation Expressions for 7N Scattering
5.1. n*p Scattering

At low energies the n*p problem is a one-channel case, the physical state being
identical with the isospin state with total isospin 3/2. Obviously =17 = 1. We label
the scattering phases by the subscript 3 to indicate the isospin quantum number.
From (2.19), (3.3), (3.7) and (3.8) we have

R=h= Fcosd;+Gsind; r>r, (5.1)
R=hcosc}+ (G cosd; — Fsin d3)sincy r=ry (5.2)
where

h=Fcosd, + G sind,

83 =083+ c3. | (5.3)
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There is no need to label the functions, since everything is self-evident. The prime on ¢}
distinguishes it from the corresponding correction in the ™ p case.

To get the perturbation result for cj to first order in the Coulomb parameter we use
(3.13). Obviously 4 is of first order and so we can replace R by R in the integral on the
right side of (3.13). Furthermore, we can neglect all terms of higher order in the Wron-
skian determinant of (3.13). This means that in (5.2) we can replace

cos(c3) by 1

(G cos(d;) — F sin(3,)) sin(cs) by (G cos(8) — F sin (35)) ¢5-
Inserting all this into (3.13) and using
W, [G Fl=m=m | (3:4)

where m is the reduced mass of the n*p system, we arrive at the result

cs=mW,[hh] - X (5.5)
where
ro
X=2 | V() R¥r)dr. (5.6)
: |

Equations (35.5) and (5.6) give explicitly the perturbation result for c3. They contain the
Coulomb potential via ¥ and the special choice of the additive electromagnetic ampli-
tude via A.

5.2. n~p Scattering

Neglecting the yn state we have two channels for low energies. We label the physical
states by

|- =|n"p> (5.7
|0> = |=°n). (5.8)

The isospin eigenstates for total isospin 4 and 3/2 we label
|I> and |3 - (5.9)

respectively. We always assume that the hadronic interaction conserves isospin, so
that K is diagonal in the isospin basis. Consequently 7 is the transformation matrix
between the physical basis and the isospin basis:

?...3 = ‘\/1_/3 .= —‘\/273
Tos=V2[3 To1=+13. (5.10)

The corresponding phases are denoted by 8, and d,. Isospin conservation implies that
d5 is the same as in n* p scattering.

We now have to make a choice for M. In the n*p system this problem does not
arise, because it is natural to take the n* p reduced mass m equal to m in the Schrodinger
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equation. For the two-channel system we define

M=m-1. (5.11)
Again this choice seems natural, since the n~ p reduced mass is equal to m. We also define

Q0=g-1. (5.12)

Two further useful definitions are

hy=Fcosd,+Gsind, r=r, (5.13)

hio=F,cos 8, + G, sind, r>r, (5.14)

where i =0,- and o = 3,1. One should note that because of (3.2) and #i_ = iy = m,
in our two-channel case F; and G, do not depend on the index i. Due to charge-indepen-
dence, h; = h as defined in (5.1). Using (2.19), (3.3), (3.7), (3.8), (3.14) and (3.15) we then
write

Ri.=Tuh, r>ro (5.15)
Ry, =T+ (C);e) (i, cOs C + (éi cos 8, — F,sind,)sinc,) r = r,. (5.16)
To first order we have

Ry = Tiuhiy + T,,€(G cos 8, — F sin 6,) + (TC) o 1. (5.17)
We replace |R)>, by |R), in the right-hand side of (3.13) and define

X,,¢=jdr,;<1?11\7-14|1‘e>,. (5.18)
0

Inserting (5.17) for R;, on the left-hand side of (3.13) and using (5.4) as well as the ortho-
gonality of T we arrive at

M S TipTie Wiy lhg, Bia] — Bl | &) — Cpq Sin(S, — 8p) = Xpe (5.19)

i

Taking o« = f in (5.19) and using (5.10) we get

¢y = —Xs3 + (1/3m) W, [ha, h_3] + (2/3m) W, [R3, hos] (5.20)

1= —Xu1 + (2/3m) W, [y, h_s] + (1/3m) W, [By, hos). (5.21)
Taking a =1 and § = 3 we get

Cay sin(8; — 8,) = Xy + (V2/3m) W, [y, h_y] — (V2/3m) W, [hs, hoy 1. (5.22)
From (3.17) we know that

Cs =— Cha. (5.23)

Equations (5.20)—(5.23) give the electromagnetic corrections in perturbation theory.
We now calculate the quantities X533, X;; and X5; more explicitly. To this end we
put

IRY,=h,(N)|ey a=3,1 r<r,. | (5.24)
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It is seen that h, and %, are the regular solutions of (3.1) in the isospin basis. Due to
charge-independence the system of equations (3.1) decouples in this basis. The 4, as
defined in (5.24) have to fit smoothly at » = r, to the 4, as defined in (5.13). We put

Adm=mo—m Adq*=q;—q’ (5.25)
V_=<{-|V|-. (5.26)

One should note that ¥_ is minus the potential going into (5.6). Collecting all the defi-
nitions and using (5.10) we get

X33 =2/3m f dr(hs)? (mV_ + 24mU,, — Ag?) (5.27)
0
ro
Xy =1/3m j dr(hy)? (AmV_ + 24mUy, — Ag?) (5.28)
0
ro -
X3 =v2/3m f drhy hy(—2mV_ + 24mU,, — Ag?). (5.29)
(0]

In order to give the nuclear scattering amplitudes a__ and a,_ in terms of the
charge-independent quantities J, and the corrections c,, C,; we define

a, = sin(d, + ¢,) exp(id, + ic,). (5.30)
Using (5.10) we get from (A10) and (3.5) in perturbation theory

a__=(3q)™ exp(2i¥) [a; + 2a; + 2V2 Cyy(as — a,)] (5.31)

ao- = (9490)"/* exp(i9) [(as — a1) (V2 + C3y)] (5.32)

where v = 9_. Note that the exponential functions in (5.31) and (5.32) corresponding
to the additive electromagnetic amplitude have not been approximated by an expansion.

6. Special Potentials for 7NV Scattering

We will see in the next section that the numerical calculation of the phase shift
corrections at low energies is not very sensitive to the shape of the potentials. One can
therefore use very simple expressions for U and V.

The electromagnetic potential should take account of the extended charge distri-
bution of the particles. We take for V the potential of a uniformly charged sphere with
radius r¢ and a point charge,

+ 2 S5—0. 2/.2
Vir) = +e*(1.5 — 0.5r2[rd)[re r<re. ©.1)

+e?/r r>re.

The hadronic potentials must reproduce the charge-independent phase shifts which
are the free parameters in a phase shift analysis. But the complexity of the connection
between a potential and the corresponding phase shift makes it hard to choose directly
a potential with the right property. It is much easier to choose an ansatz for the solutions .
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of the purely hadronic equation (3.1) and to determine the parameters of this ansatz
in terms of the charge-independent phase shifts. To test the dependence of the electro-
magnetic corrections on the ansatz, two different expressions have been used in the
numerical calculations. We refer to them by I and II and use the following abbreviations

xX=qr, Xy=gqry (6.2)
Ea15(x) = ji(x) cos Sa;lj — my(x) sin Sa;lj
Na;11(X) = Ji+1(X) cOS ga:l.f — My41(x) sin 3auur- (6.3)

In (6.3) we have made the angular momentum dependence explicit in an obvious way.

Ansatz I consists in taking the simplest polynomial for 4,,,(x) in the range x < xy
which has the behaviour x'*! for small x to take account of the centrifugal term in the
Schrédinger equation:

(m/q)llszl(Aa;U + Ba;lj x) X< XN

i) =
%) (m/q)/? XEas1; X 2 Xy.

(6.4)

The constants 4 and B are fixed by the requirement of continuity of the function A
and its derivative at x = x,. The result is

Ay = x5 Carf(Xn) + XnNa51,(XN))

B, = —x§" Na;1(xn). (6.5)

A typical form of the potential corresponding to ansatz I is shown in Figure 1. In fact
the quantities %, 4, Bin (6.4) should carry an index I to indicate their relation to ansatz
I; for reasons of typographical simplicity we suppress this index and use the same letters
in the following for ansatz II.

Ansatz II consists in taking for A,,,;(x) in the range x < xy a more complicated
polynomial corresponding to a continuous potential at x =0 and x = xy:

(m/q)1/2x1+1(A¢;lj + Bd;ljx2 + Ca;ljx4) X S AN

1t = mig) 2 xt X2 X (5e)

The constants 4, B and C are fixed by the continuity requirements of the function 4,
of its derivative and of the corresponding potential at x = xy. The result is

Au;1j = (en'8) [(B — xR) &asrs(xw) + Xw(2 + T) g;1,(x)]
By1y = (x5 /8) [2xy £uuj(xn) — (41 + 10) 11,15(xn)]

Ca;lj == (x;l—3/8) [xN éa;lj(xN) - (21 + 3) ”a;lj(xN)]- (67)
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A typical form of the potential corresponding to ansatz II is shown in Figure 1; it is
finite at r = 0.

At low energies the potentials are only weakly energy dependent. From the defini-
tions of ry, rc and r, it follows that the range r, in the formulae of the preceding sections
is equal to the greater of ry and rc. It is not possible to determine both parameters ry

m AU

05 10 m

.5r

Figure 1
The hadronic p33 potential U for ansatz I and ansatz IT at Tj3% = 191.9 MeV.

and r. together with the charge-independence phase shifts because the data are not
accurate enough. If one chooses a value of the order mz! !) for r, then the combined
n* p and nn~ p data determine well a value for ry. For ro = 1.42m5?* the phase shift analysis
at the first resonance described in Section 7 gives the values

(1.01 £ 0.14)mz' (ansatzI)

"= 1(1.10 £ 0.17ym3!  (ansatz II). ©.8)

7. Phase Shift Analysis Below 250 MeV

We now describe the numerical procedure for performing the phase shift analysis,
including the corrections described in the previous sections. As mentioned in the intro-
duction we can fit the data in a charge-independent way by including the corrections

') m, is the mass of the charged pion. One fermi corresponds to 0.71mz>.
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due to the electromagnetic mass differences. This means in particular that we can fit
the n* p and =~ p data with the same charge-independent p33 phase shift.

The data analysed here are the same as in Ref. [1], consisting of measurements of
O p), Go(n”p), o(n”p — 7n°n), do/dQ(n*p —n*p) and do/dQ(n"p —7"p). A
strictly energy-independent analysis of these data is not possible because they are mea-
sured at different energies. Therefore we describe now our procedure for the analysis in
detail.

7.1. Free and fixed parameters

As shown in the first two columns of Table I we divide all the data into sets, each of
which contains the results of either the =t p or the 7~ p experiments in a small energy
interval. Each data set is fitted separately by minimizing %2, varying the charge-inde-
pendent s- and p-wave phases d, at two energies T, and T,. These are the energies of the
differential cross-section measurements. Starting from these phases and including the
corrections we obtain the nuclear s- and p-wave phase shifts §, and the mixing para-
meter C;; in the coupled-channel case at the energies 7; and 7.

The same nuclear quantities at other energies within the energy interval are then

obtained according to

2 2

g2i+ictgd, — g2i+1 ctgd,., = (q§:+1 Ctgéa;z _ qul ctgd,.1) - qzl (7.1
q: — 41
q> —q3
= Cat=(Caria = Cais) 3 ql : (7.2)
1

Here the additional indices 1 and 2 refer to the first and the second energy of column 4 in
Table I. Column 3 lists explicitly the free parameters for each least-squares fit. Some
small phases near the resonance at 190 MeV, which are omitted from the list, cannot
be determined well by the data and are therefore kept fixed in the corresponding fit.

Table I
Minimized yx2 for each least-squares fit in small energy intervals; a, b and c refer to the three analyses
a), b)and ¢)

Free parameters Number Degrees 2 o
Tiilintervals Charge-independent At7T  of data of X2 at minimurm
Experiments (MeV) phases (MeV) points freedom a b c
ntp (71.6/118.9) s31, p31, p33 94.5 11 5 7.7 7.7 1.7
531, p31, p33 114.1
ntp (120.4/155.8) 531, p31, p33 1429 21 15 26.4 26.4 26.4
531, p31, p33 124.8
ntp (161.2/194.3) p33 166.0 32 30 24.7 24.6 24.2
P33 194.3
ntp (205.3/236.3) 31, p31, p33 2146 30 24 22.3 223 22.3
s31, p31, p33 236.3
np (76.7/96.0) s11,pl1,pl3 88.5 6 3 6.2 6.4 9.1
119.3
np (114.4/144.1) s11,p11,p13 1193 18 12 24.8 248 19.3
sl11,pl1, p13 144.1
np (159.6/192.3) sl11,pl1,pl3 1619 26 21 29.0 29.0 29.5
s11, pl3 191.9
np (208.9/237.9) si1,pll,pl3 219.6 24 18 19.8 20.0 222
sl1,pll, p13 237.9
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In the fifth data set of Table I only the phases at T, are varied, while the phases at T,
are taken from the fit in the sixth set.

The inelasticities #, and the d- and f~wave phase shifts are fixed parameters included
in the fits. Their values are taken from Ref. [1]. The partlal wave isospin amplitudes in
equation (5.30) are now modified by the inelasticities in the usual way,

G = 1 SIn(3, + €, eXp(iy + ic;) — (1 = 1)/ (20). | (2.3)

The ranges ry and r. described in Section 6 are two further parameters. They are
needed only for the calculation of the corrections and are therefore kept fixed at some
reasonable values. Fixing r¢ at typical values of 1 or 2 fm, ry was determined by inde-
pendent least-squares fits with different ry to the data in the third and the seventh
sets of Table I. This has to be done because the mass difference corrections are more
dependent on ry than was the case earlier for the Coulomb corrections. After this pre-
liminary procedure to obtain the right range parameters, all fits in the different energy
intervals were done with fixed values for r¢ and ry.

7.2. Scattering amplitudes from the parameters

To calculate the nuclear quantities from the charge-independent phase shifts &,
we use the electromagnetic phase shift corrections described in the previous sections.
In all the numerical calculations of this section we have done this only for the s1 and p3
partial waves. For the other phases the corrections are much smaller than the accuracy
to which these phases can be determined from the existing data.

The inclusion of the corrections by means of our computer program does not
follow equations (5.5) and (5.20-5.22). The nuclear quantities are calculated from the
potentials of Section 6 by integrating the Schrodinger equation (2.3) from 0 to ro =
max(rc,ry), followed by expanding the solutions at r, according to equation (2.19).
We have checked that the perturbation expressions of Section 5 give the same phase
shift corrections within 1 7.

The functions F; and G, and the corresponding Coulomb phases #; depend on the
choice of the additive electromagnetlc amplitudes, which are those of Ref. [16] multi-
plied by form factors (1 — ¢/m2)~*, where m, ~ 5m,. For the phase shift analysis of the
ex1st1ng data it is well justified to use first-order expressions in the Coulomb parameter
for #,, F; and G;. Therefore the Coulomb phases to be used in equation (A10) are (see
Ref. [12])

Vi=arg I+ 1+ iy) + dv;, ' (7.4)
where
Avyo=72[In(l + &) + /6 (1 + &)~ (18 + 27¢ + 11¢?)]
Avy1=7;/2[In(1 + &) — &/6(1 + £)~3 (6 + 5¢ + &7)]
e =4¢?/m2 ~ 0.16g7 m;?

Since we had a computer program for the usual Coulomb wave functions F, and G,
the functions £, and G,,, used for the expansion (2.19) at r, are approximated by
(see Appendix III)

Fi;r("o) = Fi(qiro, 7)) + Gi(qiro, vi) Aviy
Giu(ro) = Gi(giro, v0) — Filg re, Vi) Avi- (7.5)
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7.3. Results

To determine the charge-independent I = 3/2 s- and p-wave phase shifts, a least-
squares fit was made for each of the four n*p data sets defined in Table 1. The corres-
ponding 7 = 3/2 phases at energies needed for analysing the n~ p data sets were obtained
by using equation (7.1) for the charge-independent phase shifts. With these fixed values
of the I = 3/2 phases, a fit was made for each of the four 7~ p data sets to determine the
charge-independent 7 = 4 s- and p-wave phase shifts.

Three independent analyses were done, labelled by a), b) and c). They are charac-
terized by the following features:

a) ansatz II (see Section 6) ro = 1.42m3!

b) ansatz I re=1.42m7!

c¢) ansatz II re =0.71mz1.

As described above, each analysis was started by fixing a value for ry. From the pre-
liminary fits to the third and seventh data set, we obtained

1.10 £ 0.17m>3* a)
ry=1{1.01+0.14 b)
1.34 + 0.13 )

Changing the given values by the standard errors quoted results in an increase of 1 in
the x2 for the seventh data set. The minimized y? for all the fits with the above range
parameters is presented in the last three columns of Table I. It can be seen that a reason-
ably good fit is possible with charge-independent phase shifts if one includes not only
the Coulomb corrections, but also the mass difference corrections according to the
method described in this work.

The higher y? values for the fits to the n~p data sets is not surprising if one recalls
the fact that the I = 3/2 phases must first be provided by equation (7.1) from the values
obtained from the n* p fits. It would be desirable to have the z* p and n~ p measurements
at the same energy.

The differences between the corrections using ansatzI and ansatz Il are unimportant
(analysis a) and b)). This is illustrated in Table II for the most important p3 corrections.

Table IT
p3 corrections in degrees for n*p(c”) and n~p(cs,cy1,Cs1) scattering for the three different analyses a),
b) and ¢).

T Ci1+ C3;1+ Ci;1+ Carnse

(MeV) a b c a b c a b c a b c

88.5 ~0.38 —0.38 —0.38 042 042 0.40 —0.02 —0.02 —0.02 —0.17 —0.17 —0.12
119.3 —0.56 -0.55 —0.55 0.35 0.36 0.32 —0.03 —0.03 —0.02 —0.05 —0.05 —0.01
144.1 —0.56 -0.55 —-0.52 0.14 0.14 0.01 —0.02 —0.02 —0.01 0.01 0.01 0.05
161.9 -0.39 —0.39 —0.35 —0.09 —0.10 —0.14 —0.02 —0.02 0 0.04 0.04 0.07
191.9 -0.01 —0.01 0.09 —0.36 —0.35 —0.38 —0.03 —0.03 0 0.06 0.06 0.09
219.6 024 0.24 0.29 —0.40 —0.39 —0.42 —0.03 —0.03 © 0.08 0.08 0.10
237.9 031 032 0.35 —0.36 —0.36 —0.36 —0.03 —0.03 0.01 0.09 0.09 0.10
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Figure 2
P33 phase shift corrections cs;;, and mixing parameters Csy;14 (solid lines); the dashed lines are the
corresponding corrections without any mass differences (m; = m,).

This is again a confirmation that the corrections are only weakly dependent on the shape
of the hadronic potentials, provided that they have a suitable range. Comparison of
columns a and c shows that the corrections are more dependent on the choice of rc.
The fits below 100 MeV prefer for r¢ a value about 1.4mz* rather than about 0.7. This
fact has no physical meaning because the chosen electromagnetic potential is not
expected to describe exactly the actual physical situation within the nuclear range.

Figure 2 shows the decomposition of the corrections ¢;,1, and Cj;.;, into Coulomb
and mass difference corrections. From this illustration it is clear that in analysing N
data at low energies mass difference corrections and Coulomb corrections play equally
important roles.

Tables IIT and IV contain the charge-independent phase shifts and the corrections
for the s- and p-waves resulting from the phase shift analysis a).

Table III
Charge-independent #N phase shifts in degrees

TR

(MeV) 83,0+ O1;0+ 83;1- 011~ 0314+ O1;14+

885 -870+0.12 8.59+0.14 —1.74+0.22 —1.68+0.08 16.97+0.06 -0.99£0.13
1193 -8.15+0.19 977+0.16 —3.41+0.24 —1.05+0.28 3294 +0.06 -1.71+0.12
1441 —1294+0.28 9.64+0.17 —3.66 + 0.34 —0.55+0.22 51.35+0.07 -—-1.44+0.12
1619 -12.50 10.19 4+ 0.23 —4.36 0.72+042 67.33+0.16 -1.23+0.25
1919 -14.78 10.62 + 0.50 —5.18 1.96 91.68 +0.55 —2.79+0.29
219.6 —17.30+0.29 13.13+0.26 —5.97+0.54 3.20+0.37 109.78 +0.22 —2.96 +0.13
2379 -—-1840+0.32 13.11 +0.34 —6.22+0.48 5.13+0.30 117.20+0.21 -3.22+0.11
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Table IV
Electromagnetic corrections to zN phase shifts (¢’ for n*p, c3 and ¢; for 7~ p scattering) and mixing
parameter Cj, in degrees for partial waves s1 and p3 corresponding to a form factor (1 — #/m2)~*in the
electromagnetic amplitude

T,
(MeV) Clo+ C3;0+ C1;0+ Cat;0+  Chs C3;14 Ci;1+ Cag;ae
88.5 0.12 —0.07 0 0.10 —0.38 - 042 —-0.02 —0.17
119.3 0.11 —0.04 -0.03 0.10 —0.56 035 -0.03 —0.05
144.1 0.13 —0.04 —0.05 0.10 —0.56 0.14 —-0.02 0.01
161.9 0.12 -0.03 —0.07 0.10 —0.39 -0.09 —-0.02 0.04
191.9 0.12 —0.02 —0.09 0.10 —001 -0.36 —0.03 0.06
219.6 0.12 —-0.01 —0.11 0.08 0.24 —0.40 —0.03 0.08
2379 0.12 —0.01 —0.12 0.08 031 036 —0.03 0.09

7.4. Conclusion

It should be mentioned that the phase shift corrections and with them the phase shift
analysis are influenced by the choice of the hypothetical charge-independent masses.
If for example we choose 71, # m;, we have mass difference corrections in the single-
channel case also. But with the present accuracy of the experimental data there is no
hope of determining a value for s by fitting the data.

We do not claim that the model-dependent calculation of the electromagnetic
corrections presented here predicts exact numbers. Nevertheless it shows two things.
Firstly, it gives for the first time a rough estimate of the mass difference corrections to the
phase shifts. These corrections cannot be neglected any longer in a phase shift analysis
of precise low energy nN experiments. Secondly, a charge-independent analysis of the
present low energy n/N scattering data is possible with the inclusion of mass difference
corrections using even a very simple potential model.
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APPENDIX I

We show that the matrix K defined by (2.20) is real and symmetric. The arguments
given here apply equally well to the matrices K, K and K defined in Sections 2 and 3.
The reality of K is a simple consequence of the fact that all the matrices in (2.3) are
real and so we can choose the R;, to be real functions.

The symmetry of K is a consequence of the fact that M~1Q? U and V are sym-
metric in the physical basis. We therefore have from (2.3) the symbolic relation

s{R|M~' D|R}, — ,(R|M~1 D|R>, =0.

. This equation reads explicitly

d n
— —1 R..R.1=0 Al
dl‘ i_zl ml Wr[ iB> m] ( )
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where
W.[Ris Ri,] = R dR R dR A2
rLAVigs £hiad — £Vig dr ix ix dl’ . ( )
Because W, _o[R;;, R;,] = 0 for two regular solutions, we have from (A1)
n
> mi* W,[Ry,R,]=0 r>0. (A3)
i=1
Inserting the asymptotic expansion (2.19) and using the relation
Wr[éia E ] =m; (A4)
we have

n
Z (Kiﬂ Oia — Oip Kia) =0
i=1

or, in matrix form,
K'e=0"kK."
We therefore have
K=ok )Y =k)e=k"Yoxc'=k")Kox=0k1=XK (AS)

Thus the transpose K* of K coincides with X and we have established that K is symmetric

APPENDIX II

The total scattering amplitudes f and g in the c.m. system for the process i — f
are given by ,

fr= ,zj(j+ D Pi(cos 0) Gy (A6)
é'fi = z (—])1_1_112 PII (COS 9) &_ﬁ;”. (A7)
1,J

Here we have introduced explicitly the partial-wave indices (/). It is clear how the
formulae of Sections 2 and 3 have to be modified to apply to arbitrary /. It should be
particularly noted that in practical calculations one might need a different potential
U for each partial wave. The differential cross-section for the process i — f'is

do

— =q,q;7 (| fr:|* +

dQ §fi|2)' | (AS)

The explicit form of (2.23) is, for general (J)),
Zl_fi;lj = qi_l sin V;;; exp(iv;;;) <f|1| [l> + Qpij (A9)
where

Gpi1y = (@ q0) ™" > exp(Viy + 107,) FIK (1 — KDY i), (A10)
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Insertion of (A9) and (A10) into (A6) and (A7) shows the influence of the choice of ¥
on the nuclear quantities K¢”. Defining the additive electromagnetic amplitude f;; as

fu > (J +4) P, (cosB)g;! sinV;,; exp(iv;,;) (All1)

we have, more explicitly,

ffi SNNidfu+ Z (j+3) Pi(cosO) as,, (A12)
€= 2( 1)7112 PX(cos 0) ay,,y;. (A13)
APPENDIX HI

We consider the two equations for x > 0

(;—22 +1 —2y/x) R(x)=0

d? , .
(F +1 —2y/x+2yD(x)) R(x)=0 ‘ (Al4)
where D(x) is continuous

|xD(x)| <¢; O0<x<1

|x% D(x)| < ¢ x>1

¢; and c, are two constants. We show the connection between their solutions, neglecting
terms of order y? and higher.

F and G are the regular and irregular solutions respectively of the first equation,
F and G the corresponding solutions of the second. The Wronskians are, by definition
of the normalization,

W.[F,G]=W,F,G]=-1. (A15)
According to equation (2.11) we have asymptotically

F(x) .~ F(x)cos 4v + G(x)sin dv

G(x) ~ G(x)cos Av — F(x)sin 4v (A16)

where Av is the difference between the phases of F and F.
From the equation (A14) we get the derivative of the Wronskian of any two solu-
tions R and R,

% W,[R,R]1=-2yD(x) R(x) R(x) (A17)

and, by integration, we have

W.IR, R1= W.[R,R1+2y [ dyD(») R() R(). (A18)
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We now set R = F and obtain two integral equations by replacing R by either F or G.

WAF,F]=~sindv+2y [ dyDG)F() F )

W.IG, F]=cos 4v + 2y j dyD(»)G() F(»). (A19)

The terms involving Av result from the Wronskians for x — <, using equation (A16).
Replacing the functions in the integrand by the corresponding functions for y =0,
(A19) becomes a linear system to determine £ and the derivative ' up to the first order
in y. We immediately arrive at the first order results

F(x)= F(x)+ G(x)dv + sinxjdy2yD(y) sin y cos y — cos X j dy2yD(y)sin®y
x x (A20)

F'(x) = F'(x) + G'(x) dv + cosxf dy2yD(y)siny cosy + sinxj-dyzyD(y) sin?y.
¥ * (A21)

Because A4v is, in lowest order, proportional to y we have replaced cos 4v by 1 and sin 4v
by Av. We obtain similar expressions for G and G'.

To save computer time we have neglected the integral terms in the equations (A20)
and (A21) in our actual calculations, where x is equal gr,, F and G are the usual Coulomb
wave functions, and F and G are the wave functions at r,. In our calculations ¢ is within
the range m,—2m, and r, & 1.4mz". The neglected integrals are about 5% of the phase
difference 4v, which is equal to the integral

Av = f dy2yD(y)sin2y.
0

As we have pointed out in Ref. [12], the effect of Av itself on the phase shift corrections is

small for / =0 and negligible for / > 0. Therefore the approximation (7.5) is well justi-
fied.
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