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Helvetica Physica Acta
Vol. 48,1975. Birkhäuser Verlag Basel

Berechnung der Zustandsdichte einer ungeordneten
linearen Kette

von U. Tellenbach

Delegation für Ausbildung und Hochschulforschung am Eidg. Institut für
Reaktorforschung CH-5303 Würenlingen, Schweiz

(29. X. 74)

Zusammenfassung. Ausgehend von bekannten Resultaten aus der Theorie der Jacobi-Matrizen
wird die Zustandsdichte einer ungeordneten, linearen Kette mit einer neuen Methode berechnet.

I. Einführung

Betrachte eine Kette aus N Massen, die durch Federn verbunden sind. Die
Federkonstanten f. und die Massen m, seien Zufallsgrössen, deren Verteilungsfunktionen
vorgegeben sind. Wir studieren die longitudinalen Schwingungen der Kette, und stellen
uns die Aufgabe, die Verteilung der Eigenfrequenzen zu bestimmen.

Dieses Problem wurde erstmals von F. J. Dyson gelöst [1]. Dyson bemerkt in
einer Fussnote, dass man eventuell durch Anwendung bekannter Resultate aus der
Theorie der Jacobi-Matrizen zu einer einfacheren Lösung geführt würde. Wir zeigen
nun in dieser Arbeit, dass dies tatsächlich der Fall ist.

IL Definitionen

Der Massenpunkt j in der Kette habe die Masse m}, seine Auslenkung sei x}, und
die Federkonstante zwischen den Teilchen j und j + 1 werde mit/ bezeichnet. Die
Bewegungsgleichungen lauten dann :

™j x, =fj(xJ+i - Xj) +fj-JXj-i - xf) (1)

Nach einigen elementaren Umformungen [1] ergibt sich, dass die Frequenzen die
Eigenwerte einer (2N- 1) x (2N- 1) Jacobi-Matrix M (M,f) sind:

2MiJUj Xui (2)

Unterstützung dieser Arbeit durch den Schweizerischen Nationalfonds zur Förderung der
Wissenschaftlichen Forschung.
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wobei
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M,,, 0 und Mt_j 0 für \i-j\>l. (3)

Aus (3) folgt, dass die Elemente der Matrix M Zufallsgrössen sind. Wir schreiben
deshalb

M=M((o) (Mu((o)),

wobei a» einem abstrakten Wahrscheinlichkeitsraum Q angehört.
Die charakteristische Gleichung (2) lautet nun :

MJ(o) U((o) X((o) U((o) U((o) e W.

Folglich müssen wir die asymtotische (n -> ») Verteilung der Eigenwerte der zufälligen
Matrix Mn bestimmen. Sei Fj(x) die Verteilungsfunktion der Eigenwerte von M, d.h.

FJx) Pr (A <: x) (Pr Probability).

Es ist zweckmässig, die Stieltjes-Transformierte /„(z) der Verteilungsfunktion zu
studieren :

fJz) j(x-z)-1dFn(x).

III. Bestimmung der Verteilungsfunktion einer Jacobi-Matrix

Sei M„ eine Jacobi-Matrix,

a, -bi
—bi a2 —b2

'•-. '•. -K-i
-h„-i a„

Mn

0

0

d.h. alyi+i -bl;aiii ai
und auj 0 für \i—j\ > 1.

0

Wir betrachten ferner eine Familie M„_Ä von Untermatrizen von M„

ak+l —bk+i

—bk+i ak+2

'
• -bn-l

-K-i '
a„

Mn

0
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Daraus ergibt sich unmittelbar die Darstellung
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M„
öl V'l

Vi Mn-1

Vi (-*i, 0....0)
' Transponiert-Komplexe (4)

Aus (4) ergibt sich, dass man Mn_x als „Störung" von Mn betrachten kann. Aus der
Definition der Resolvente einer Matrix,

R(z, M) (M- zi)'1

und aus (4) ergibt sich das folgende Resultat [2] :

l+v[R(z,Mn_i)2Vi
txR(z,MJ xrR(z,Mn_i) +

ai-z-v'i R(z, Mn_J vi

Aus (5) folgt unmittelbar

1 " 1

fjz) - y (Xt - z)-1 - tr R(z, M„).
n ^-> n

(5)

(6)

(7)

Somit ergibt sich durch mehrmalige Anwendung von (6) und (7) die folgende
Darstellung für die Stieltjes-Transformierte der Verteilungsfunktion :

mit

1 y l+Vk R(z, Mn_k)2 vk
_

1 ^ -Xj „(z)

n^ak-z-v'kR(z,Mn_k)vk «Z/ XKJz)

Xk,Jz) ak-z-v'kR(z,Mn^k) vk ak-z- \bk\2 RuJz,M„_k).

(8)

Da die Matrix M„ von Jacobi'scher Form ist, kann man Ä1>1(z,M„_fc) relativ einfach
berechnen. Betrachte dazu die Gleichung

(9)

Xk+i 1

0

Ilrf-Af__||
xn 0

Explizit:

(z — at+i) xk+i + bk+i xk+2 1

bk+i xk+i A- (z — ak+2) xk+2 + bk+2 xk+3 0

bk+2 xk+2 + (z — ak+3 xk+3 + bk+3 xk+4. 0

b„_ix„-i + (z-an)xn=0 (10)
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Das Gleichungssystem (10) kann explizit gelöst werden:

_
1

_
xk+2 bk+i

—xk-n ; ; • • • ;
xk+2 Xk+i xk+i

ak+i — z — bk+i ak+2 — z — bk+2
Xk+1 Xk+2

xn-i on_2 x„ o„_i

xn-2 xn xn_i an z
««-i -z-o„-i Xn-1

Sukzessives Einsetzen ergibt die Kettenbruchentwicklung:

-xk+i=l/(ak+i-z- \bk+x\2/(ak+2-z- \bk+2\2l( \bn_J2/(a„-z).

Andererseits folgt aus (9)

Ri,i(z,M^k) -xk+i l/(ak+1-z- \bk+1\2/(-' A (11)

Die Formeln (8) und (11) stellen die explizite Lösung des Problems dar.

IV. Berechnung der Zustandsdichte einer geordneten Kette

Es gelte

(f\12
ak 0 und bk b i\ — für alle k.

\mj
Definieren wir vt,„ —|è|2jRn(z,M„_t), so folgt aus (11), dass im Limes n -> » gilt:

v*,„ v -|&|2/(-z + v) (12)

d.h.

v=i(z-{z2-A\b\2)1'2)

und aus (8) ergibt sich

dvk,n

IA^ dz
f(z) lim /„(z) lim I -y»-<" "-00 \nA-,-z + vktn

¦i+Z-{z2-A\b\2Y'2

.Z--i{z2_4\b\2}U2
-(z2-A\b\2y112.
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Unter der (richtigen) Annahme, dass die Verteilungsfunktion F(x) absolut stetig ist,
vereinfacht sich die Stieltjes' Umkehrformel zu

1 1

F'(x) -- lim lmf(x + iti) -(4\bI2 - x2)-1'2 (\x\<2\b\).
n i>si %

V. Ungeordnete Ketten

Annahme: Die Parameter \bj2 sind unabhängige Zufallsgrössen mit der
Verteilungsfunktion G(|é|2).

Aus (11) und (12) ergibt sich die Rekursionsformel

Vk -\b\2l(-z + vk+x). (13)

Es ist vernünftig znzunehmen, dass vk+i und vk im Limes « —> » dieselbe
Wahrscheinlichkeitsdichte besitzen. Sie A(v) diese Verteilung. Indem wir die Wahrscheinlichkeiten
der linken und rechten Seiten von (13) einander gleichsetzen, erhalten wir:

z

A(v) j" A(v')• G(v(z -v'))-(z- v')dv' (v > 0) (14)
— CO

Eine entsprechende Gleichung gilt für v < 0.
Wenn wir die Lösung von (14) gefunden und normalisiert haben,

CO

| A(v)dv=l
— CO

so ergibt sich die Stieltjes-Transformierte als

zj 1 n j /»

f(z) - — lim - y log \z - v(k) | - — log \z - v \A(v) dv (15)
dz "-><x> n *—< dz jk=l -00

Beachte, dass durch (15)/(z) nur für z > 0 bestimmt wird, d.h. es stellt sich nun noch
das Problem der analytischen Fortsetzung. Ein ähnliches Problem wurde von Dyson
gelöst ([1], Seite 1334), und seine Resultate können ohne wesentliche Modifikation
übernommen werden.
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