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Berechnung der Zustandsdichte einer ungeordneten
linearen Kette

von U. Tellenbach

Delegation fiir Ausbildung und Hochschulforschung am Eidg. Institut fiir
Reaktorforschung CH-5303 Wiirenlingen, Schweiz

(29. X. 74)

. Z_usammenfassung. ‘Ausgehend von bekannten Resultaten aus der Theorie der Jacobi-Matrizen
wird die Zustandsdichte einer ungeordneten, linearen Kette mit einer neuen Methode berechnet.

1. Einfiihrung

Betrachte eine Kette aus N Massen, die durch Federn verbunden sind. Die Feder-
konstanten f; und die Massen m; seien Zufallsgrossen, deren Verteilungsfunktionen
vorgegeben sind. Wir studieren die longitudinalen Schwingungen der Kette, und stellen
uns die Aufgabe, die Verteilung der Eigenfrequenzen zu bestimmen.

Dieses Problem wurde erstmals von F. J. Dyson geldst [1]. Dyson bemerkt in
einer Fussnote, dass man eventuell durch Anwendung bekannter Resultate aus der
Theorie der Jacobi-Matrizen zu einer einfacheren Losung gefiihrt wiirde. Wir zeigen
nun in dieser Arbeit, dass dies tatsdchlich der Fall ist.

II. Definitionen

Der Massenpunkt j in der Kette habe die Masse m;, seine Auslenkung sei x;, und
die Federkonstante zwischen den Teilchen j und j+ 1 werde mit f; bezeichnet. Die
Bewegungsgleichungen lauten dann:

myX;=fi(X;41 — X;) + f1-10x-1 — X)) (1)

Nach einigen elementaren Umformungen [1] ergibt sich, dass die Frequenzen die
Eigenwerte einer (2N — 1) x (2N — 1) Jacobi-Matrix M = (M;) sind:

Z Mju; = Au; 2)
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wobei
(i "
My =—M, j=i|2
J*1, § Ji+t (mj
M, ;=0 und M, ;=0 fir |i—j|>1. (3)

Aus (3) folgt, dass die Elemente der Matrix M Zufallsgrossen sind. Wir schreiben
deshalb

M = M(w) = (M, (),

wobei w einem abstrakten Wahrscheinlichkeitsraum Q angehort.
Die charakteristische Gleichung (2) lautet nun:

M, (o) U(w) = Aw) Ulw) Uw)eR".

Folglich miissen wir die asymtotische (n — «) Verteilung der Eigenwerte der zufélligen
Matrix M, bestimmen. Sei F,lx) die Verteilungsfunktion der Eigenwerte von M, d.h.

F,(x)=Pr(A < x) (Pr=Probability).

Es ist zweckmissig, die Stieltjes-Transformierte f,(z) der Verteilungsfunktion ‘zu
studieren:

F@) =[x —2)dF ).

III. Bestimmung der Verteilungsfunktion einer Jacobi-Matrix

Sei M, eine Jacobi-Matrix,

a —b,
) 0
M= _bl. a2, —bZ . d.h. aiiv1 = "bi, a; = aq
n— : “—bn....]_ unda;,j=0fﬁr |i—j|>l.
0 "
"_brr—l an

Wir betrachten ferner eine Familie M,_, von Untermatrizen von M,:
Qi1 —bpyy

—Dy+1 Qyyz

” . _bn—l
_Bn—l . a,
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Daraus ergibt sich unmittelbar die Darstellung

a4 | b
an : fvi=(;b1,0,...0)
vy | M,y " = Transponiert-Komplexe 4

Aus (4) ergibt sich, dass man M,_, als ,,Stérung* von M, betrachten kann. Aus der
Definition der Resolvente einer Matrix,

Rz, M)=(M—zI)™ &)
und aus (4) ergibt sich das folgende Resultat [2]:
1+ 0, Rz, M,_1)* v

trR(z, M,)=trR(z, M,,_ 6
Rl = LBln 1)_i_al—z——viR(z,M_l)vl ©
Aus (5) folgt unmittelbar
1 < 1 ‘
A@) == (h— 2" =~tr Rz, M,). ()
n < n

Somit ergibt sich durch mehrmalige Anwendung von (6) und (7) die folgende Dar-
stellung fiir die Stieltjes-Transformierte der Verteilungsfunktion :

f(2) == i 1+ v R(z, M, )* v =_Z — X, o(2) ®)

ay—z— vy R(z, M,_},) vi Xy, n(2)

mit
Xy, W2)=a—z—viR(z,M,,) vy=a,—z— !bkl R, (z, M,_}).

Da die Matrix M, von Jacobi’scher Form ist, kann man R, ,(z, M,_,) relativ einfach
berechnen. Betrachte dazu die Gleichung

Xg+1 1

l2f = Mull| - | =" | )

Explizit:
(z = Gks1) Xir1 + by Xy =1
Bis1 X1 + (2 — @paz) Xivz + b2 Xiy3 =0
biy2 Xsz + (z — alf+3 Xie+3 + Dii3 Xisa =0

Buct Xnes + (2= @) X, =0 (10)
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Das Gleichungssystem (10) kann explizit gelost werden:

1 . Xk+2 bis1 .

_xp_-+1 = 9 = gesny
, Xk+2  Xk+1 Xk+1

Akv1 — Z — byyy x—— A2 —Z — brys X

k+1 k+2

i Dy R b,_,

Xn-2 Xn Xn-1 an— 2z

Sukzessives Einsetzen ergibt die Kettenbruchentwicklung:

£

—Xir1 = /(@1 — 2 = b1 [P/ (@i — 2 — |bk+2|2/(' © o —|bu-s */(a, — 2).

Andererseits folgt aus (9)
Ri 1z M) = —Xie1 =1/(@s1 — 2 — |bisa [21C-+*)

Die Formeln (8) und (11) stellen die explizite Lésung des Problems dar.

IV. Berechnung der Zustandsdichte einer geordneten Kette

Es gelte

1/2
a,=0 und b, =b= i(—) fiir alle k.
m

H.P.A.

(11)

Definieren wir v, , = —|b|?> Ry,(z, M,._,), so folgt aus (11), dass im Limes n — « gilt:

Ve = v =—[BI/(~2 +7)
d.h.
v=4(z — (22— 4 |b})

und aus (8) ergibt sich
1! d:;.,,
z
f(z)=lim f(z) = lim | -
B2 "o\ n ~—Z ¥ Ve, 5

z
_%_ + 5 {22 _ 4|b|2}”2
= : =—(22—4|b|2)_.1/2_
4
—5—%{22—4|b|2}1/2 .

(12)
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Unter der (richtigen) Annahme, dass die Verteilungsfunktion F(x) absolut stetig ist,
vereinfacht sich die Stieltjes” Umkehrformel zu

1 1
F'(x)=— - lim Im f(x + in) = E(4|b|2 —x3)72 (x| < 215)).

H-0

V. Ungeordnete Ketten

Annahme: Die Parameter |b;|> sind unabhingige Zufallsgréssen mit der
Verteilungsfunktion G(|5?).
Aus (11) und (12) ergibt sich die Rekursionsformel

Vie=—=[b[*/(=2 + Vis). (13)

Es ist verniinftig znzunehmen, dass v, und v, im Limes n — o dieselbe Wahrschein-
lichkeitsdichte besitzen. Sie A(v) diese Verteilung. Indem wir die Wahrscheinlichkeiten
der linken und rechten Seiten von (13) einander gleichsetzen, erhalten wir:

Alv) = f AW)- Gz —Vv)) (z—v)dv' (v>0) (14)

Eine entsprechende Gleichung gilt fiir v < 0.
- Wenn wir die Losung von (14) gefunden und normalisiert haben,

A(W)dv=1

I
g8

so ergibt sich die Stieltjes-Transformierte als
d
f@=—— llm z log |z —v(k)| = —— f log |z — v|A(v)dv (15)

Beachte, dass durch (15) f(z) nur fiir z > 0 bestimmt wird, d.h. es stellt sich nun noch
das Problem der analytischen Fortsetzung. Ein dhnliches Problem wurde von Dyson
gelost ([1], Seite 1334), und seine Resultate kénnen ohne wesentliche Modifikation
iibernommen werden.
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