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Vol. 48, 1975. Birkhiduser Verlag Basel

The Linear Boltzmann Operator-Spectral Properties
and Short-Wavelength Limit

by M. Klaus
Institut fiir Theoretische Physik der Universitit Ziirich, Schonberggasse 9, CH-8001 Ziirich, Switzerland

(18. IX. 74)

Abstract. The spectrum of the linear Boltzmann operator for hard spheres is investigated for large
wave numbers k (k = 2n/A, A = wavelength of the initial disturbance). This is done by converting the
eigenvalue problem for the Boltzmann operator into an analogous problem for a related but more tract-
able operator. These spectral properties are of some consequence with regard to the time evolution
generated by the linear Boltzmann operator — it is shown that the contribution of the collision operator
is reduced to that of the collision frequency in the limit k — .

1. Introduction

In order to test the linearized Boltzmann equation, the propagation of sound in
monoatomic gases is very intensively studied at present [15, 16]. One distinguishes
between two regimes according to the ratio A// (A = wavelength of sound, / = mean free
path of the gas molecules). The case A > / corresponds to the Clausius gas, which is well
described by the Navier-Stokes approximation, whereas for A < / we have the Knudsen
regime. It is generally assumed that the latter and the transition from one regime to the
other are adequately described by the linearized Boltzmann equation.

Most experiments on sound propagation are of the source problem type. The sound
wave is generated by an emitter, roughly speaking, an oscillating wall [9]. Theoretically,
at high frequencies, there seems to occur an interesting phenomenon, namely the ab-
sorption of point eigenvalues of the linear Boltzmann operator in its continuous spec-
trum. This event characterizes the transition region A = /. In this connection, mathe-
matical questions, such as the analytic continuation of eigenvalues into the continuum
and the possible occurrence of spectral concentration, arise and have been treated
recently by several authors [16, 17].

In this work we look at the initial value problem for the linearized Boltzmann
equation in an infinite medium. Suppose, at time ¢ = 0, a spatially periodic initial dis-
turbance A(x, v,0) which evolves in time according to the linearized Boltzmann equation

oh oh

— 4 v —=—-]h. . 1.1

ot v 0x _ @
With the ansatz A(x,v,t) = f(v)exp(ikx — iwt) we get

—iof = —i(kv)f — If = —B,f (1.2)

I denotes the linearized collision operator.
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We notice that we are also led to equation (1.2) when we consider a general initial
disturbance f(x,v,0). By a spatial Fourier transformation we see that the transformed
function f(k, v,0) must satisfy (1.2).

For fixed k the allowed frequencies w are eigenvalues of the operator —iB,. If k
varies, the complex-valued function w(k) describes a so-called dispersion law.

In the sequel we will study the spectral properties of B,. After a review of some
known results, the spectrum o(B,) will be investigated in the limit X — o, that is, in the
short-wavelength limit (Corollary 6.3). Our method is to consider the eigenvalue
problem for an operator closely related to B, in the space L,(R?) instead of L,(R?).
But, as we shall see, certain other L ,-spaces serve for the same purpose as well. We show
that the operator-B, generates not only a contraction semigroup, but even a bounded
semigroup of negative type, at least for sufficiently large k (Theorem 9.1). Furthermore,
it is seen in this connection that the semigroup generated by —B, has, in a certain sense, a
limit as kK — o (Theorems 9.2 and 9.3).

‘Throughout the whole work we shall confine ourselves to a hard sphere interaction
of the molecules and we shall consider the full linear Boltzmann operator.

2. The Operators 7 and B,

The linearization procedure which leads to (1.1) suggests the introduction of a
Hilbert space L,(v; ¢od?v) where the scalar product is given by

-v2/2

<f:g>=f¢ofgd30 Po = e

(2n)*2

(the Maxwellian ¢, occurs as a weight function).
Introducing the new functions

F=obs

we can go over to the ordinary Hilbert space of square-integrable functions, L,(R?), and
we have

($9) = EdPv=<fg>.

We mainly refer to this Hilbert space in the following. The A will be dropped. All
quantities have been made dimensionless and are normalized such that v(0) = 1 (see b)
below). This can always be achieved by choosing suitable scale factors [3].

The propagation vector k is considered as a (real) parameter.

The operator I has the following properties:

a) It can be decomposed into two parts

I=v()— K v=|v| 2.1
where K is a sum of two integral operators
. K=K, — K, (2.2)
1
Ky(v,v") = - |v — v'lexp[—3(* + v'?)] (2.3)

-
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NEER 1 L, (R0 |
K(v,v) = > !v_v,[exp[—g(lv—-v |+ W)] (2.4)
W) =pe 2 4 2[p4 ] f dx e @.5)
2 v ' '

0

b) The collision frequency v(v) is a monotonically increasing function with an
asymptote for v — «. Denoting the slope of the asymptote by b > 0, we have

vio) >bv v=0. (2.6)
Furthermore v(0) = 1.

c¢) K is a compact, positive, self-adjoint operator on L,(R?) [3, 2].

d) I =v(v) — K is a self-adjoint operator on D(I) = D(v(v)).

e) I > 0; zero being a five-fold degenerate eigenvalue with the normalized eigen-
functions

2
1/2

15 Po

corresponding to the five additive constants of the motion in a binary collision.

(pé‘IZ; vi (P%JIZ (i = 1: 27 3);

f) The spectrum of 1, o(I), consists of a discrete and an essential part. The latter, or
‘continuum’, is identical with the set of values which v(v) assumes as v takes on all
possible values, i.e. the interval [1, «). The discrete part consists of infinitely many
eigenvalues in the interval [0, 1) which accumulate at 1 [12]. It is possible that some
eigenvalues lie in the continuum (Fig. 1).

@

x\t\l 2L
LA A W AN

1

Figure 1
The spectra of I and Bk, x eigenvalues of I, O eigenvalues of Bx.
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We now consider the operator By :

g) It follows from relation (2.6) that we can take D(B,) = D(I) = D(v(v)). Then
B, is closed, unbounded and not self-adjoint.

h) Re(By f.f) = (If.f) = 0 (see e)). Therefore o(B,) lies in the right half-plane.

1) o(By) is symmetric with respect to the real axis, and we have: if f(v) is an elgen-
function belonging to the eigenvalue A then f(—v) is an eigenfunction for 1.

J) 6(By) consists of the continuum G = (ikv + v(v)/v € R?) and a discrete part of
isolated eigenvalues with finite multiplicity which can only accumulate on the boundary
of G (Fig. 1). It is, in principle, possible that some eigenvalues lie in the continuum.)

k) The residual spectrum of B, is empty [17].

For later use, we list some further properties of the integral operator K. We no
longer restrict ourselves to the space L,(R?).

- 1) Kis a bounded operator in L,(R*), 1 < p < «. This follows from the symmetry
of the kernel K(v,v’) together with the boundedness of [4, p. 527]

[IKm i@ <C @.7)

We have | K||, < C independent of p.

m) K is also bounded as an operator from L,(R?) to L (R3), if 2 < p < co. This is
evident if we observe that (1 = (1/p) + (1/p")):

1/p’
&1L <( [ 1RO @) ifl, = G 2®)

In view of (2.3) and (2.4) the integral exists if 1 < p’ < 3,i.e. 2 <p< o, and C,(v)is a
bounded function with respect to v. Thus we have

IKF L, < ( sup c,,(v)) 171 = Coll 1 2.9)

veR3
n) The function C,(v) introduced in (2.8) satisfies the inequality
C(v) <y,(1 +v¥)12r" 9,>0 (2.10)
as can be shown by an explicit evaluation of the integral.

The statements in m) and n) indicate that Kfin general satisfies strongef bounds
than f does. Slightly generalizing Grad’s results, we obtain as a further ‘smoothing
property’ of K [3]:

o) If | f| < (1 + v"?)" then

J 1K@ f @) 0 < B, (1 + 7)1 2.11)

1) B. Nicolaenko [17, p. 146] claims this to be impossible except for A = v(0) = 1. We submit that
this is not proven.
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r may be any real number, and ¢ is restricted to 1 < ¢ < 3. Of course, the statements
above are also valid for each one of the kernels K;(v,v') and K,(v,v’) separately. If the
constants C,, y, and f, , only refer to one of these kernels, we distinguish them by upper
indices, CV, y$? ... etc.

p) Let us denote by My = {v/v < R} the ball of radius R > 0 in v-space. We con-
sider the space Lip(f, M) of continuous functions defined on My which satisfy a
Lipschitz condition with exponent § there. The following lemma shows that K maps
certain L -spaces into Lip(f8, My).

Lemma 2.1: Let f € L,(R?), 2 < p < . Then g = Kf € Lip(f, M), that is
(v + 4¥) — ()| < C(R, ', )| 4v[2 111, | (2.12)

uniformly in v;

’

3—p

v<R, |[v+4v|<R; O0<f<1l and f< 5

Proof: To prove this lemma, we follow Kantorowitsch and Akilow [6, p. 293].
Itis sufficient to consider only the kernel K,(v,v") which is not as well-behaved as K (v, v').
It will follow immediately from the proof for K, that K, satisfies (2.12) with f =1 and
C(R,p',p) independent of R. This is due to the exponential factors occurring in Kj.
Using Holder’s inequality we have

12V + 4v) - g(¥)] < ( [ 1Kt + 4v,v) - Ksv, ¥)P v')”" 7. 2.13)

We split the integral into two parts corresponding to the domains D; and D,. D, is the
interior of a sphere with radius 2|4v| and centre at v, D, is the exterior part. Integrating
first over D,, we get

(v, v) 2
(fK{'(v,v’)cP ) (JI v’|5”'d3v') <H|AVPA  (2.14)
Y —
D, ;

v Iﬂp

and

skl K?'(v+ Av, v , e
ng'(V+AV, v)d3' = A - ), |[v+dv—v' " d*v" |
5 4 |v+ dv — v'|#?

1

_ < 3%|4v|P 4 (2.15)
where A4 is defined by

K2,V ) i -
<A 2.16
( | v ) (2.16)
A is finite if p’(B + 1) < 3, thatis 8 < (3 — p")/p’. This is one of the conditions imposed
on f in Lemma 2.1. By means of Minkowski’s inequality, we get

1/p’
I = ( f |Ko(v + 4V, V') — Ky(v, V) |7 d v’) < (22 +39)|av|P 4 2.17)
D
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The integral over D, can be estimated as follows

1/p
I = ( f |Ka(v + AV, V') — Ky(v, V') |?" d? v’)

D2
1 p’ 1/p’
< |Av|( j ( j |(grad, K,) (v + Mv,v')ld/l) d3v’) : (2.18)
D2 VO
Now we take into account that in D,
v+ 24v —V'| 2 |[v = V| = A|Av| = |[v = V| — |4v| > }|v—V|. (2.19)
Thus

1 p’
L <274y { | [ [ Ierad, K) (v + A4v,v)| |v + Adv - v’{‘“"dl}

D> LO

i/p
X |v—vy|pré-D g3 v'}

1 1 pip
< 2178| Av| [ f[f |(grad, K3) (v + A4v,V')|?"|v + Adv — v'|A=87 dl] [f dl]

D> LO (4]

1/p
X lv — v’lp'(ﬂ—l)dS v’}

1
<|avl? [ b [ |(grad, Ko) (v + 24w, V)7 [y + A4y = V|07 By, (2.20)
0 D,

The step from the second to the last inequality is only allowed if we require that § < 1.
This gives the additional condition on . To proceed further, we note that K,(v,v’)
has the form (2.4) [v—v'|- B(v,v’) where B(¥v, v') is a bounded (positive) function. We

have
|gradv B(v’ v’)l B(v’ v’)

. 22l
v —v| lv—v'|? keal)

lgrad, K;(v, V)| <

A direct calculation which makes strong use of property o) from above shows that on
My

sup
v<R

( \grad, B(v,v)|”’

i/p’
3./
m— d v) < B(R) (2.22)

with B(R) ~ R/ for R — .
Using Minkowski’s inequality again we obtain from equations (2.21) and (2.22)

1/p
( f (|(grad, K») (v + A4v, V)| |v + Adv — v'|1=#)»" 43 v') <BR)+A. (2.23)
D,
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Therefore I, is estimated by
L <|4v|*(B(R)+ A) ' (2.24)
and finally

1/p’
(f | K, (v + 4v, V') — Ky(v, V) |7 d® v’) ’

SL+L<[22+32+1)4+ B(R)]|4v|f =C(R,p', B)|4v|°. (2.25)
Furthermore, we have

lim C(R,p',p)=w, lim CR,p,p=~ (p'>3)

p=3 B—-@3-p)/p’
and

CR,p',B)~RY? - 0 as R — o(p# ).
If p > 3 we can take f = 1.

3. Results of Perturbation Theory
a) The analytic perturbation ikv

Some conclusions about the local behaviour of the eigenvalues may be drawn from
the theory of analytic perturbation. In this context, we refer to the book of Kato [8,
p. 365]. If we consider ikv = ikvz = xvz(z = cos « (k, v)) as a perturbation of the operator
1, where now the parameter x is allowed to take on any complex value, B, forms a
holomorphic family of type (B) [14, 18]. Therefore, the isolated eigenvalues depend
holomorphically on x with only algebraic singularities (branch points). That means:

if Ay is an eigenvalue of B, then at least one eigenvalue A(k) of B, with lim A(k) =
k—ky

Ao(ko) lies in a certain neighbourhood of A4(k,). Thus, an isolated eigenvalue cannot
‘suddenly appear’ or ‘disappear’. But it is possible that an eigenvalue tends to infinity
or becomes absorbed by the continuum.

In the first case, i.e. |A(k)| — «, we will see in b) that A(k) is confined to a strip

k—ko

of width ||K|| around G. The second case is especially striking if we choose x real. Then
the eigenvalues of B, = xvz + v(v) — K are real. The continuum covers the interval from
inf{(xvz + v(v))|v > 0,—1 € z < 1} to +. The lower bound decreases monotonically
with increasing |x|, as long as jx| < b (2.6). But for |x| > b the continuum covers the
whole real axis and the eigenvalues have been absorbed by the continuum. Responsible
for this is the sudden extension of the continuum for real x. In the true Boltzmann
operator (where x = ik) the continuum does not share this property. But, nevertheless,
we shall see in the following section that the eigenvalues have a ‘tendency to the con-
tinuum’.

Note 3.1: For Grad’s hard power-law potentials [3] with angular cut-off, the con-
siderations above are not valid. In this case v(v) behaves like v*, 0 < a < 1 for v —
(=1 — (4/s), interaction potential ~1/rs, s > 4). As a consequence, the perturbation
xvz is not relatively bounded with respect to 7 and D(I) = D(v(v)) is not contained in
D(vz). Thus B, does not form a holomorphic family of type (B). For any real x #0
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the continuum covers the whole real axis and for | x| — 0 an analytic perturbation series
does not necessarily exist. The perturbation should rather be considered within the
framework of asymptotic perturbation theory [8] (see also [13]).

b) K as a perturbation

Apart from the ‘local’ results described above, only little can be said about the
location of the eigenvalues of B, by means of perturbation theory alone. We merely
want to mention a very rough result which can be obtained by regarding the bounded
operator K as a perturbation in B,.

Setting
A =ikv+v(v) , (3.1)
A,=(A—-)t=({kv+v(@®)— ), AeC (3.2)

we obtain for the resolvent of By(A ¢ o(By))

By— ) =(A—K=2)"'=(A— A, K) Ay = 5 (4, K) 4.

n=0

The series converges whenever |4, K|| < 1.
Because ||4,]| = 1/dist[A,G] the convergence is guaranteed if dist[A,G]> |K]|,
and therefore

dist[4, G] > ||K|| implies A e p(B,). (3.3)

We note that this result becomes meaningless in the limit k& — co. In this limit, it is
even weaker than statement 2.h), because ||K|| > 1 (which follows from the fact that
(K1) =(@)f.f) > 1 if fis an eigenfunction associated with the eigenvalue zero of
I).

4. A First Proposition Concerning the Global Behaviour of the Eigenvalues
We begin by converting the eigenvalue problem for B,
By—Af=(A—-K-2)f=(kv+v@)—K—-1) f=0 4.1)
into a more convenient form. As (4 — A) is invertible, we see that (4.1) is equivalent to
A; Kf=f. 4.2)

In the following we assume that 4 ¢ G.

Then A4, K is a bounded operator on L,(R?) (each of the two factors is bounded).
Therefore (4.2) and consequently (4.1) have no solution if |4, K|| < 1. This gives us a
practical criterion to discuss the regions where eigenvalues of B, can occur: we only
need to find out the A- and k-dependence of || 4; K||. The following theorem shows indeed
that the eigenvalues move towards the continuum as k increases.

Theorem 4.1: For any ¢ > 0 there exists a k, > 0 so that for k£ > k, the half-plane
ReA < 1 — ¢ lies within the resolvent set p(B,).
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- Proof: We have, by means of the Schwarz inequality,
142 Kf|I* = (4, Kf, A, Kf) = (Kf, A A, Kf)
< IKS AT A KSIL < 1K 1A% A2 KS 1S (4.3)

Now we concentrate on the expression [|4% 4, Kf].
Remembering the property 2.m) of the operator K we can write

|Kf|2d?v f d3v
A*¥ A, Kf|? = < 2 2 . 44
i 4. K] J[ikv+v(v)—l|4 czlf) |ikv + v(v) — A|* @49
We set A = 4, + i, and obtain
d3v 5 e v’dvdz
kv +v(0) — A]* ) ) oz =2+ 0) = 2)°F
0 —
2t [ ¢ vdvdu
<_
kJ ) [+ @@ - 4P
0 —o
2 7
_m v o0 4.5)
k) o@-4)  k

(=X &

In the transformations made above, we have introduced the new variable u = kvz — 4,.
By extending the integration over u from —co to +< the 4,-dependence has dropped out.
Therefore Q(4,) is only defined for 1; < 1. We observe that Q(4,) increases monotonic-
ally for 4, — 1.

Together with (4.3) and (4.5) we finally get

14, K| < CY2 K" QV4(Aq) k=44, (4.6)

Relation (4.6) shows that if we choose k, = C3||K||> Q(1 — &) the assertion of Theorem
4.1 is proved.

Since ¢ — 0 implies k, — o, Theorem 4.1 only leads to the modest result that
the eigenvalues tend towards the line Re A = 1 for k — « which becomes the boundary of
the continuum in this limit.

S. The Operator A4, K in the Space L,(R*) and a Preliminary Lemma

In order to investigate further the behaviour of the eigenvalues of By, it is necessary
to study the operator 4, K and in particular its norm for A € G. For this purpose, it has
proved to be an advantage to consider the operator in certain L,-spaces. Here we shall
deal in detail with the space L,(R?) because then the considerations are simplified in
many respects. Other spaces will also be treated later on.

We prove the following theorem:

Theorem 5.1: A,K is a bounded operator on L,(R?) for A € G.

Proof: To prove Theorem 5.1 we follow a standard method, namely we first show
the boundedness of 4,K on the dense subset L,(R*) N L. (R?*. Then, since 4,K
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is closed, it is bounded on the whole space L,(R*). Suppose f to be an element of
L,(R® N L (R3). It follows from 2./) that Kf e L,(R® N L (R3). Furthermore, we will
show that Kfe D(A,). Let us consider

|K(v,v)|d>v _
14, K], < (vsug Tk ) = ll) £l = (fu}:s I(V)) £
< [ sup (7,(¥) + Jz(v))] £l 5.1)

The integrals 7,(v) refer to the corresponding operators K; (i = 1,2) (note that K, and
K, are positive functions and that |K| < K, + K3)

a) I;(v): the integrand becomes singular for A € G, and the denominator vanishes
on a circle in v’-space. The circle lies in a plane perpendicular to k with centre at 1,472k
and radius = (V\=1(4,)? — A3k~2)Y2, where A = Ay + ik, |A,| < BVU(A,), vi-1 = inverse
function of v(v). Setting & = ikv’ + v(v") and observing that K, (v, v") is uniformly bounded
with respect to both variables, K,(v,v’) < a, we get

d3v' d3v
IL(v)<a f + f Ki(v,v)d?*v' <a f +C® (5.2)
loe — A [ — 4]
la—4|<1 la—Aa]| =1

where

CP =-sup J- K (v,v)d3v

veR3

see (2.9).

The remaining integral exists and is a function of A and k. In order to evaluate it,

we substitute the new variables w = v(v") and u = kv'z’ for v" and z'. The differentials
are transformed according to

vI=1(w) Fvi-U(y)

d3v' =v?dv' dz’' do = dudwdeo. (5.3)
k ow
We get
-1
yien W)
J‘ v 2=n ow dud 2 (5.4)
= — udw a=w++iu. .
le—4] k& | — 4]
la—4]<1 la—A]<1
The expression
0 [-1] Fl -1
h(w) — v[—l] (W) v—(u)) =7p _v
ow ov

remains finite as v — 0 (w — 1) though (dv/dv)~! becomes infinite. Moreover, the func-
tion A(w) is monotonically increasing, hence A(w) < A(A; + 1) in (5.4). The range of
integration in (5.4) covers the unit circle or part of it in the (#, w)-plane, depending on the
proximity of the point A to the boundary of G.
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Therefore, we can estimate (5.4) from above by integrating over the whole unit
circle, irrespective of the exact position of A:

S 2n rdrdp  (2z)
f Ij—ll h(11+1)ff Lo ()h(z +1). (5.5)

la—A]<1

Therefore, in view of (5.1), A, Kis bounded on L,(R3) N L _(R?) and the argument given
at the beginning of the proof applies. Of course, it is not really necessary to introduce
adense subset. All we need is to show that 7,(v) is a bounded function. Thanks to Fubini’s
theorem [7], this already allows us to conclude that R(K) = D(4;). (R(K) denotes the
range of K.)

b) I,(v): Here we should notice that the integrand has an additional singularity
at v=v'. It originates from the kernel K,(v,v’) (2.4) and can coincide with that of 4.
First we proceed in the same way as in a):

K , ’ d37 s
L(v) < f %l—v +C3 (5.6)
la—a|<1
(for CP see (2.9)).

We choose two Holder exponents p and p (I = (1/p) + (1/p")) which are subjected
to the conditions 2 < p < 2, that is, 2 < p’ < 3. We obtain

K,v,v d3v \MP L
|;(—Al)d3”'<( J |a—A|") (J Kgl(v’vl)dsvl) e
le-i]<1 ja—a]<1 s
(2n)¥» . WP
<t h(,11+1)1fr(2_ ) v (5.8)

(for B, 0 see (2.11)). This means that A4, K, is also bounded. So Theorem 5.1 is proved.

Since we know that 4, K is a bounded operator on L,(R>) even for A € G, it is now
possible to discuss the A- and k-dependence of A4, K similarly as in Section 4, but for
arbitrary A. Yet, since we are dealing with the L,-norm here, we should first set up a
connection between the L,- and L,-spectrum of B,.

Lemma 5.2: If f € L,(R?) is an eigenfunction of By, then fe Ll(R:")
Proof: We distinguish between two cases:

a) A ¢ G: In this case, 4; = (ikv + v(v) — A)~! is bounded as a function of v. This
fact, together with property 2.m) implies that every eigenfunction f (which is a solution
of A, Kf=f) is bounded, that is, by (2.10):

Y2
d(1 + v?)1/4

Since f also satisfies the equation (4, K)?>f = f we can conclude by means of property
2.0) that

|fl = 4. Kf| < d = dist[4, G] > 0. (5.9)

Y2 ﬁ,.1/4 1

|f|=i(A;.K)2f|$. 7 (1+Uz)3/4'




110 M. Klaus H.P.A.
Proceeding in this way, we obtain for f= (4, K)*f,

| f] < const.-(1+v?)"7* '1 (5.10)

which shows that f e L,(R3).

b) A € G: In this case, every eigenfunction fe L,(R*) of B, satisfies the equation
f= A, Kf, but f may or may not be bounded as before. f has the form f= A4, g, where
g = Kfis bounded. The singularity of 4, g is locally absolutely integrable. So we only
have to show that f vanishes rapidly enough at infinity to ensure that f belongs to
L,(R3).

First considering the function KA, g, we have (5.1)

|KA, 8| <liglle(1(v) + L(v)) | (5.11)

Therefore KA, g is bounded, yet, for v — o, we can say more about the behaviour of
this function. We take a sphere with radius r, > 0 in v’-space, so that |a — 4| > 1(a =
ikv' +v(v")) if v’ > r,. We obtain for K, 4,g

K(v,v) ., @
K2 4:8] < liglls Pyt e (5.12)
v'sr, '
Remembering the explicit form of K,(v,v’) (2.4) we get
exp[—#(v — r;)’] f ye
K, A,gl <|gle S.l.3
|K, A, 8] < gl ( U""'AI |oc—ll (1+v2)1/2 ( )

It follows that there exists a sphere with radius R, > r, so that for v > R; we have

b(%)

K, 48] < lglle Aro)7

(5.14)

The function K, A, g can be treated analogously. This allows us to choose the radius R,
giving

b(A)
% (l I 02)1/2

But for v < R;, K4,g is bounded according to (5 11). Therefore (5.15) is valid for all

v with a suitable constant 5(1). By iteration as in a) we arrive at the conclusion that

(K4,)*g is absolutely bounded by a function of the form ~(1 + v?)~2. So we see that
A, (KA,) g = (4, K)*f= fbelongs to L;(R?).

|K4,8| < llgll v > R,. | (5.15)

6. Discussion of || 4, K||;. Further Properties of o(B,)
The preceding investigations enable us to prove

Theorem 6.1: To a given N > 0 there exists a ky > 0 so that, for k > kj, there exist
no eigenvalues of B, in the half-plane ReA < N.
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This means that for N > 1 also a certain subset of the continuum is free from eigen-
values.?)

Proof: We show that |4, K|, <1 if k > ky and ReA < N. It is therefore our task
to make explicit the A- and k-dependence of |4, K||;.

a) |4, K|;: From (5.1) we obtain, by inserting additional powers of (1 + v'?) into
the integrals,

3 .0

142 K|y < sup

veR3

f K, v) (1 + 0r2)172
o — A|(1 + v'?)112
la—A|<1
K, v)(1+07%) .
~ Sup f lo — 2| (1 + v"2)?

(6.1)

veR3
la—A|=1
In the first integral the nominator is bounded, i.e. K;(v,v')(1 + v"?)*2 < b,. The second
integral can be estimated by means of Hoélder’s inequality. We choose the Holder
exponents p and p’ so that 1 = (1/p) + (1/p’), 2 < p < « and in addition we set y = 1/2p.
With the notation

sup f KW, V)YA+ 0" By =b, (by=pY,, ., see (2.11))

p’yp’?
velR3
we obtain
K ) f i’ il f d3v 1/p
- .
aKqlly < bo o — (1 + 02172 ! lo — 2|7 (1 + 032

la=A|<1 a—4|21

(6.2)

To evaluate these integrals, we make the same transformation of variables which led
from (5.2) to (5.4). But now this produces a factor A(w)(1 + (vi=(w)?*)~'/? which is
bounded by a constant ¢. We obtain

1/p

) . (6.3)

The Holder exponent p > 2 is arbitrary. For fixed k the expression on the right side
could be minimized with respect to p. By (6.3), ||4, K], is uniformly estimated for
A€ C. For A ¢ G and dist[4,G] > 1 the first integral in (6.1) simply drops out.

42
4Kl < 2F pye 4 G bwcw(

k P p—2

b) |4, K,]||,: First wé estimate that part of I,(v) which corresponds to the inte-
gration over | — 4| > 1. It will be denoted by 4,. We choose p,p’,y and c as in a). The
integral

b, = sup jKP 0, 0') (1 + 0’2" d*v’

veR3

%)  This shows that A =1(0) = 1 is not a particular point with respect to the point spectrum, see foot-
note p. 102.
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exists since yp’ < 1. It follows

et

1 \ve '
A, < (21:)2“’( 9) cl/pplie’ f=1p (6.4)

This bound is again independent of A.

But the integral over |o — 4| < 1 (denoted by A4,) yields a A-dependence. We choose
q,q’ such that 2 <g <2, (1/9)+(1/g") =1 (i.e. 2 < ¢’ < 3) and we set 6 = 1/2q". Multi-
plying the integrand by (1 + v"%)° we obtain the estimate

] 0 [-1] 1l/q
[ v (w) vT(W)du dw
A 2n)/a pil 6.5
1, <L) g e — A|%(1 + vim1(w)2)e (6.5)
la—a]<1

where
by= sup [ K§®,V)(1+ 022 a0,
veR3

The function

[-1]

y[-1] (w) (1 o v[—l](w)z)—éq = g(w)

ow

tends to infinity like vi=1}(w)'~%/? when w — . Through g(w) = supg(w’) we define

wisw

a monotonically increasing (positive) function. Then it follows

1 1/q
Ay < (2m)*9 b3 g(4, + 1)1 (2 ) k14, (6.6)
—q
We observe that b, tends to infinity as g — 3.
Summarizing, the sum of expressions (6.3), (6.4) and (6.6) is an upper bound for
|4, K]||;. For k — « the power k=7 (p > 2) decreases most slowly. Therefore we can
write

14, K]l < k=?(x(p) + (A, + 1) a(9g)). (6.7)

Thisis valid fork > 1, p > 2 and 2 < ¢ < 2. The function 7(p) resp. o(g) become singular
if p — 2 resp. ¢ — 2 org — 2. The function g(4, + 1) grows like ~A{/9-1/a a5 }; — o0,
To a given N > 0, the number k, which is required by Theorem 6.1, can be expressed
by

ky = (t(p) + &N + 1) a(q)) (6.8)
ky could in principle be minimized with respect to p and g.

Corollary 6.2: To a givene > 0 there exists a k, > 0 so that, for k > k,, there are no
eigenvalues of B, in the region {1[dist[1,G] > &}.

This result is of interest in so far as it is independent of A,, in contrast to Theorem
6.1.
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The proof of Corollary 6.2 follows immediately from the estimates (6.3) and (6.4).
Relation (6.3) can be taken over unchanged whereas the integral corresponding to 4,
has now to be evaluated over the range |« — A| > . Therefore, we obtain

1/p
Ay < (27t)2/” cl""bé“"( ] 2) e~ 1+@2/p) [ -1/p (6.9
P— .

independent of A.
Combining Theorem 6.1 and Corollary 6.2 we get

Corollary 6.3: To given N > 0 and ¢ > 0 there exists a ky . so that, for k > ky ,,
there exist no eigenvalue of By in the region {4|Rel < N or dist[4,G] > &}.

Note 6.1: The A-dependence of the estimate (6.7) does not allow us to conclude
that there exist no eigenvalues at all for sufficiently large k. The mere estimation of
|4, K|, does not seem to be sufficient for a proof. An improvement of the estimate (6.7)
would be easily possible, say, by integrating over the range |« — A| < 1 instead of R* in the
integral defining the constant b5 in (6.5). Yet, this does not lead to a A-dependence, which
would compensate for the growth of (1, + 1)'/4 in (6.7). Whether the A-dependence
will disappear if we use a different function space in place of L,(R?) cannot be excluded
off-hand. However, it seems that those L,-spaces in which the operator A, K can be
well discussed are not of much more help than the space L,(R®) (see Section 8).

The A-dependence in (6.7) is due to the fact that the operator K,(v,v’) does not have
suitable ‘smoothing properties’. It is, for instance, important to notice that the image
[ K& (v, v)f(v")d3»' (2 <q’ <3) of the function f=(1 +v'2)"? (p=1+¢¢>0 arbi-
trarily small) is unbounded and tends to infinity like *, when v — . If it were bounded
(ase.g. [ Ki(v,v")f(v")d*v") we could find an upper bound of 4,, which does not depend
on A by a suitable choice of the exponents ¢, ¢’ and J.

7. Further Properties of 4, K in L,(R?)

The space L;(R?) has among other things the advantage that its dual space L (R?)
1s well adapted for our purposes. For any '€ L,(R?) and g € L (R>) we denote by{f,g> =
| fgd?v, the value of the linear continuous functional (represented by g) at the point f-
The dual operator of K, K7, is defined through

<Kf,g>=<f,K"g> (7.1)
KT is an integral operator on L (R?) and we can put K7(v,v') = K(V',v).

Lemma 7.1: The operator K is compact on Ll([R3) The proof of this lemma is
based on a theorem of Schauder [7, p. 282]:

Lemma 7.2: A bounded operator in a Banach space is compact if and only if its
dual operator is compact.

We prove Lemma 7.1 in two steps:

a) First we look at the operator KT (7.1) as a mapping from L (R?) to C(Mp).
C(Mpy) denotes the Banach space of continuous functions defined on the ball My,
normed by the usual maximum norm. This mapping has already been considered in 2.p)
where we found that the image is not only contained in C(My) but even in Lip(, My).
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Now we show that the mapping KT: L (R3) — C(My) is compact, i.e. we have to verify
that the image of every bounded subset of L (R?) is relatively compact in C(Mpy).
Since My is a compact set in R? the relatively compact subsets of C(My) can be well
characterized by the Ascoli-Arzela theorem [7]. Accordingly, a subset of C(My) is
relatively compact if it is equi-bounded and equi-continuous. First of all, it follows from
(2.12) that every image of a bounded subset of L (R?) is equi-bounded in C(Mp).
Second, since the image functions satisfy a uniform Lipschitz condition, this implies
equi-continuity. Therefore the mapping K7: L (R3) — C(My) is compact.

The next step consists of performing the limit R — .

b) We denote by Py the projection operator upon C(My). Py is defined on L_(R?)
according to

J(v» v<R

(Prf) (V) = 0 s R (7.2)

It follows from a) that P KTis compact on L_(R3). This is evident because K7 is compact
as a mapping from L_(R*) to C(Mpy) and because the norm on C(Mp) is identical with
the L -norm.

Next we show thatlim |[KT — Pz K|, = 0. Then the compactness of K7 follows from

R—a

a well-known theorem [7, p. 278]: the limit of a norm-convergent sequence of compact
operators is compact. Using property 2.n) with respect to the kernel K”(v,v’), we obtain

K1 < ooy e (1.3)

By means of this inequality we can write

lim |[KT — P KT||, = lim ( sup sup IKTf—PRKTf|)
R—= R—x |Lf||°°=1 veR3

= lim( sup sup [KTfl) < lim L 0. (7.4)

R=o \[f|o=1 v>R R-w (1 + R?2

Therefore KT is compact and, according to Lemma 7.2, K is compact too. This proves
Lemma 7.1.
By the same method we can prove the compactness of 4, K:

Theorem 7.3: On L,(R3), A, K forms

a) a holomorphic family [11] of compact operators when A ¢ G,
b) a continuous family of compact operators when A € G.

Proof:

a) According to Lemma 7.1 K is compact and since 4, = (ikv + v(v) — A)7' is
bounded when A ¢ G it follows that 4, K is compact, too. Furthermore, A is holomor-
phic with respect to A and this is also true for 4, K.

b) First, we show the compactness. According to Theorem 5.1 4, Kis bounded when
. € G. Hence, the dual operator (4, K)7 is uniquely determined and bounded on L (R3).
From the definition (7.1) of the dual operator and Fubini’s theorem, it follows that
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(4, K)T = KTA 2. The tilde means that we have to take the formal extension of the oper-
ator KT 4,: we define 4, formally on the whole space L.(R3) simply as multiplication by
(ikv + v(v) — A)~L. Generally, this operation leads out of the space L (R3), but we
are assured (for instance from the proof of Lemma 5.2b) that K maps all functions
A,8(g € L (R?) back into the space L_(R?). It is in this sense that we understand the
operator KTA.

1) First we again consider the mapping K* 4:L_(R?) — C(My). Also in this case
it is true that the functions g = K7 4, f(fe L (R?)) are Lipschitz continuous. To see
this, we estimate the difference |g(v + 4v) — g(v)|:

lg(v+ 4v) — g(v)]| < ([ |KT(v + Av,v') — KT(v, V)| |a — 4| "' d? v’) 1o - (7.5)

As usual, we split the integral into two parts corresponding to |a — 4| < 1 resp.|a—A| > 1
The former can be estimated by Holder’s inequality

f IKT(v + Av,v)) — KT(v, V)| ja — A1 d® 0’

la—A]<1

< (f |KT (v + 4v,v') — KT(v; v’)|"'-)1/p, ( J 7 )UP (7.6)

|o — Al?

la—A|<1

where 3 <p<2,2<p’ <3, 1=(/p)+ (1/p). The integral over the difference of the
kernels has already been evaluated in 2.p). Relation (2.25) yields the desired Lipschitz
condition. The second part is directly estimated by

[ 176+ Av,v) = KT, ) o= A1

la=A[=1
< f |KT(v + 4v,¥') = KT (v,V)|d3 0. 7.7
R3 '

Again, the integral is of the type discussed in 2.p).
Now it follows as in Lemma 7.1 from the Ascoli-Arzeld theorem that

KTA4:L (R® — C(My)
is a compact mapping.

2) The limit R — o can be carried out in the same way as in Lemma 7.1, we merely
have to remember (5.15). Knowing K KT A to be compact on L (R?), Lemma 7 2 implies
the compactness of 4, K on L,(R3).

3) Continuity of the family 4, K: we show that A4, Kis, with respect to A, continuous
in the operator norm. For this purpose, we estimate

, . K(v,v)|d*v'
142, — A;.,)K!|1 < |4y = 4o| sup | ' | = |4; — 4,| sup I(V A1, A2).
veR3 l““llila—lzl veR3 (7 8)
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To treat the integral /,(v;44,4,) we use a method sketched in Vekua [5, p. 33]. We
draw a circle around A, with radius p = 2|4, — Az| in the A-plane and distinguish between
two regions in v'-space:

= ll—Al>p} and G,={lla— 4| < p}.

When v’ € G, we have |« — 4,| > %|a— 4,|, and therefore, by using Holder’s inequality
with3<p<2,2<p’'<3,1=(/p)+(1/p), we get

[ KGAIE (KO0,
o |tx—}»1|\a-—12l |0!—ﬂ.1|2
1 G
1/p’ ds ’ 1/p
<2 J[K(v,v')]”’di‘v’ v ; (7.9)
Hd Ja=a

The first factor represents a bounded function with respect to v. Makmg the substitution
(5.3), the second can be estimated by

d3v' B 2n  h(w)dudw

R B — _— — 2-2 _ 32
PESNEair e a A L M L B

Gy

where we used an estimate of the form A(w) < b, + b,yr,r=|a — 24|, « =w +iu. The,
quantities a,, a,, b, and b, depend on A,. Incase of v’ € G,, we have (with the same Holder
exponents) .

' |K(v,v)|d*' J-
<
. |a—/11||0(—12|

1/p’ d3v' 1/p
Kv,v)|?”'d? v’) '[ ) . (7.11)
| | o | — 247 |a — 4,7

Again the first factor is bounded with respect to v. For the second we get

d>v' 2n dudw
<~ h(w , w=Rel; +p. 7.12)
Jla"hl"la—lzl" k (W)J[a—11|v|a—z2|v W 1Hp
G2 G,

To investigate the singularity of this integral in the limit |4, — 1,] — 0 we replace the
variable o = w + iu by a new one, {, according to

R3

_,{1

o
(=ttin=r—hs dudw= |l ~ L[ dsdn (7.13)

1 2
a_lz _ a_ll A. )&2 =C+eiﬂ_ " (7.14)
L I —lzl |41 — 4]

We obtain
du dw _ dé dn
=|A; — A,|*>%P SM|A — 4,727, (7.15

f|a—11|p|a—lzlp | 1 I |C| IC_I_BIGIP | 1 2| ( )

G2 * in<2
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It follows from equations (7.8), (7.10) and (7.15) that

(A4, — 43,) K|, < C1lAL — 45| ®P1 + ¢p| Ay — A, |G/ (2<p< 2). (7.16)
- Hence, the continuity of 4, K is obvious.

Note 7.1: Since A, K is compact even for A € G, the eigenvalues possibly existing
inside G are of finite multiplicity.®) The continuity of 4, K with respect to 4 is not used
in the following. It merely shows that the operator-valued function 4, K, being a holo-
morphic family outside G, is continuously extended into the domain G.

8. The Operator A; K in Certain L ,-Spaces

In our previous considerations, the space L,([R*) was merely a tool for the discussion
of the behaviour of the L,-spectrum of B, in which we were mainly interested. However,
there are other spaces serving this purpose.

First we consider L,-spaces with 1 < p < 2, which can be treated similarly to the
space L,(R?). We estimate the L, -norm of 4, K:

’ 1/p
4.KfI < | %Iﬂv’)l") K@, v) [0 43
~ ’ p/p’
|4, Kf|? < K(v’v)[f(v’)|”d3v’ : flK(v,v’)id%’) 8.1
J |oc—l|" _

and with (2.7)

|4, Kf |l, < CY?’||f1|, sup

v’ eR3

Kv,v)| d2v\"” :
l—i o = ikv + v(v) (8.2)
oo — 4]
Splitting the integral into two parts as it is already familiar to us, we see that only the
integral over| « — 4| <1 requires a closer inspection. By using Holder’s inequality, we get

IK(V,V')! I 1/q’ d3v 1/q
J Wd3v<(R£ |K(V,V)‘ d 1)) ( J —|a—ﬂ,|p4) (83)

la—4|<1 ‘ la—Al<1

We must have 2 < ¢’ < 3, 3 <g <2 and pg < 2. These conditions can only be simul-
taneously fulfilled if 1 < p < %. When p > % the above conclusions are not justified.
We have thus proved the first part of

Theorem 8.1: A, K is a bounded operator on L,(R¥) with 1 <p<%and3<p<2.

The second part, that is the boundedness for 3 < p < 2, can be shown in a different
way. We know from 2.m) that, for these values of p, Kf(f e L,(R?)) is bounded. This
fact implies Kf'e D(A;) and therefore 4,K is defined on the whole space L,(R?). It
follows then from the closed graph theorem [7, p. 79] that 4, K is a bounded operator.

3)  See footnote p.102.
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Explicitly we have, with (2.9),

o [ K" |Kf|Pd? o e
A, KF 2 f| I vslqu—-—w_ T I
d3v
<cC? f A+ IKIE LA 8.9)
la — Al?

Note 8.1: In the L, -spaces given by Theorem 8.1, Lemma 5.2 and Corollary 6.3
could be formulated correspondingly.

Next we turn to the case p > 2. Then the singularity of 4,(4 € G) is no longer locally
absolutely integrable to the power p. Therefore, the domain of 4, K cannot be the whole
space and one might believe that the operator would be unbounded. But this is not true
as the following theorem shows:

Theorem 8.2: A, K(A € G) is a bounded operator on D(4; K), if

a) leG—-0G:for2<p< w
b) AedG for2<p<4
(9G is the boundary of G).

We emphasize that boundedness is claimed to hold on the (natural) domain
D(A4,K) of A, K, that will turn out to be a proper subspace of L_(R3).

Proof: We begin by characterizing the domain of 4,K. Let fe L (R%),2<p<
be an element of D(A4;K). Since Kf = g is continuous 2.p), we must necessarily have
g(v;) = 0(ikv, + v(v;) — A = 0). Otherwise 4, g would not be absolutely integrable to the
power p at v =v,. On the other hand, as we shall see below, the condition g(v,) =0 is
also sufficient for f€ D (A4, K) (for the two cases specified in Theorem 8.2). With regard
to Lemma 2.1 we can write

Kf|rd? Kf|rd?
|4, Kf 2 = f M.{. J I_il_.__v (8.5)
oo — 4|7 |oe — 4|7
la—2|<1 la—A|21
v — Ve8P
< CoG, + 10,0, B FI2 f 'T;_%:,—dstrnKnsufuz (8.6)

la—A]<1
v2 denotes that point on the singular circle {v|ikv + v(v) — A = 0} which lies closest to v.

To investigate the remaining integral, we distinguish between the two cases mentioned in
Theorem 8.2:

a) Because of the choice of v} the factor |v — v§| in (8.6) only depends on v and z,
so we have

v —v3|? =0+ v — 2009(z2 + V1 — 22 V1 — 29?) 8.7

A¢dG implies |z9| < 1 and v > 0. We expand the expression (8.7) near v, z§ in a Taylor
series. The leading terms read

02
v—vi[?~ @ —u)* +

(z — 29 (8.8)
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Introducing w = v(v) and u = kvz we obtain

ov
wW—A ~— - =a—-1v)) a#0 (8.9)
ov om0?
.1 s
z—zZ3~ E)E(u—lz)—m(w—li) | (8.10)

where A = A; + iA,. Putting r? = (u — 1,)?> + (w — 1,)* we see from (8.8), (8.9) and (8.10)
that |[v — v2|?> ~ r2 as v — v9. The integral (8.6) exists if fp — p > —2. This can always be
achieved by a suitable choice of . When p > 3 we may choose =1, whereas when
2 < p <3 we have to verify that the two conditions fp —p > -2 and B < (3 —p'/p")
(Lemma 2.1) are not in contradiction. But the first one is equivalent to 8 > (2 — p’/p’)
whichisless than (3 — p’/p") so we can choose f between these two values. (8.6) shows that
A; K is bounded on its domain. Moreover, the operator is closed and therefore D(A4; K)
is also closed.*) This proves part a) of Theorem 8.2.

b) Let A € 0G, i.e. z9 = +1. Furthermore let v # 0. Then (8.7) simplifies to

|v —v9|? =092 + v* — 2v0] z. (8.11)
Near v° we have

v — V0|2 ~ —209%(z — 29). ’ (8.12)
Therefore |v — v3|?> ~ r as v — v§ and the new condition which guarantees the existence

of the integral (8.6) reads

T -p>-2 (8.13)

This can only be satisfied if p < 4.
Now let 29=0, 4, =1, 1, = 0. We obtain

[v—vq|? ~ 0% (8.14)
Since v = 0 we have to take the next order in (8.9)
10%v
1~ 2. 8.15
w—1 25| v (8.15)

Therefore, we see that again |v — v§|? ~ r as v — v3 and (8.13) must be satisfied. This
proves part b) of Theorem 8.2.

Note 8.2: From Theorem 6.1 or Corollary 6.3 we know that the L;-norm of the
operator A, K is reduced with increasing k uniformly in some region of the A-plane, and
consequently the eigenvalues of 4, K cannot exceed |4, K|, in absolute value. We can
easily generalize Lemma 5.2 and establish the result that all eigenfunctions fe L (R?),

4y But in general R(A4,K) is not contained in D(A4;K). One could introduce the new domain

N DAY,
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32 <p< w,of A,Kf=uf(ue C) are also elements of L,(R3). Therefore, in any one
of these L,-spaces, we have |u| < [|4,;K]|;. In view of later applications, we confine
ourselves to the spaces L,(R3) and L (R?). In these cases, the spectrum of 4 ;K for 1 ¢ G

is purely discrete since the operator is compact. Introducing the notion of the spectral
radius [7, p. 211]

re=lim (A, K)"|[}"= max |u| p=2, (8.16)

n—co neo(A2K)

we get the result -
r.<|4;,Kll; A1¢G. (8.17)

As an example, we consider the space L_(R?). According to (8.17) the spectral radius is
bounded as A approaches the boundary of G while the operator norm of A4, K tends
towards infinity. To be definite, we take A to be real, —o < 4 < 1. We consider the oper-
ator KA, in L (R3) which is the dual operator of 4, K with respect to L,(R>). It follows
from our previous discussion of {|4,K]||;, especially from (6.7), that uniformly in
—o <A<

C
14: Kl = |KAsle < 577 9> 2. (8.18)
Putting d = |1 — A| we get, using ||4,|l, =d™},

ry=lim [ A(KA, ' K| < lim d-1/n cl-Qm|| K ||Ln LD (Um=D = ¢ k=1/a (§.19)

n—o n—co

We see that the spectral radius is estimated by the same bound as |4, K||; uniformly in
—o < A<].

9. Time Evolution in the Limit k — «©

We know from Scharf [10] that the operator —B, generates a contraction semigroup
T* in the space L,(R3). This result is mainly due to the fact that —B, is dissipative, that
is 2.h) Re(—B, f,f) <0 [7, p. 250]. The semigroup 7* solves the initial value problem
for the linearized Boltzmann equation according to

J@)=T'f(0) = e f(0) 0.1
T* has the contraction property
1T < 1. (9.2)
Moreover T is a family of bounded operators in L,(R?) satisfying-
T'Ts=T'" (t,5s20) (semigroup property)
T°=1

lim T'f=T'f foreacht,>0 (strong continuity) and each e L,(R?).

t—’to
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Theorem 6.1 tells us that the eigenvalues of —B, move to the left in the complex plane
with increasing k. If & is sufficiently large, the half-plane Re 1 > —1 is contained in the
resolvent set of —B,. Since the character of time evolution is determined to a certain
degree by the location of the spectrum of the generator —B,, one might expect that esti-
mate (9.2) could be replaced by a sharper one for sufficiently large &, for instance one of
the form

ITF < Me™ M>1,0<y<1. (9.3)

But M =1 has to be excluded at once, since this would contradict dissipativity. For,
fM=1,0<y<1,

Re(T'f—£,/)=Re(T*£.1) = /I <IT FIIAN = I IP<e™IfIP = 1A <0 (9.4)

and therefore

Re(-Byf.f) = lim Re - (T'f~ ) < I ©.5

Thus —B, + y should be dissipative (at least for large k) but this is impossible since for
an eigenfunction fy(|| fo| = 1) of I belonging to the eigenvalue 0 we have

Re((=Bx +7)/o.fo))=y>0 Vk (9.6)

clearly contradicting (9.5).
Now we prove

Theorem 9.1: Let0 < y < 1 be given. Then there exists a constant M, > 1 so that for
sufficiently large k

1T < M, e™. 9.7

For k large enough, the value of M, will turn out to be independent of k, it merely is a
function of y. (9.7) means that 7" is a bounded semigroup of negative type [8] for suf-
ficiently large k.

Before proving this theorem, some preparations are necessary. First, consider the
operator K as a perturbation in —B, = —4 + K(A4 =ikv + v(v)). Denoting by T§=e*
the unperturbed semigroup generated by —4 we can write down an integral equation
for T* [8, p. 495]:

1 2
T =T} + f Ti= KT* ds. (9.8)
0

We can solve (9.8) by successive approximation

T =3 T: (9.9)

1
b e f Tt~ KT: ds (9.10)
(4]
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It can be proved by induction that -

t
I T7l < K" ;e“ 9.11)

where we used ||T¢| = e~*. We see from (9.11) that (9.9) is absolutely convergent and
“TtH < et elKir (912)

Since ||K|| > 1 this result is not of much help with regard to Theorem 9.1 we are going
to prove. We will therefore truncate the series (9.9) after a finite number of terms and
treat the remainder by the following method. The semigroup 7* can be expressed in
closed form by an inverted Laplace integral [1, p. 349]

a+io

1
T'f= lim — J (B, + )L fdA. (9.13)
a—iw

The limit exists uniformly with respect to ¢ in any interval [1/e,¢], ¢ > 0 (for £ = 0 the
limit is 4f). Since a > 0, the path of integration, I', runs entirely in the resolvent set of
—B, (Fig. 2).

The disadvantage of the representation (9.13) is that in general the integral is not
absolutely convergent. A customary technique in dealing with this integral is to deform
the path of integration such that it runs within a sector |argl| > (%n/2) + ¢ (¢ > 0)
for |A| — . This would produce an exponentially decaying integrand in (9.13). But in
our case, this method does not work because a(—B,) is, for k — o, not confined to a
fixed sector of the complex plane. The series (9.9) can be recovered from (9.13) by
expanding (B, + A)~! in terms of A_, K, that is (see 3.b))

B+ =S (A, K)\A_,. (9.14)
n=0

The series certainly converges if we choose Rel >0 large enough. Inserting (9.14)

in (9.13) and evaluating the integrals successively by means of the residue theorem, we
arrive at (9.9). '

U(‘Bk)

Figure 2
Paths of integration.
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Proof (Theorem 9.1): First we consider the series (9.9) which we truncate after four
terms

T'=3 T:. (9.15)

n=0

Lety, 0 <y <1 be given. We have with a suitable constant }l?[?

n n

g s t t |
“Tz” et Z |[K”" _m.e—vt 2 ”K”n e?f -t <M e (916)
n=0

(9.16) is valid for all k € R3.
To estimate the remainder

Tt=S T (9.17)
of the series (9.9), we take representation (9.13) together with (9.14)

s 1
Tr=— | e 2 (A_,K)" A_ldl—— (A Ky (1 — A, K) ' A, dA.

2mi e

L (9.18)

It is our intention to show the absolute convergence of this integral on the path of inte-
gration I’ (running from —y — joo to —y + i) lying on the left of the original path I’
(Fig. 2). We discuss the operator (1 — A_, K)~* first. Until now its existence is obvious
only when dist[A,—G] > ||K]||. But it follows from (8.17) that we can fix a value k, such
as that for k > k,

rlA_ K)<n <1 (9.19)

uniformly in —1 < Red < . 5 denotes an arbitrary fixed number between 0 and 1.
Consequently, the half-plane —1 < ReA < « is contained in p(—B,) or equivalently

lep(Ad_,K), —1<Red<w,k>k, (9.20)

and the series
R(;A_,K)=(1 —A_,K) "= 5 (A_, Ky 9,21)
=0

converges in the operator norm. Moreover, we can show that the resolvent R(1;4_, K)
is bounded in norm uniformly in —y < Re < «, k > k, by

IRA; ALK < max [(1—A_,K) ! =C,. (9.22)
k=k
—y<Re }:'< ©

Once k, is fixed, the constant C, is merely a function of y. (9.22) holds for the followmg
reasons: R(1;A_;K) is a continuous function with respect to A and k because A_,; K is
continuous (even holomorphic) in both variables. This is a consequence of a theorem
on the continuity of the resolvent given for example by Kato [8, p. 212]. Furthermore,
it follows from (4.6) that for sufficiently large k, say k > k, (suppose k, > k,)

A Kl<b<1 - (9.23)
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uniformly in —y < Re A < «. Then (9.21) is absolutely convergent and thus R(1;4_;K)
is uniformly bounded for —y < ReA <.« and k > k,, In addition, for k, < k <k, and
sufficiently large |1|, [|[4_, K]/ <1 in view of (3.3). Hence the continuous function
R(1;A_;K)is bounded at infinity with respect to both variables. This fact implies that
it is bounded everywhere in —y < Rel < o, k > k, and assumes its maximum C, at
some point.

To estimate (9.18), we actually would only need an upper bound of R(1;4_,K)
with respect to the straight line I which would obviously be less or equal to C,.

To show the absolute convergence of (9.18), we investigate the A,-dependence of
|A_, K|l (A = A, + iA,). For this purpose, we revert to (4.3), (4.5) and (4.6). We calculate

the mtegral (4.5) by using the following estimate of v(v) + 4; valid umformly in
SAh<o

V(U) + /11 >V bl Uz + b2 b1 bz >0 (9.24)

where b, and b, are two suitable constants. When y — 1 we must require that b, — 0
and b, — 0. Putting v, = vz, we see, by (4.5), that

d*v _ d?v - d3v
likv+v(0) + A|* ) [(kvs + A2)% + (v(@) + AP [(kvy + 1,)* + by v* + b,]?

pdp
" —£ UI f [(kvl + 112)2 + bl Ui + b1 p2 + bz]z
0

o0

14 1
—Z |4
b, ) ko + A + b 02+ b,

—o0

2

T
= . 9.25
bV (k* + b)) b, + by 13 O.2)
Instead of (4.6), we obtain the sharper result
lA_, K| s D,>0 9.26)
Kl < ! !
! [(k* + by) b, + b, A3]® e (

This allows us to estimate (9.18) on the mtegratlon path I'" where the integral is abso-
lutely convergent. We get

di,

| < C,Dse" = M, e, 9.27

T .[ (k2 +by)b, + b, 2P ° 0]
Together with (9.16)

T < Tl + | T < (BT, + M) e = M, e (9.28)

By construction, the constant M, tends to infinity asy — 1. Thus Theorem 9.1 is proved.
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This theorem shows that the Fourier components f(k, v, ¢) of a solution of the Boltz-
mann equation (1.1) decay exponentially in time for large absolute values of the argu-
ment k. :

Next we are concerned with the equation whether the semigroup T approaches a
limit as & — . Of course, the operator B, does not converge to a well-defined operator,
but we expect from our discussion of its spectrum (Section 6) that the time evolution
according to T* approaches in some sense that generated by the operator —4 = —ikv —
v(v) in the short-wavelength limit (k — ). We call this semigroup V* = e~4*. Then the
following theorem holds:

Theorem 9.2: For each fe L,(R*) and for arbitrary y, 0 <y <1, we have
lime™||T' f— V'f|| = 0.

k—wo

The limit exists uniformly in 0 < ¢ < «.

Proof: Remembering that ¥* = T§ we get from (9.9)

Tt — YVt = i T (929)
n=1
The first .term of this series reads (with the notation a(v) = ikv + v(v))
I f= f e “"’;“s’ ( f K(v,v)e *V5 f(v')d? v’) ds. (9.30)
0
Therefore »
ITEAll < f e”| f KV, V) et f(y)d3'|ds. (9.31)

0

We consider the inner integral for fixed v and s
&V, 5) = f K(v,v)e s g tS (V) @3y, (9.32)
We know that K(v,v’) eLz(R3) with respect to v'. Since fe L,(R?), it follows that

K(v,v) e f(v') € L(R?)

with respect to v'.
Thus the integral (9.32) can be interpreted as the Fourier transform of an L,-
function, at least for s > 0. Hence, by the Riemann-Lebesgue lemma

lim |gy(v,5)| =0 s>0. ' (9.33)

k=00

Furthermore g, (v, s) € L,(R*)(s > 0) and
8, 9)| < [ |K@, V) If(0)|d*0' € Ly(R?). | (9.34)

Using Lebesgue’s principle of dominated convergence, we conclude that

lim [|gy(v,5)]|=0 s>0. (9.35)

k—w
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Since the estimate (9.34) is uniform with respect to s we see, by the same argument (the
point s = 0 has measure zero), that

ITAI< e [ v, )ids > o. (9.36)
0
(9.15), (9.10) and (9.16) imply
I = VLI < 3 TSI < Fye [ llga(v, )ids > 0. 9.37)
e & -0

The remainder of the series (9.9) has already been estimated in (9.27). The constant
M, introduced there is in fact reduced with increasing k as we see from the integral
occurring in (9.27). Hence '

IT* = VA< IT = Vsl + 1T 7l < (z’\‘c, [ lgutw, sy + ﬁy(k)) et — 0.

k =
(9.38)

This proves Theorem 9.2. The uniformity mentioned there follows from the uniform
convergence on every finite interval (which is obvious from (9.38)) together with (9.7)
which implies [|7* — V|| < ||ITY|| + |V < (M,. + 1)e™*"* for some 7y’ > y. Theorem 9.2
is similar to a theorem given by Kato [8, p. 502] but with the difference that in our case
the semigroup 7'* does not converge to a well-defined semigroup which is independent
of k.

In the space L (R?) an analogous theorem holds, but moreover, we have:
Theorem 9.3: Let f € L (R3) and y be any number 0 < y < 1. Then
lim e|T* — V||, =0.

k—0
The limit exists uniformly in any interval ¢ € [¢, ), € > 0.

Before we turn to the proof, we look at the general properties of the semigroups
T* and V" in the space L (R?). First, the spectrum of B, is essentially the same in the two
spaces. In particular, there is the essential spectrum G and the isolated eigenvalues, both
being identical in L (R3) and L,(R?). Moreover, the operator K is compact in L (R?)
(Lemma 7.2). Second, the operator —B, generates a so-called quasi-bounded semigroup
(8, p. 495) in L_(R?) but not necessarily a contraction semigroup. It follows from the
perturbation theory for semigroups [8, p. 495] that we have

1T, < eI IKI k) 5], (9.39)

This rather modest result can be improved similarly as in Theorem 9.1. The method is
the same as before and is shown in the proof of Theorem 9.3 below.

Proof: We revert to (9.30) and obtain by changing the order of the two integrals

t
T f=e ™ | d30v' K(v,V)f(V) dse@M—a(v')s
1
0

—a(v’)t __ e——rz(v)t

= j o' K, V) V) o (9.40)
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Letz>¢e>0and 0 <y < 1. We estimate (9.40) by

4 elr=vvDe f P

(y—v(v’))e K , !
e”‘ITffISHwa( [ @K [T )

|od(¥) — a(¥"))| |oe(v) — a(v')|

uniformlyinz>¢ > 0. (9.41)

The integrals in (9.41) can be estimated by the same method as we treated |4,K], in
Section 6, that is, by means of suitable Holder inequalities (the A there is replaced by
a(v)). Thanks to the exponential factors, the integrals represent bounded functions with
respect to v and as k increases the integrals vanish. Therefore

e"|Tlle — O uniformlyinz?> e. (9.42)

k=

Using (9.10) we see that

17— Vo< S T e < A K)e™ — 0 (4,(K) — 0). 9.43)

k—c k -+

Here we summed up five terms in 7" instead of only four as in (9.37). The remaining
integral reads

?t - omi f die*(A_, K (1 —A_;K)™ l‘i—» | (9.44)

Again a relation corresponding to (9.22) exists. But the reason for this is not the same as
in (9.22), for the L,-norm of A_, K is not reduced with increasing k, that is, the analogue
of (9.23) does not hold. Yet we know from Note 8.2, especially (8.19), that the spectral
radius of 4_; K is small for large k, precisely

ro(4_,K) < n<1 fork>k, uniformlyin—1<Rel< co. (9.45)
Furthermore, considering the half-plane —y < Re < «, 0 < y < 1, by (8.18) and (8.19)
(A K" <d el O |K|Im k128 d=1—7y, ¢>2 (9-46)

for n > 2 uniformly in k > k, and —y < ReA < «, assuming k, > 1.

If we choose k, so large that k, > c3%, then beyond a certain value of n, say n > N,
the right-hand sxde in (9.46) is smaller than 1, umformly ink > k,and —y < Red < o,
that is

(A K< 1—¢ >0 (9.47)
where ¢ is a sufficiently small number. Thus we obtain from (9.21)

10— A_, K) ™Ml < Z (A K)II" + Z (1—ey

N-1
I

E 1

n=0
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Finally, we consider the operator K4 _, with regard to its A,-dependence (A = 4, + i,).
We have

K ! ’
KA-af <
3/4 d3v 1/4
<l [ K)o ( | W?UIT) . 9.49)

The second integral on the right-hand side has already been discussed in (9.25) and (9.26).
Therefore, by integrating over I’

C;':HKHOO
2n(1 — y)

Hence Theorem 9.3 follows from (9.43) and (9.50).

Theorems 9.2 and 9.3 show that the influence of the integral operator K on the time
evolution is negligible for k — «. The collision operator I only appears through the
collision frequency v(v) which acts as a damping factor on the amplitude of the initial
disturbance. In the linearized Boltzmann equation, the collision frequency describes the
damping due to the collisions between the ‘disturbed molecules’ and the surroundings
which are assumed to be in equilibrium. We see that this effect is dominant if we consider
a strongly inhomogeneous disturbance in space (k large). On the other hand, it is well-
known that for smooth initial disturbances (k small), the full collision operator 7
becomes important.

17 < j di|KA P — (9.50)

=0
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