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On Wave Packet Reduction in the Coleman-Hepp Model

by J. S. Bell
CERN, Geneva

(21. X. 74)

Abstract. The quantum mechanical measurement problem is considered in a model due to Hepp
and Coleman. Whereas Hepp emphasized a ‘rigorous “reduction of the wave packet™’, in a certain
mathematical limit, it is emphasized here that no such reduction ever actually occurs. Some general

_remarks are made on the advantages of the Heisenberg picture for such considerations, especially in
connection with extension to relativistic theories. The non-reduction of the wave packet is directly
related to the deterministic character of Heisenberg equations of motion.

1. Introduction

In a very elegant and rigorous paper [1], K. Hepp has discussed quantum measure-
ment theory. He uses the C* algebra description of infinite quantum systems. Here
an attempt is made to give a more popular account of some of his reasoning. Such an
attempt seems worth while because many people not familiar with the C* algebra
approach, and even somewhat intimidated by it, have been intrigued by the following
statement in Hepp’s abstract:

‘In several explicitly soluble models, the measurement leads to macroscopically
different “pointer positions” and to a rigorous ‘“‘reduction of the wave packet”
with respect to all local observables.’

This could look like a clean solution at last to the infamous measurement problem?).
But it is not so, nor thought by Hepp to be so. Here we will take one?) of his models and
analyse it in elementary text-book terms. It will be insisted that the ‘rigorous reduction’
does not occur in physical time but only in an unattainable mathematical limit. It
will be argued that the distinction is an important one.

We will work at first in the Schrodinger picture, but later, with the extension to
relativistic systems in mind, it will be argued that such considerations become par-
ticularly clear in the Heisenberg picture.

2. Model

The model is the following. The ‘apparatus’ is a semi-infinite linear array of spin-}
particles, fixed at positions x =1, 2, .... The ‘system’ is a moving spin-} particle, with

1) For a general survey, see, for example, d’Espagnat [2].
?)  Note that Hepp considers several other models, making points not presented here, in particular
concerning the possibility of ‘catastrophic’ time evolutions.
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position co-ordinate x and spin operators do(= 6§,063,03); it is the third component 3
which is to be ‘measured’. The combined system is described by a wave function, where
all o, take values +1,

Yl(t, x,00,0,,05,...)
in a representation where all ¢ are diagonal:

o2 Y(t, x,04,0,,0,,...) =0,Y(t,x,00,01,0s...). (1)
The Hamiltonian is taken to be

o L ot ) @

i ax n=1

Note that the ‘kinetic energy’ here is linear rather than quadratic in the particle momen-
tum p = (1/i)(9/0x). This has the convenience that free particle wave packets do not
diffuse; they just move without change of form, and with unit velocity, in the positive
x-direction. The interaction ¥V is supposed to have ‘compact support’ —i.e., to be zero
beyond some range r:

V(x)=0 for |x|>r. (3)

It is also supposed, for reasons that will appear, that
j BV == @)

The Schrodinger equation

o
a_t = —IHIJI

is readily solved

W(t,%,06,....) = TTexp[~iF (x — ) 5}(} — 3)] $(x — 1,0, .) (5)
where ¢ is arbitrary and

Foy=[ v | ©)
Note that

F(x)=0 forx<-r

7
F(x)== forx>+r. @

T
2
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Consider in particular states in which initially the lattice spins are all up and the moving
spin is either up or down:

Uit ) = 1 = Olo0) [T (o)

8)
Vt,%,..) = 1k = )W(00) [ L (0, x — )
where
ERZOLL } &)
Vi(6,, X — 1) = exp[—iF (x — n) 611y .(0,).
Note that in virtue of (7)
l,b;(a,,,x—n)=|//,‘,(a,,) forx—n<—r ' 10)
=—iy_(o,) forx—mn>+r.
Let us suppose that the wave packet y has compact support: |
x(x)=0 for |x| > w. ‘ - ay
Then, from (10) we can use in (8)
yio,x—n)=y . (o) forn>t+r+w 12)
Yi(opnx—n)=—iy_(c,) forn<it—r—w.

Thus (8) has the interpretation that when the system spin is up nothing happens to the
apparatus spins, but when the system spin is down each apparatus sspin in turn is
flipped from up to down.

Hepp’s ‘macroscopic pointer position’ can be defined here by considering the limit
M — o of

cu=L1S 0 (13)
M n=1
Clearly
Lim (Lim(, Cup)) = £1, 14

So we have his ‘macroscopically different pointer positions’. From the fact that the two
states have different values here (for what Hepp calls a ‘classical observable’, involving
infinitely many of the basic operators ) Hepp infers that

Lim(y,, Q=) =0 15)

for any ‘local observable’ Q —i.e., one constructed from a finite number of ¢’s. This is
plausible in general because such a difference means, loosely speaking, that the two states
differ significantly at infinitely many lattice points, and so remain mutually orthogonal
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after any operation involving only finitely many lattice poirits. In this particular case,
we see explicitly from (12) that if a particular Q involves only (dy, 6;...6y) then

W+, QY:)=0 fort>1+N+r+w (16)

which includes (15).

The result (15) is the ‘rigorous reduction of the wave packet’. If the ‘local observ-
ables’ Q (as distinct in particular from the ‘classical observables’) are thought of as
those which can in principle actually be observed, then the vanishing of their matrix
elements between the two states means that coherent superpositions of ¥, and y_
cannot be distinguished from incoherent mixtures thereof. In quantum measurement
theory such elimination of coherence is the philosopher’s stone. For with an incoherent
mixture specialization to one of its components can be regarded as a purely mental act,
the innocent selection of a particular sub-ensemble, from some total statistical ensemble,
for particular further study.

We insist, however, that # = « never comes, so that the wave packet reduction
never happens. The mathematical limit # — o« is of physical relevance only in so far
as it suggests what might be true, or nearly so, for large ¢. The result (15) [and more
sharply, in this particular case, (16)] shows that any fixed observable Q will eventually
give a very poor (zero, in this case) measure of the persisting coherence. But nothing
forbids the use of different observables as time goes on. Consider for example the unitary
operator

N(t—r—w)

z=05 [] oz (17)
n=1

where N(t) is the largest integer smaller than ¢. The increasing string of factors here
serves to unflip the flipped spins, so that

N(+r+w)

W)= [alyx =01 TT (a0, Y50 x — 1) (18)

N(t—r—w)

becomes a periodic function of ¢. Trivially,
Wi zy) =W z2y_)=0. (19)

Thus in the Hermitean operators z we have a sequence of local observables whose matrix
elements

(s 24) (20)

do not approach zero. So long as nothing, in principle, forbids consideration of such
arbitrarily complicated observables, it is not permitted to speak of wave packet re-
duction. While for any given observable one can find a time for which the unwanted
interference is as small as you like, for any given time one can find an observable for
which it is as big as you do not like.
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3. Heisenberg Picture

Consider now the Heisenberg picture?), in which the states are time-independent
and the operators vary. The Heisenberg equations of motion are in general

O(r) = [Q(1), —iH]
and in particular

(1) =1

Go(t) = — (z V(x(t) = n) a;(r)) Esah

G.() =+ ( 21 V(x(t)—n ) (1 —a3(2))ix a,(t)

where 7 and k are unit vectors in the 1 and 3 directions. Now we could solve these equa-
tions forward in time to find subsequent values in terms of initial values, and then to
say again what has been said above. But we wish to note rather that the equations can be
solved backwards in time, to express operators at some initial time in terms of those at
any later time. For example, we find

a4(0) = o4(t) cos O(z) — o2(¢) sin 6(¢) (21)
where
0(t) = 21 (FG(t) — ni) — F(x(t) — t — n)} 6X(2). (22)

Between states which satisfy the Schrodinger equation, matrix elements of ¢ at time
zero are equal to the corresponding matrix elements at time ¢ of the combination of
observables on the right-hand side of (21). Thus this combination serves the same pur-
pose as that of (17), of giving a constant measure to the persisting coherence — in this
case whatever coherence could initially be measured by o3. It is not, of course, the same
construction as (17), and in fact it explicitly invokes x(¢), as well as 6,,(¢), as an observable.
But why not?

We note in passing that in the Heisenberg picture there is no complication in con-
sidering mixed rather than pure states. Whatever coherence shows up at time 0 in the -
expectation value of an operator Q(0), will persist and show up at later times in the
expectation value of the corresponding combination of Q(z). In this picture the persist-
ence of coherence is directly related to the deterministic character of the Heisenberg
equations of motion. This operates backwards as well as forwards in time, and requires
a given Q(0) to be some combination of the set Q(¢) with any given .

As written, the summation in (22) is infinite. But for any given wave packet y(x),
of compact support, it can be terminated without error at some sufficiently large n,
growing with time. This is because of (7), which requires F to vanish for large negative
arguments. Thus, loosely speaking, the evidence for coherence remains at any finite
time in a finite region of the lattice. This will not be generally true in non-relativistic

%)  The use of the Heisenberg picture in quantum measurement theory has been advocated, for dif-
ferent reasons, by B. S. De Witt [3].
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models. It is associated with the use of interactions and wave packets of compact
support, and with the existence in the model of a limiting — indeed universal — velocity,
which was taken to be unity.

In relativistic theories, however, we again have a limiting velocity, that of light — at
least if we have flat unquantized space-time and can avoid the pathologies of Velo and
Zwanziger [4]. The local observables in an initial space-time region are then presumably
determined by those contained subsequently in a region obtained from the original by
expanding its space boundaries with the velocity of light. Presumably the exact formu-
lation of this notion is to be found in the ‘primitive causality’ of Haag [5]. In so far as it
applies we see again that any coherence associated with the initial region must persist,
and be detectable subsequently in a bigger but finite region by using the appropriate
combination of observables in that region.

4. Conclusion

Clearly there is no room for disagreement about simple mathematics. But there may
be disagreement about the physical significance of it. Hepp clearly considers the limit
t — o very relevant, while he does ‘not, however, accept the ergodic mean as a funda-
mental solution to the problem of the reduction of wave packets’. In my opinion neither
of these approaches provides a fundamental solution, but both are quite valuable for
indicating how the difference between reducing the wave packet at one time rather than
another is extremely hard to see in practice. Moreover, both indicate this on the same
ground —that the observation of arbitrarily complicated observables, while not excluded
in principle, is not possible in practice. It remains true that, whenever it is done, the
wave packet reduction is not compatible with the linear Schridinger equation. And
yet at some not-well-specified time, such a reduction is supposed to occur [6]: °...a
measurement always causes the system to jump into an eigenstate of the dynamical
variable that is measured...’. i

The continuing dispute about quantum measurement theory is not between people
who disagree on the results of simple mathematical manipulations. Nor is it between
people with different ideas about the actual practicality of measuring arbitrarily com-
plicated observables. It is between people who view with different degrees of concern or
complacency the following fact: so long as the wave packet reduction is an essential
component, and so long as we do not know exactly when and how it takes over from the
Schrodinger equation, we do not have an exact and unambiguous formulation of our
most fundamental physical theory. '
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