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A Rigorous Model Sustaining van Hove’s Phenomenon

by Philippe Martin and Gérard G. Emch?)

Laboratoire de Physique Théorique, Ecole Polytechnique Fédérale, Lausanne, Switzerland

9. X.74)

Abstract. An exactly solvable model is considered for which we prove the validity of van Hove’s
perturbative scheme for computing the rate of approach to equilibrium.

Introduction

Some twenty years ago van Hove [1] noticed that for a large class of quantum
mechanical, many-body systems showing a dissipative behaviour, the macroscopic
size N manifests itself through a characteristic property of the Hamiltonian H, namely:
H can be written as Hy + AV in such a manner that, when computed in a basis for
which H, is diagonal, the matrix elements <0|V?|0"> show a ‘diagonal singularity’ of
order N not present in the matrix elements of V.

To show how this property could plausibly be held responsible for the approach
to equilibrium, he used it to support his proposal of a perturbative scheme leading to
a Pauli-type master equation which avoided invoking any ad hoc repeated random
phase ansatz.

Instead of this ansatz van Hove called upon two limiting procedures: 1) the
infinite-volume limit, in which the spectrum of the unperturbed Hamiltonian H,
becomes continuous; and ii) the weak coupling limit A — 0, in which the time ¢ is
rescaled in such a manner that T = A?f remains finite.

The purpose of our paper is to present a simple exactly solvable model, which is
yet realistic enough to exhibit precisely the various phenomena anticipated by van Hove.
For this model van Hove’s prescriptions will, in each step, be actually given a precise
mathematical meaning; in particular the above two limiting procedures will be com-
pletely brought under control, and van Hove’s perturbative scheme will be shown to
converge; this dissipative behaviour predicted by van Hove will thus be proven to be
a strict consequence of the microscopic dynamics in the limits considered.

The model which we consider is precisely described in Section 1. It consists of
quantum particles moving, according to the laws of Hamiltonian mechanics, in a three-
dimensional lattice Z* on which scattering impurities are distributed in such a manner
that their effect is that of a static stochastic field on Z3. The existence and lattice-
translation invariance of the resulting time-evolution for this infinitely extended
system are proven in that section, thus giving us control over the first of the two limiting
procedures called forth in van Hove’s scheme.

) Permanent address: Departments of Physics and Astronomy, and of Mathematics, The
University of Rochester, Rochester, N.Y. 14627, USA.
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In Section 2 we bring under control the perturbative scheme proposed by van Hove
to take into account the long-time cumulative effect of a weak perturbation. The
resulting dynamics, expressed in the appropriate time-scale, is shown to be then given
by a dissipative semi-group, the generator of which is computed explicitly.

The extension of the results of Section 2 to the time evolution of the extensive
observables is described in Section 3, resulting in a Pauli-type master equation of the
form predicted by van Hove.

In Section 4 we briefly discuss some physical implications and generalizations of
our results.

1. Definition of the Model

Let Z? denote the three-dimensional lattice {n = (n*,n*,n?)|n' € Z} and B denote its
dual space {0 = (0%,6”,6%)|6" € [-n,=]}.
The Hilbert space

* - 2@)=(r2 >0 PR o)

will be the one-particle space of our model. We introduce the momentum
representation:

1 3/2
f(6)=(£) > e

neZ3

with 6n = 0*n* + 6"’ + 6°n?, and the inverse transformation

1 2 —i@
ﬁ,:(ﬂ) J d9 e £(9).

B

The model is defined by a ‘random’ Hamiltonian H = A, + AV acting on the Fock
space &(#) (which can be taken to be symmetric or antisymmetric depending on
whether the model consists of bosons or of fermions, a choice which we do not need
to make here). The free Hamiltonian H, is defined in the momentum representation by

2 f d0 () a*(0) a(8)

with dispersion law w(f) = 62.
The interaction

I

3/2
P (%) f d9 J 49’ v(0 — 8" a*(8) a(®)

is an operator-valued random variable which describes the scattering of the particles
by a classical, lattice-translations invariant, Gaussian stochastic field v.

The aim of this section is to give a mathematically meaningful description of the
time-evolution for this model.
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We first notice that, since A is quadratic in the field operators, the time evolution
will be quasi-free and will thus be determined by its restriction to the one-particle
space #.

The (one-particle) free Hamiltonian is then defined by

(Ho f)(0) = w(6) f(0)
and is bounded, since

|Holl = sup w(6) = 3.

feB

In order to be able to define precisely the dynamics of the infinitely extended
system, we consider for every finite subset M in 73 the cut-off interaction V™ defined by

(VMf)n= xhnlvnf;l

where ¥ is the characteristic function of M, i.e.

1 ifneM

M __
0 otherwise;

Xn

and v:Z* — R is arbitrary. We notice that this operator is also bounded, since

IVM]| = sup |v,] < 0 (M is finite!).

neM

Consequently H™ = H, + AVM is well-defined on #*(Z%) as a bounded, self-
adjoint operator. Let {UY|t € R} be the continuous, one-parameter unitary group
generated by HM:

UM = exp(—iHMt).

We now give a precise meaning to our assertion that the impurities are randomly
distributed on Z*: we consider from now on {v,|n € Z*} as a stochastic field .which is
assumed to be static, translation-invariant and Gaussian. This field is thus described
by the covariance function y:Z> x 73 — R,

<vn vm> = Yn, mr

where we impose on 7 to satisfy the following conditions:

1) yn,m:gln—ml
i) llglli= 2 |8 <
nez3
1 3/2
iii) g(6) = (Zz) Z eing. >0 for all @ in B.

neZ3

We then consider {v,|rn € M} as an element of R'™! (where |M | denotes the number of
points in M), and we define on R'™! the Gaussian measure u™ by

(oM =0

(O™ =g,_m foralln, min M.
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The first of the two limiting procedures considered by van Hove will be controlled,
for the model discussed here, by the following proposition, the proof of which will be
the aim of this section.

Proposition 1: For every ¢t in R there exists a function V,:B — C, essentially
bounded by 1, such that for every ¢ and  in £*(Z%):

lim (o, US UMY = j do 9*(0) V(0 $(0).

M->73

Before entering into the proof of this proposition, a general methodological
remark is in order. The aim of the present paper is to fill the mathematical gaps left in
van Hove’s proposal and thereby to show that each of its intermediate steps can be
given a precise mathematical justification, rather than to give an alternate derivation
of his results for the model considered here. We will therefore follow the traditional
route of perturbation theory and prove that the convergence of the perturbation
expansion can be controlled. This will be achieved by repeated use of the denominated
convergence theorem. As far as the above proposition is concerned, the translation
invariance of the model will only be used towards the end of the proof, once the
existence of the infinite volume limit (with the cut-off removed!) will already have been
established. By proceeding in this way we will also prepare naturally the grounds for
the material to be presented later in Section 2. In the present paper, we will not touch
upon the question of whether the stochastic differential equation aspect of our model
could, or could not, be better taken into account by using, in a non-perturbative
manner, the methods of functional integration theory.

We first show that the time-evolution, averaged over the Gaussian measure uM,
exists for each finite cut-off M.

Lemma 1.1: For every ¢ and  in #*(Z3), every ¢t in R, and every finite subset M
in Z3:

(@, US UMM = S (o, (UM@Y)
n=0
where

(U/{W)(tn) = (—id)" J dt,... f dt, V,f wss Vo

1
0<t1€---Stpst

and
V= U V¥ UL

Proof: By the dominated convergence theorem, the lemma follows from the
following premises which are easily established:

i) with o™ = sup |v,|
neM

{exp (AtvM)H>M = f duM exp (AtvM)

exists since g is strictly positive;
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if) the Dyson perturbation expansion

UL U¥ = 3 (U

n=90

converges in the norm topology; and we actually have
1
iif) (U] < @™, g.ed.

For the proof of the proposition we will need two technical lemmata which we
now establish.

Lemma 1.2: For every ¢ and y in £?(Z%) with ||¢| = 1, every ¢ in R, every finite
sequence 0 < ¢, <. ..<t, < t, and every finite subset M in Z°:{(¢p, V’,‘f L VEYOM =0
unless 7 is even, in which case:

M M (2n)!
I<(‘P’ Fey o -th W) Ié 1"

81 S TT Jtymeyalhy — Kyttt — ) Y]

Kap...koeM j=2

where

u,(k) = (%) f df exp (—i[w(0) t + k0)).

B

Proof: From the very definition of the operator V¥ we have

(o, th,.{ cas VtAf YoM = Z Q’t*,,, k,,<Uk,.- .. Uk,>M-

kp...kgeM
ut,.—t,,_l(kn ! ) utz—t;(kZ —ky) ”n(kl - ko)'/’ko

with

- R 1 3/2
Gex=(U @) =(J,0,) where .;,(9)=(2_n.) _—

clearly then

|02, k] < @l 1 = llll 111 = 1.

On the other hand, the properties of the Gaussian measure p™ imply immediately
that {v,, . .. v, »™ vanishes unless # is even, in which case we have ’

i - e Uk1>M =211 8ki—k

where the sum > runs over the (2n — 1)!! possible pairings of the 2n indices {k,, . . . k1},
and where the product [] runs, for each pairing, over the n pairs of indices occurring
in that pairing. We thus get the majorization

2n!

el

|<Vkzp - - Ok, O™ <

for which the lemma follows immediately. q.e.d.
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This lemma will be used in conjunction with the following result:

Lemma 1.3: For every ¢ in R* there exists a finite constant C, such that for all
Ti=l—t_4,j=2,...,2n,with0<t <...<1t,<t onehas ), <C.

Proof: Upon integrating by part twice, one checks that in one dimension, we have
for k # 0,

n

1
— J dfexp (—i[0%t + k0))
2n

—n
IT

—e [—211: exp (—in? ) + j do(1 — 2i0> ) exp (—i[0%7 + k0]) |,

so that there exists finite constants «, § > 0, independent of 7, such that

f dfexp (—i[0* 1+ k0])| <

1
2 (T + A7)

2n

for k = 0 we have

k4

J dfexp (—if*7)| < 1

—n

¥/

and thus

1
>,

ke Z

f dfexp(—i[0>t + k0))

—R

<1+ C(az + pr2).

The lemma then follows from the fact that the right-hand side of this expression is an
increasing function of z. We have indeed:

C,=[l+C(at+ pt>]® q.ed.
Proof of Proposition 1: By Lemma 1.3, all the u,(-) appearing in Lemma 1.2 are
in #*; hence the convolution product
2n

Z |ut1—tj I(kj kj—l)”un(kl ‘“‘"ko)”',l/kol

kan...koeM j=

is convergent and bounded by C?*||y/||, for ¥ € #* (Z3) as M — Z3. Upon inserting
this into Lemma 1.2, we get

2n!
l(((P’ tzn th;f ‘ll)>M‘ < ”g”1 CZ"H'I’HI

nl2®
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which is uniform in M. Consequently the following two limits exist and are equal

lim (o, (U@ Y™ =ity [ dt... [ dty Lim (o, V... VHYHM.
M- 73 ey - « » i M- Z3

Moreover
1 (A2 "
[<(e, (U™ YOM| < llooll II\I/HI; (-2— &llx tzC%)

where the right-hand side is the general term of a series which converges for all ¢ in R,
this majorization being uniform in M. We can therefore use the dominated convergence
theorem to conclude the existence of the limit

lim {(p, USUMYDM = Bio,y), for y € L' (@);
M-7Z
this sesquilinear form in ¢, ¥ is thus obtained as the limit of the sesquilinear forms:

BM(,¥) = e, U U Y™

which are bounded by ||¢|| [/|| uniformly in M. Consequently B,(¢, ¥) is also bounded
by lll| [l/]| and there exists an operator ¥, on #*(Z*), bounded by 1, and such that

lim {(p, UL Uy = (9, V1 ¥).

M— Z3

For every translation a in Z3, let U, be the unitary operator defined by (U, f), = f,,.+a,
and write M + a for the set {m + a|m € M}. We clearly have, in view of the lattice
translation invariance of our measure p:

Blt‘“-a((Ps '/’) = Biw(Ua v, Ua !/’)
from which follows
Bt((P2 lﬁ) = Bt(Ua ®, U, ‘l’)

and thus ¥V, commutes with U, for every a in Z3. Consequently (V, /) () = V{(6)f(0)
for every fin £*(Z3); since

ess Sup V@) =1Vl <1

this concludes the proof of Proposition 1. q.e.d.

2. Van Hove’s Long-Time, Weak-Coupling Limit

The purpose of this section is to control van Hove’s perturbative scheme in the
so-called A?¢ limit for the model considered in Section 1. Specifically, we will present
now a complete proof of the following result:

Proposition 2: There exists 7, > 0 such that for each fixed 7 in [0,7,], and every ¢
and y in £*(Z3):

lim Tim (g, US, UX Y = [d0 o*(6) S0 ¥ ©).
).g:———wt M~ 23 B
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where

S«(0) = exp (—[I'(0) + i4(6)] 7)
with

re == j do’ w(',0)5(w(9") — (0))
A4(0) = 5‘; do’ w (@', 0) (o(8) — w(8'))™*
1 3/2
W@, 0) = (ﬂ) g0 —0).

In order to bring the form of the contractive semi-group {S;|t € R*} into immediate
contact with van Hove’s notation, we notice the following property of the kernel
w(',0).

Lemma 2.1: For every operator A on #?%(Z3) such that (Af)(8) = A(0) f(0) for

every fin #%(Z3), the operator VAV, averaged over the Gaussian measure, is given by
the kernel:

Hm (VM AVMM@,0') = 5(0 — ) f d9" 4(0") W (0", 0).

M- Z3

Proof:
lim (VM AVMM(0,0') = f do” A(0")<v(0,0")v(8",0))

M-Z3
with
1
w(0,0") v(0",0)) = (5;) Z Z exp(i[(@ — 0 n+ (0" — 0 )m]) o, u,,,>

neZ3 meZ3

1 9/2
=(E) Z exp(i(0—0)n) > exp(i(0'—0")k)g:

23 keZ3
ne

1 3/2
= (—) o0—0)g@—0"). q.ed.
27

We should remark that, together with the fact that (V) = 0, this lemma precisely
expresses that our model satisfies van Hove’s celebrated ‘diagonal singularity’
condition.

The proof of Proposition 2 will be presented as a consequence of the following
two lemmata: _

Lemma 2.2: There exists a finite constant C > 0 such that for every f and 1 in R,
every n in Z* and every ¢ and ¥ in £*(Z3) with ||o|| = Y| = 1:

— 1N
lim_ [0, U] < T oy

M- Z3
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Lemma 2.3: For every T in R*, every nin Z*, every ¢ and y in £?(Z3):
lim  lim (@, (U@ Y =~ [ " LTO) + 4O 9(O).

t-w0 M-—2Z
At=1

To prove Lemma 2.2 we will need three technical sublemmata which, for sake of
completeness, we state and establish here separately, although the content of the first
two might probably be found elsewhere in the literature.

Sublemma 2.4: For every pair A, B of finite Hermitian matrices satisfying
A = B> 0, we have:

Det A > DetB > 0.

Proof: Let A be a positive matrix on R"and { f;|li=1, 2, .. ., n} be an orthonormal
basis in R"; further, let C be the Hermitian, positive matrix defined by

Cfi=A f; with A, =(f;, Af).
Since 4 and C are Hermitian and /> x — lgx, x € (0, «), is concave, we have [2]
Tr{f(4)-AC)-(A-C) f(C)} <0
and thus
Trigd< 3 (f1gCH — 3 (fuld—CO) /)i F©C) 1.
i=1 i=1
Since C~! exists, ( f;,(A — C) f;) =0 and ( f;,1g Cf;) = 1g( f;, Af,), we have:
Trigd< S lg(fi, Af).
i=1

Moreover, the equality sign holds if { f;} is the orthonormal basis which diagonalizes A.
Consequently,

Trigd=inf 5 lg(fy, A%).

iy 121

With A4 and B satisfying the assumptions of the lemma we thus have:

Trlgd = 1nf Z (f;, Af}) = inf Z (fi, Bf)=TrlgB.

fit i1 {fit 11

On the other hand, if { f;} is an orthonormal basis diagonalizing 4, i e. Af; = a; f;, we
have _

Detd=]] ai=exp( > lgai)zexpTrlgA

£ 1 i=1
and thus, since exp(-) is a monotonically increasing function,

DetA =expTrigd > expTrigB=DetB q.e.d.
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Sublemma 2.5: There exists a finite constant C; >0 such that for every pair
{0, L} constituted of a positive quadratic form Q on R" and a linear form L on R",
and for every cube D = {x = (xy,...,x,)|x; € [-a,a]} in R".

' [ dxi...dz,exp (@) + LD | < (Det Q)2 €.

Proof: Let Q be an orthogonal transformation of R" which diagonalizes Q and
write y, = (Qx),. We have then

j .. f dx, ... dx,exp(—i[Q(x) + L(x)])

=J‘ J. dy,...dy,exp (—i > (/lkyi-i-akyk))
k=1

(D)

with A, >0fork=1,2,...,n.
Let now A be the linear transformation on R” defined by the change of variables
Y& = 2 = AY?y. The right-hand side of the above expression becomes then:

@et ) [... | dzl...dz,,exp(—i S (z§+bkzk))

ASKD) k=1

=@etg) 2 [... | dul...du,.exp(—i > (u§+c,,u,,))

Q-1 AQ(D)

k=1

T n B
=(Det 0)""/2 [1 ( f duyexp (—i[ug + ¢ uk])) .

A

The lemma then follows immediately from the additional remark that

B
J‘ duexp (—i(u? + cu))

depends continuously on « and B and is thus bounded by a finite constant C; > 0,
independent of «, f and ¢ since

lim lim

a—+ —x f—

B
f dy exp (—iy?)

exists, as is easily seen by repeated integration by parts. q.e.d.

Sublemma 2.6: For any permutation {6),,0;,—:,...,0;1} of the variables
{02011 — 020),(02, — 02,_1),...,(0, — 0,)} with 6, € B=[-=n,n]?, and for any sequence
0<t?, <...4,<1t< o, there exists a choice {s; |/=1, 2, .. .,n},with S =1t — tj—1s
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such that for all ¢ and y in £*(Z3) with ||p| = |jy|| = 1:

[ @snis [ .. [ dB: 9*O201) 00D
B B B

oxp (o= 3 000~ ) - 00

T <003 063>

=1

with A(s) = Cy(s + 1)™¥2and 0 < C, < .

Proof: By an argument similar to that which we used in the proof of Lemma 2.1,
we have:

1 3/2
u(8)v(8"))> = (ﬂ) 00" +07)g(6").

Consequently, each one of the n terms occurring in the product [ [, <v(03)v(05,_,)>
contributes a d-function. These J-functions lead to » independent linear relations
between 0y, 0,, . . ., 05,41; 0, = 0,,,, being always one of these relations, a fact which
expresses the lattice translation invariance of the model. We can therefore keep, in
addition to 6;, n independent integration variables {0;,...,0;} chosen amongst
{0,,...,0,,}, and perform the integrations over the n remaining variables with the help
of the é-functions. Once this is done, the left-hand side of the expression to be majorized
in our lemma takes the form

f d0, *(0,) y(8,) exp (iw(0,) (10 — 11 + 0)

.jdﬂ,l...jdejnexp(—i( > 0,000+ > Blﬂjkak))
k=1

k,1=1

'f(ols 9.1'1’ ai .,Bj,,)

where

i) o, oy, 0y are linear combinations of the variables s; =¢; — ¢;_;;

ii) the quadratic form Q = >y ,_; 0, 0, 0y, is obtained from >2*, w(6,)s,, where the
n — 1 dependent variables {0; |/=n+1,...,2n— 1} are expressed as linear func-
tions of the n integration variables {0 jlll =1,2,...,n} and 0, is set equal to 0. Thus
Q is positive;

iit) f(0,,0;,,...,0; ) is a product of n functions g(-), which we can thus write as:

1 3n/2 "
(5;) Z gml...gmnexp(i[l;Bj,a,+91a])

miy,...,mp

where the «,, « are linear combinations of the m,’s.
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We have thus that the expression to be majorized is equal to
l 3n/2
(E) | d6,0* 6 w(®)exp X0t = 1, + )

S B Emy | 40y, [ d0;, exp(=i[Q + LIO),- - 6,)),
B B

My, ....,mp

this expression being, in turn, majorized by (see in particular Sublemma 2.5 above)

1 3n/2
(E) | glif CE"(Det Q)~%/2.

Since, moreover, Q > T with T= >, 67 s; we have by Sublemma 2.4 above that our
expression is majorized by:

1 3n/2 n
(Z—n) lglf €3 TT 573

On the other hand, our expression is trivially majorized by:

1 gll1(2m)>2.

The conjunction of these two majorizations produces the desired result Clearly C, is
independent of

{020...,01} and {t,...,5,.}. q.e.d.
Proof of Lemma 2.2:

M-7Z3

lim |<(¢,(Uf‘)‘,2"’w)>*‘|=az"’ [dts... | dti[ dOspes .. f 8y @* (@20 ) V(01)

0t Sty <t B

exp( [w(ez,,ﬂ)rz" S co(f?k)(tk—-tk_l)—w(ﬂl)tl])

{03041 — 020) V(020 — O20y) ... (0, — 0,)) |

Since the measure u is Gaussian, {v(-)...v(-)> is the sum of (2n — 1)!! terms of the form

H AL

where {0;,,...,01} is a permutation of the variables {(0,,,1 — 021)s(@2n — O2n_1)s--
(6, — 6,)}. We can therefore use our Sublemma 2.6 to majorize the above expression by:

@n—1> [ dty,... | dty TT Wsy).

I=1
051, S+ StapSt
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The lemma then follows immediately from the fact that there exists a finite constant
C > 0 such that:

t t «©
j dss™ h(s) < t™ f dsh(s) <t™ [ dsh(s)=Ct" qed.
0 0 0

We now prove Lemma 2.3 in two steps. We first show that for n fixed the desired
result is already obtained from one amongst the (2n — 1)!! permutations which enter
in the computation of (v(0,,,; — 05,)...v(6, — 0,)>. The second step will then consist
of proving that the other permutations actually do not contribute in the limit considered.

Sublemma 2.7 :

lim (i) [ diy... [ dty [ Bz fdelcp (02010) ¥(0,)

t—o00
Alt=1 ot ... €145t B

-exp( [co(ez,.ﬂ)rz,. z w(ek)(t;—rk ) — (6) r])

' lli 002141 — 02) (02, — 051> = (; 2 f do o*(6) (I'() + ,A(e))" ¢(9)_

B

Proof: From the by now well-known identity

0O141 = 020) 0021 — 0311)> = (02141 — 021-1) W (021, 02141)
we conclude that the expression to be computed is equal to

tan

f do *(O) Y (9) f dtyy [ dtas St = tins)

0

tan-1 Lap—-2

. f dty_s f dtyafoltanoz — tand) -
o 0

[ dny [ dty St = 1) = (0, FO() W)
0 0 '

with

fils)y=—A2 [ 8’ exp (~i[w(@) — w(®)]5) w0, 0).
Since F™ (¢) verifies

Fo(t) = j du [ dv fiu—v) F§~()
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the sublemma is proved by recursion, starting with

t11m 1 F(t) = 11m du f av folu—v) = f Jfo(s)ds = —A%(I'(0) + iA(6)).

We should remark that the permutation considered in this sublemma corresponds
exactly to the transition scheme which van Hove, on the basis of his diagonal singularity
condition (see our Lemma 2.1), singled out as giving the nth order contribution of his
perturbation expansion. This permutation is that for which the integrand of the multiple
time-integral is a function only of the successive time differences {(t, — f2n_1)>
(f2n—2 — tan—3)s-- - (T2 — 1)}

For the sake of brevity, we say that {(0;n+1 — 020), (020 — 020_y),..., (0, — 01)},
taken in that order, is the ‘trivial’ permutation of these 2n variables; any other permuta-
tion will be said to be ‘non-trivial’. By a slight refinement of the majorization worked
out for Lemma 2.2, we shall now prove that the contribution of every non-trivial
permutation vanishes in the limit ¢ — o with A2t = 1 fixed.

Sublemma 2.8: For each n in Z* there exists a finite constant C, > 0 such that for
every f and A in R, every ¢ and ¥ in #*(Z3) with |j¢|| = ||| = 1, and every non-trivial
permutation {0;,,05,_;,...,07} of the variables {(6,,_; — 03n),...,(62 — 6,)} with
0;eB,j=1,2,...,2n+1:

i [ dty... [ dty [ dOys.. | 8,0 @) V(O

UESSE RS S S B

-exp(i[“’(ez,.ﬂ)tz..— > w("k)(’k"’*—l)_ww‘)t‘])

k=2

H W(02) v(03,-1)> | < Cut V2(A2 1)

1=1

Proof: The quadratic form Q, which appears in Sublemma 2.6, reduces to
T'= >k, 0 s, for the trivial permutation; thus the majorization of Q by T is the best
possible if we want to consider simultaneously all the permutations {65,,...,0;}. We
can, nevertheless, improve on this if we exclude from our considerations the trivial
permutation, the contribution of which has been evaluated separately in Sublemma 2.7.
To this effect, we notice that for every non-trivial permutation {0,,0;,_;,...,01} it is
possible to choose the n variables {6, |/=1,2,...,n} amongst the (2n — 1) variables
{0k =2,...,2n} in such a manner that at least one of the » — 1 remaining variables,

say ;  ,is elther equal to 8, , oris of the form 6, = 6; —6,, — 6,. We can thus write

Q>0
where Q' is equal to either

B}I(SII + Sjn+1) + 9122 Sj,+0 0+ 02 2Sin
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or

0}1(5‘]1 -+ S.in+l) + 0.%2(512 o+ Sjn+1) - 29.}'2 BJI Sint1 ¥ 0.?3 $j, +:00+ Bjnsjn'
In both cases
Det Q’ ? (Sjl -+ S.J'n+l)SJ’2" . Sj,,.

For the non-trivial permutations we can therefore improve Sublemma 2.6 to

[ @02nss .. [ d0,0*Orna) W(6))

-exp(i[w(ézm)tz"— > w(ek)(’k"k-l)"“’(el)tl])

k=2

T <o(0) o(030_0)>

=1

< sy, + Sj) T1 A(sy).
=2

The sublemma then follows upon noticing that, in the successive time integrations,
there will now be one integration of the form

f duh(u + s) < f duh(u) < cs™/?
0 s

accounting for the additional £~1/2 factor which occurs for every non-trivial permutation.

Proof of Lemma 2.3: We have already seen that

lim (o, (U )M

M- 73

=i [ di. [ dty [ dyuss .. [ 01 0*(@r01) ¥())

Ostls DR ﬁtz.lﬂt

oxp (i @) 0 z 0D s~ -2) ~ 001

“{0(02n41 — O20) (020 — O20_y) ... (0, — 6,)).

Since p is a Gaussian measure, <v(*)...v(+))> is the sum of (2n — 1)!! terms of the form

IT <o(030) 203>

=1

where {0;,,03,_1,...,01} is a permutation of the 2n variables {(02,+1 — O2n), - .., (62 — 01)}.
Sublemma 2.8 shows that, in the limit # — o with 12¢ = t fixed, the contribution of the
(2n — 1)!! — 1 non-trivial permutations vanishes; hence only the trivial permutation
contributes to this limit, a contribution which is computed in Sublemma 2.7. q.e.d.
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Proof of Proposition 2: From Lemma 1.1 we know that

lim lim (o, US UMY = lim lim 5 (g, (UMD Y)HM.
tooo M-Z3 tsec M-Z3 50
Alr=t At=1t

We have seen in Lemma 1.2 that {(¢,(U})™ )>™ vanishes if # is odd, so that the
sum carries effectively only over the even n’s. We have further seen in Proposition 1
that the sum and the limit as M — Z3 can be interchanged. Since (2rn — 1)!!/n! behaves
asymptotically for large » as 2", Lemma 2.2 shows that the sum and the limit ¢ — o
with A*t=1 fixed can be interchanged; provided that |t| <7, < (2C)™'. Finally
Lemma 2.3 gives the contribution of each summand as the general term of a convergent
series summing up to (¢, S;¥). q.e.d.

Our analysis can actually be used to sharpen the content of Proposition 2 as
follows: There exists two constants t, > 0 and C > 0 such that for 0 < A2t < 1,

Mlirgs o, UL UF Y™ — (p,exp (—[I" +id] A1) ) | < AC.

Indeed: i) we have seen in Sublemma 2.8 that the contribution of the non-trivial
permutations is of order 712 ~ 1 for fixed t; ii) by slightly refining Sublemma 2.7, it
can easily be seen that the rate of convergence of the contribution to the semi-group
due to the trivial permutation is also of order ¢=1/? ~ A.

3. Extensive One-Particle Observables

We presented in Section 2 a detailed mathematical study of the matrix elements
of the evolution operator in the one-particle space as the simplest illustration of
van Hove’s phenomenon. One has, of course, to conduct a similar analysis for the time
evolution of particle observables. We shall sketch it here for one class of observables
of particular physical interest, namely the one-particle observables which are invariant
under lattice translations. These observables are of the form:

A= [ d0.4(0)a*(8) a(6).

We first define their time evolution, in the interaction picture, for cut-off interactions by
CAEIM =UP UX AUM UM
with

A, = 3 4PW
n=0
and

AP =iy [dta.. | du[VIL., [V, 4N

0<1;< -+ - Stast

We prove along the same lines as those of Section 1 that the infinite-volume limit
M — 73 of {(¢p, AY, Y)>™ exists for all ¢ and ¥ in .
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The reader will convince himself that a straightforward extension of the rules

established in Section 2 to the commutators expansion of 4%, given above leads, term
by term, to

lim lim ((p, A9 = [ d0o*(6) ALO)¥(®)
with
AO=> (2O

n=0

where #” is the nth iterate of the operator . defined by
(£A)(O)=2r f de’ 5(a(6") — w(8)) W(0',0) (A(0") — A(6)).

The rules which lead to this result are:

i) The nth order in the perturbation expansion vanishes for » odd; the multiple-
commutator occurring at the (2z)th order is a sum of 22" terms.

ii) Each of these 22" terms is the sum of (2n — 1)!! contributions of the possible
pairings. All these contributions, except one, vanish in the 4?7 limit.

iii) At each even order in the perturbation expansion, all the pairings giving a non-
vanishing contribution in the A2¢ limit are identified as those pairings which
correspond to the well-ordered sequence of time differences: {(f,, — f2n_1),
(tn—z — trn_3),---,(t, — t;)} (see the remark following Sublemma 2.7).

iv) At order 2n in the perturbation expansion, the non-vanishing contributions, in
the A%t limit, sum up to &".

Therefore the observables which are functions of the momentum operator evolve, in
the A*¢ limit, according to a semi-group law whose generator is #. Equivalently, this
is to say that the time evolution, in the A?¢ limit, of the one-particle, lattice-translation

invariant observables, is described by the one-particle momentum distribution function
p.:B — R*, defined by

(pe; 4> = [ d8 p(6) A(6) = (p; A.>

and satisfying the Pauli-type master equation

d ;g*
dT Pr= P-

where
(£*p)(6) = [ dB(K (9,0 p(0) ~ K(©',6) p(0)

with the symmetric kernel
K(0,0) =21 6(w(6') — (8)) W(0',0)

in conformity with van Hove’s prediction.
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4. Discussion of the Results

The main aim of our paper was to show, in detail (see in particular Section 2),
how van Hove’s perturbation scheme for the computation of the time evolution in the
long time, weak coupling limit can be mathematically controlled for a specific model
of infinite extension, whose properties mimic those of a generic many-body system.
In particular we proved that van Hove’s prescription to retain, at each order, only the
most divergent diagrams, which he identifies correctly, can be given a precise mathe-
matical justification. We also gave (for each order in the perturbation expansion) an
estimate of the rate at which the contribution of the other diagrams vanishes as ¢
becomes asymptotically large.

We should emphasize here that the non-vanishing of the cumulative effects (as
t — ) of the weak interaction is linked in an essential manner to the extensive proper-
ties (i.e. lattice-translation invariance Z3) of the model. One can indeed verify that
neither these cumulative effects, nor the van Hove diagonal singularity occur unless
not only the lattice itself is infinite, but also the impurities are randomly distributed
with a finite density over the whole lattice (M — Z3).

Specifically for finite M (or even if the limits occurring in Proposition 2 are taken
in the reverse order) one obtains

(lim ) lim (o, U UMM = (¢, ¥).
M- Z3] t—owo
izt=t

This actually is easily seen from an argument, familiar in scattering theory, where the
following relation is exploited:

/A2

WS U¥ - Dol< [ V¥ U2 gllds.
0

Since here V'™ (with M finite) is a finite-rank operator, the integral in the right-hand
side is convergent as 4 — 0 for a dense set of ¢’s in # [3]. Consequently U%, U} con-
verges strongly to 7 in the van Hove limit (¢t — «, T = A2¢ fixed), so that no dissipative
effect could occur in this case. This is to be brought up together with the fact that, for
finite M, V'™ does not exhibit any ‘diagonal singularity’, as can be checked by going
through the proof of Lemma 2.1 for this case. The above remark is meant to sustain
van Hove’s emphasis on the fact that the structural difference between scattering
theory and the theory of dissipative phenomena in statistical mechanics has for its
origin a difference in the extensive properties of the interaction.

As for the justification of the #-representation to express these special properties
of the interaction, we cannot refrain from quoting van Hove verbatim: ‘The special
significance of the f-representation for the many-particle systems of quantum statistics
must be attributed to a fact, easily verified on all actual examples, to know: the simple
relation of this representation to the physical quantities of greatest interest in irre-
versible processes.” Specifically the O-representation is uniquely determined as the
spectral representation of the one-particle, lattice-translation invariant observables.
H, then appears in the theory, not as a result of an arbitrary separation of H™ into
Hy+ AV™, but rather as the diagonal part of H™ in this representation. In this sense,
a perturbative scheme for this problem appears in a natural manner.
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Similarly, the use of the interaction picture (see in particular Section 3) is justified
by the fact that one is interested in the time evolution of the expectation values for a
particular class of observables, in a particular class of states, which are operationally
defined in such a manner that they turn out to be invariant under the free evolution.

We might also remark that the infinite-volume limit having been taken, once and
for all, at an early stage of our analysis, we did not have to worry over the fact that
certain quantities vary slowly (or are smooth enough) over intervals large against the
separation of the energy levels of the unperturbed Hamiltonian: in the limit in which
our analysis is conducted H, has a truly continuous spectrum.

Finally, we should comment on the occurrence of §(w(6") — w(f)) in our results,
and in particular in the master equation obtained in Section 3. It implies that each
energy shell evolves independently of the others. In addition, the positivity of the
covariance function g(f) implies that the master equation, when restricted to an
energy shell, admits a unique stationary solution p(6) = p(«w(6)) which is a universal
Attractor. Physically, this means that, in the proper time-scale in which the time
evolution is governed by this master equation, p,(f) approaches the microcanonical
distribution. The occurrence of the microcanonical, rather than the canonical, distribu-
tion is of course to be understood from the fact that in our model the impurities are
taken to be recoilless, so that, in the limits considered, the unperturbed energy is
conserved.

If instead an appropriate quantum Bose bath, at the natural temperature f, were

to be introduced the canonical distribution would indeed result. Specifically, one
could take [4]

Hy = [ d0ax(8)a*(0) a(B) + [ d6 £(8) b*(6) b(6)
with

w(0) =02, &0)=(m>+ 622 —c
and

V= j f d0 de'(v(8, 0) a*(8) b(0 — 6") a(8’) + h.c.)
with

|0(6, 0')| = |0(6", 6)],

where the a* (resp. b*) are the creation and annihilation operators for a Fermi (resp.
Bose) field. In this model the Gaussian average is replaced by the thermal average
over the system formed by the b-particles, the latter being considered as the system of
interest. One can then show [4] by a slight extension of Davies’ analysis [5] that the
kernel of the master equation becomes, for this model,

K(0,0) =2r|v(8, 6")|*(exp (Blw(0) — w(0)] — 1))™*
*[0((0") — @(0) + &(6" — 0)) — 6((8") — () — (68’ — 0))]
which satisfies the detailed balancing condition

K (0, 0") exp (—pox(6")) = K(0", 0) exp (—peo(6)).
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This relation implies that the canonical rather than the microcanonical distribution is
the fixed point of the master equation, thus confirming our remark on the cause of the
approach to the microcanonical distribution in our model.

From the point of view of the techniques used, we might point out that our analysis
could have been cast in the framework of generalized master equations. In this language,
Sections 1 and 2 show rigorously that the memory effects vanish in the A*# limit and
that the Born approximation becomes exact in this limit. There are two differences
with the recent works [5, 6] of Davies. First, in our model the spectrum of H, is con-
tinuous, whereas Davies was concerned with the derivation of Pauli equations for a
discrete collection of atomic (or spin) energy levels. Second, and more importantly, the
relaxation of systems coupled with thermal baths is linked to a sufficiently fast decrease
in time of the correlation functions relative to the bath. These decay properties
originate in the nature of the energy spectrum &(6) of the bath. On the other hand, our
system being isolated, the needed decay properties are drawn here from the dispersion
law w(0) of the particles of interest themselves. In both cases, more work is needed to
accommodate a phonon-type dispersion law behaving like ¢|0| for small 8’s.
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