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Is There a Euclidean Field Theory for Fermions?

by Jiirg Frohlich?!) and Konrad Osterwalder?)
Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(1. X. 74)

Abstract. The possibilities of developing a Euclidean field theory including Fermions are system-
atically studied. Without doubling the number of degrees of freedom free Euclidean Fermi fields are
constructed in close analogy to the corresponding construction for bosons. Contact fields are intro-
duced such that the Schwinger functions in points of coinciding arguments have a prescribed, regular
behaviour. The Grassmann algebra, the von Neumann algebra and the renormalized, Euclidean
currents generated by Euclidean Fermi fields are investigated. A gage space for Euclidean Fermi
fields is constructed and different versions of the Markov property are proven. The relevance of these
Euclidean field structures for the construction of local, relativistic, interacting field models involving
Fermions is discussed.

I. Introduction

The purpose of this paper is to study systematically the possibilities to develop a
Euclidean field theory for Fermions. The motivation for such an attempt of course
comes from the great success of the Euclidean field theory approach for bosons in the
construction of two- and three-dimensional relativistic Bose field theory models. For
an account of this success and reference we refer the reader to the 1973 Erice lectures on
Constructive Quantum Field Theory [E 1].

It has been shown in Refs. [OS 1, 2, 3] that a Euclidean formulation of a relativistic
quantum field theory is always possible in terms of Schwinger functions, and that the
relativistic theory can be reconstructed, if the Schwinger functions satisfy a certain set
of conditions. Ingeneral there is no a priorireason toexpect that the Schwinger functions
can be defined as the #n-point functions of some Euclidean field operators: however
this has been shown to be the case for models involving bosons only [Sy 1], [Ne 1],
and this additional structure is very useful for the construction of two- and three-
dimensional Bose quantum field theory models. In [OS 4] a set of free Euclidean Fermi
fields was constructed, whose #n-point functions are the Schwinger functions of the
free fermion theory and it was shown how approximate Schwinger functions for non-
trivial models could be expressed in terms of these free Euclidean fields. However,
other than in the bose case, this did not lead immediately to the notion of an interact-
ing Euclidean Fermi field, in other words the notion of a Euclidean Fermi field does not
seem to be stable under ‘turning on the interaction’. The main purpose of this paper
is to investigate several other possibilities of Euclidean structures which might be
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stable under ‘turning on the interaction’ —a property we consider important for a struc-
ture to be a useful tool for the construction of a model with interaction in terms of free
field theory quantities.

In Chapters II and III we construct new Euclidean Fermi fields in close analogy
to the corresponding construction in the Bose case. We use the bispinor formalism of
van der Waerden [v.W 1, LL 1] to decompose a Dirac spinor  into a two-component
spinor # and a two-component antispinor v, which from a group theoretical point of
view are the fundamental objects. We consider the spinor # as the fundamental object
while v is derived from # by the Dirac equation. Following the Bose case analogy, we
then construct a Euclidean Fermi field U, corresponding to the relativistic field «,
whereas the Euclidean counterpart of v can be expressed in terms of U. The field U
turns out to be a bounded operator valued function on the Sobolev space #_; ® #_,
and therefore it makes sense to talk about sharp time fields, see also [Ne 1]. This some-
what surprising regularity property of the Euclidean fields is achieved by a suitable
extension of the free Schwinger functions to points of coinciding arguments — actually
at the price of making some of them more singular then necessary. Before we can intro-
duce interactions we must find a way to eliminate such additional singularities. In
Chapter IV we show how to do that by introducing contact fields. If we set these contact
fields equal to 0 then it is impossible to define a formal Euclidean action which at the
same time determines a renormalizable theory and also respects the physical positivity
condition (or can be cutoff in such a way that physical positivity is still satisfied).
However renormalizability and physical positivity are considered to be basic through-
out this article and should always be satisfied. Introducing contact fields into the form-
alism obviously means again doubling of the number of degrees of freedom. We con-
clude therefore that doubling of the number of degrees of freedom cannot be avoided if
we want to construct interacting field models, although it is not necessary as long as we
are interested in the free field theory only. In Chapter V we study various Euclidean
field structures and discuss their stability and usefulness in the construction of local,
relativistic interacting field models. In Section V.1 we construct a finite regular gage
space in the sense of Segal [Se 1] from Euclidean Fermi fields and in Section V.2 we
study the Grassmann algebra generated by the Euclidean Fermi fields and prove a new
positivity property. For both cases it is easy to define a local structure and to prove a
Markov property. In Section V.3 finally we briefly discuss the Euclidean current
algebra and the possibility of applying commutative functional integration. We prove
that the Euclidean Green’s functions of the (ultraviolet cutoff or renormalized) scalar
currents associated with a free, spin 4 Dirac field are nof the moments of a (positive)
probability measure. This shows that there is no self adjoint Euclidean scalar current!
The results of all three sections do not look very encouraging : none of the structures in
question seems to yield a natural framework for the construction of interacting field
models.

II. The Bispinor Formalism

In the bispinor formalism [v.W 1] [LL 1] the Dirac equation for a free relativistic
spin % field of mass m takes the form

pﬁb v = mu® (2.1)

Pio ¥ = muj
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where
pli ﬁlz } 5 3
. . =(P°00—P0’)=P000‘Zpko'k=1b00'o+zjbk0k
pri p2t k=1 k=1
and
pir Piz . d : :
= (p%0o + po), P, = z'é—u, o, the Pauli matrices.
P31 P32 ~

(u*,v,) is called a Dirac bispinor. We call (4%, v5) a Majorana bispinor if it satisfies the
Majorana condition

p— 2.3)

where v; = (v)*, 4, = €54 and e,; = ;3 = €*f = €* = j0,. For a Majorana bispinor
the Dirac equation can be written as

w = —m1 M p. b,
= m L p¥ e yu® = m priy, (2.4)

where u** = (u%)*
For m = 0 we may consider only one spinor field, #* say, satisfying the neutrino
equation [We 1]

Poa* =0. (2.5)

On the Fock space of the fields #* and v, there is a unitary representation U(4,4) of
SL(2,C) (s) R*, determined by

U(4, a) u*(x) U(4,a)~* = (A2 uP(Ax + a)
U(d,a) vp(%) U(A4, @)™ = (A7) 0a(Ax + a),

where

Al AL

— 2 - Y 02 _—
42 42 =AeSL2,C),4; =ep,A}e’*and A = A(4)

is determined by >, (4x)* 0, = A(3, x*0,) A*.

For a more complete account of the bispinor formalism the reader may consult
e.g. Ref. [LL 1], the convention of which we adopt here.

In spite of the symmetric role #* and v; play in the Dirac equations (2.1) and
(2.2) we will treat them differently in our construction of Euclidean fields. We con-
sider #* as the fundamental field. It is the solution of the initial value problem

(O + m?u* =0,
u*(0, x) = u®%(x)

(Pha 47) (0, %) = mug(%).
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The antispinor field vz is then obtained from #* by the Dirac equation (2.2). Notice that
in this way we obtain a situation similar to the Bose case: the spinor %* plays the role
of the Bose field ¢ while vz replaces the conjugate momentum 7. Following this analogy,
we will construct a Euclidean field U® corresponding to the relativistic field %,, while
the Euclidean counterpart of v, is again a derived quantity.

The vacuum expectation value of #**(x)##(y) — i.e. the free two point Wightman
distribution for #**, ## — is given by

B (x, ) = I (x, y) = (u*3(x) ub(y)>
3

=i poiem s [ Sexpl-ilu(h) (2 %) - 5= ) 2.6

w(

where w(p) = (§? + m?)V/2,
The Dirac equation (2.2) and the Majorana condition (2.3) yield

W (x,y) = u*(x) ub(y)>

= m~1 % €55 (u*d(x) ub(y)>

. . a3 - O
= 2 eaptiem) | 5?% exp{=ilw(B) (** — %) — B )]}
_ (23 j Z (% exp{—ilw(B) (** — %) — BGE - )]} @)

as the two point function of the spinor field #* of a Majorana bispinor (#?*,v,). Therefore

Wb (x,5) = Cw*é(x) w*(y))

= W (y) u(x))
acp Ten () (10 O\ _ Afw
- anen)> | gL explitl) (7 - 3% - 56 -3
=~ (2m)=? f TP explili(d) (0 5% — G ~3)) 28)
2w(p)
To get the Wightman distributions for a Dirac bispinor (#*v;) we write it as
= i
1

by (V15 + 1025) (2.9)

where (u},v,;5) and (u3,v,;) are Majorana bispinors determined by

Il

- 3

m

1 .
u¢= - ua__eaﬁ '3%*7 ,
2 \/fz( m P )

1 1 :
us (u" +—€®pis u*") ;
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and equation (2.3). It follows that
W (x,y) = (u*¥(x) P (y)) = W,
() wP(3)) = Cu*é(x) w*b(y)> = 0. (2.10)
For neutrinos we have instead of (2.10)
ap
181

Wwit(r,y) = e | - exp(—illBI(° - ) = $E - 3)) (211)

The n + m point Wightman functions will be denoted by

W Enbre () = W) () wB () B (V)

and in the case of free fields they are given by sums of products of two point functions.
Now we easily obtain the Schwinger functions G*---®#1---fm corresponding to the
Wightman distributions IB%:--#f1--m by first computing the Wightman functions
corresponding to these distributions and then restricting them to Euclidean points of
non-coinciding arguments, see e.g. [0S 1].
In particular, from (2.6-11) we get for x # y

Git(x,5) = G (x,y) = m™* PS(x —y) = —m~! Pl ¢ ,sG(x.5),
where
S%(x,y) = 8 S(x — y),
S (x,y) = —€¥S(x — y) = (M P e0) (™' PP €po) G4 (1,)
&P (x,9) = PISy(x — )
where
S(x —3) = (2m)~* j Pfipmz

elp,x—y)

is the kernel of the operator (—4 + m?)~1, S, is the same as S but with m set equal to
zero, and

”Paﬂ“ ="'¢’0 Op _P'O',

T zi ?

= — 0 F— .

* 0x° ° L 9x* ‘

We write p2 for p3 + p2, and (p, %) is the Euclidean inner product between the two four
vectors p and x.

III. Euclidean Fermi Fields

In this chapter we construct Euclidean Fermi fields the #-point functions of which
will be the Schwinger functions &%t---##1---fm_The present construction differs in two
ways from the approach in Ref. [OS 4]. First we do not have to double the number of
degrees of freedom anymore (at least for m # 0), because we ‘Euclideanize’ the field »*
only but not v4. Second our Euclidean fields are continuous operator valued distributions
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on the Sobolev space # _; — not on #_,,, as in [0S 4]. It is this additional regularity
that allows us to define sharp time fields and to prove a Markov property (Chapter V).

II1.1. Majorana fields

We want to construct a Euclidean covariant free spinor field U* such that for
X#Y

(U(x) UP(3)) = Se(x,y) = 2 S(x — ). (3.1)
Then we define

Ud(x) = —m~1 Pre s Ub(x) (3.2)
so that

(U(x) UP(y)) = GH(x.5)

(Ui(x) UA(y)> = S (x.9).

The Schwinger functions G%--#f1--fm are then of course given by

Ubs(z) ... Usn() UPH(yy) ... UPn(y,)>.

The two point function (U*(x) U#(y) > given by (3.1) is not sufficient to determine the
Fock space of the field U® and the field itself. We supplement (3.1) by the following two
point function

(U () UP(y)> = CUMy) U (x)> = 8£S(x — y) (3-3)
which is picked somewhat at random, and
CUF(%) Ut (9)) = —€ap S(x — ). (3.4)

Notice that (3.4) is consistent with (3.1).
Assuming that (3.1) and (3.3/4) hold in the sense of distributions in &’(R*), we
now may easily construct the Fock space & of the field U*. We set (still formally)

A*(x) = H(U%(x) + « Ug(x))

A¥(x) = H(UF(x) + eap U (). (3.5)
Then by (3.1) and (3.3/4) we have

CAZ(x) AF(y)> = <A%(x) AP(y)> = {A¥(x) A%(3)> =0

(A%(x) A} (3)> = B8S(x — 3). (3.6)
Equations (3.6) show that A% is just an annihilation operator. Let |

H_1(RE) ={f|(=4 +m*)~2f e L,(R*)}
be the Sobolev space of index —1 and let the one particle Hilbert space &V be

eV =#_(RY) & #_1(RY).
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A vector in £ will be denoted by (i) ,8 h e #_,(R*. Then the Euclidean Fermi Fock

space & is defined as usual to be the Hilbert space completion of the alternating tensor
algebra over W

E=C D ED @ (6D ®,ED) @ (8D ® EW QEM) @ ...
The vacuum is denoted by . For f* € s#_,(R*) we now define

szon( ) (2o 0. (5)- () (2o mE). 09

and extending A%(f* by linearity and continuity to all of & we get a continuous map
A¥() from #_,(R* @ 2 _,(R* into the bounded operators on &. Denoting (£2, - 2) by
{-> we easily verify that A% and 47 satisfy (3.6). Now we obtain U* by inverting (3.5)

U*(-) = A%(-) — P A3(-). (3.9

U%(-) is again a continuous linear map from #_,(R*) @ # _,(R*) into the bounded
operators on &, satisfying (3.1) and (3.3/4). Formula (3.8) is of course simply the
decomposition of U®into a creation and an annihilation part.

A more familiar way of defining U%(-) would be through its momentum space
expansion which turns out to be ‘

a*p .
————j(p) [T P a*(p) + ¢! "V € a,(p)] (3.9)
A /PZ L mz p Y
where [[v3(p)]| = [(1/|2]) (Pooo + i$0)1*? € SU(2) and a,, a*# = (ag)* are momentum
space annihilation and creation operators with a proper transformation law under the
Euclidean group.

Finally we define the representation U(u,,%,,a), %, 4, € SU(2), a € R* of 150, =
SU@2) x SU(2) G R*on & by

U(uy, uy,a) 2= (3.10)
[U(“ls“z: a) A:(X) U’(ultub a)_l = “If A;(R(MI’MZ) %+ d) (311)

0 = n)? |

R(ul,uz) eSO,, is defined by R(u#y,u,)x =x" where (—ixgoo+ ¥ 0) = uy(—t%900 +
%6)ul, ul being the transpose of #,. Notice that (3.10/11) defines U completely because
£21is cyclic with respect to the polynomial ring generated by A . Unitarity of U follows
from (3.10/11) and (3.7). Using e#,e™! = u,, u, € SU(2), we find for U®

U(uy, 1y, a) U*(x) Uy, u5,a)~" = (u7")3 U (%" + a) (3.12)
and for U%(x) = —m™! Plte , Ud(x):
Uy, %5, @) U%(x) U(uy, 4y, a) = —m~t P2 e,5(u7") UP (¥ + a)
= (uz")im™' P €,s U%(x’ + a)
= ;08 +a) (3.13)

where we have used P# = (u7!)? P? ¢ (uz)ﬁ. (772)‘Er = €55ud; €%
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The following theorem summarizes the results of this section.

Theorem 3.1: There exists a free, Euclidean covariant Fermi field U® such that
1) {U%x),U%(y)} =0, {U%x);U}(y)}=283S(x—y).
2) U< V23 (fo, (=4 +m) 72 ), = 2|f|l-y, for f, € #_1(RY).

3) The Schwinger functions &4i-+-%f1--fm(x, . x v, ...y,) of a Majorana bispinor
are equal to

(Oosy) ... Uin ) UB(yy) ... UBn(y,)),
where U#(x) = —m=1 P ¢, U"(x).

I111.2. Dirac fields

The construction of a Euclidean Dirac field is straightforward if we write the
relativistic spinors as sums of two Majorana spinors as in (2.9) and use the results of
Section III.1. We construct two Euclidean Majorana spinors U$ and U$% and their Fock
space &, such that

{Us(x), U2(5)} = {Us(), Uzp(5)} = 0

CUr(x) U7 (9)> = <Uf(») U(y)> = 0.
Then we define the Euclidean covariant fields U and W by

U%(x) = 3(Ui(%) +1U3(x))

We(x) = }(Ui(x) — iU3(x)). (3.14)
Obviously

CUx) Ub(y)y = <Wex) Wi(y)> =0

We(x) Ub(y)> = € S(x — ).
The following theorem is now an immediate consequence of Theorem 3.1.

Theorem 3.2: There exist free Euclidean covariant Fermi fields U* and W* such
that

) {U), UP(y)} = {U%(x), Wi(y)} = {W?(x), Wo(y)} = 0
{U%(%), Wt (y)} =0
{U(x), Uy ()} = {W*(x), W} (y)} = 283 S(x — ).

2)  IU*fa)ll < 20fll-1, W (I < 201 fll-1-

3) The Schwinger functions &} -%b1-fm(x, ... x,9;...y,) of a Dirac bispinor are
equal to

Oérfry) ... On() Uns(yy) ... UPn(ym))
where U#(x) = —m~1 P% ¢, W(x).
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I11.3. Neutrino fields

We construct Euclidean neutrino fields U* and W* by the methods of the previous
section, We only have to replace S by S, #_, by #°, = {f||k|""f(k) € L,(R*)} and we
define UA( %) to be —P e, W (x).

There is however the new feature that the Euclidean neutrino field has twice as
many degrees of freedom as the relativistic neutrino field (which involved only half
as many degrees of freedom as the corresponding massive Dirac field). This cannot
be avoided by just modifying the construction of the Euclidean neutrino field.

IV. The Points of Coinciding Arguments

The Bargmann-Hall-Wightman construction of the analytic continuation of the
Wightman functions (z,,...2,) leads to a domain of analyticity which does nof
contain Euclidean points of coinciding arguments, i.e. points of the form (z,,...2,),
z; = (122,%;), #% real and z; = z, for some ¢ # 7. This implies that the Schwinger functions
of a Wightman theory are not defined if any two of its arguments coincide. However if
we want the Schwinger functions S(x,,...x,) to be the #-point functions of Euclidean
fields, then we must give them some meaning in the points of coinciding arguments as
well. This can be achieved by defining distributions &, € &'(R*") such that

S.(f) =J. (Bl o s ) Py e o« 0 ™ 20

if fe #(R*) and f together with all its derivatives vanishes in points of coinciding
arguments, i.e. for x; = x,, some ¢ # j. We call the distribution &, an ‘extension of the
Schwinger function &,(x,,...%,) to points of coinciding arguments’. Such extensions
always exist, see e.g. [0S 1].

The indeterminacy of the Schwinger functions in points of coinciding arguments
was apparent in Chapter III already. We started from the relation (3.1)

S (x.7) = e S(x —y)

which was true for x #y. We then extended &% to points where x =y by requiring
that (3.1) should hold everywhere, i.e. in the sense of distributions in &’(R®). Thisis a
very natural extension, because it leads to the best possible regularity properties for the
field U*: It is with this extension only that U* can be made # _, continuous.

The extension given by (3.1) and the definition (3.2) of % lead automatically to an
extension of &% and of &%, In particular

S (x,y) = (Ti(x) Uk (y)>
= (M~ P €,5) (m~' P8 ¢,5) (U (%) U°(3)>

=—m 2 Ple,; PP, e S(x — y)

= e&‘*(:%) S(x ~3)

= —e#[S(x — y) — m~28%x — y)]. (4.1)

This extension of G4 is not the most regular one. The additional -function in (4.1)
implies that the fields U?® are not # _, continuous — a fact which of course already
follows from definition (3.2). '
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1V .1. Contact fields

As long as we consider the free theory only, we are of course free to choose as an
extension of the Schwinger functions whichever suits best our purposes. This is no
longer true if we want to write down approximate Schwinger functions for interacting
models in terms of free Euclidean fields. Indeed, the §-function in (4.1) would turn the
most innocent looking interactions into non-renormalizable theories, which at the
present stage of technology is not necessarily a very helpful feature. Fortunately
there is a very simple trick by which we can get rid of the unwanted 8-function and
thus come back to the most regular extension of &*, without losing the Euclidean
field formalism.

The trick is to introduce a confact field n*, which is a free Fermi field with the follow-
ing properties (Majorana case)

5@ PN = (nb(3) i) = 8584 (x — )
nf(2) P(y)> = —€8 8%(x — 3); (X)) 3 (9)> = €25 84(x — )
(¥, ()} = 28584(x — ), (4.2)

all other anticommutators, in particular those with U®and U7}, being zero. Also the two
point functions of an v field with a U® or U} should be zero.

The explicit construction of the fields n"" follows the lines of Section III.1; how-
ever, there are some important changes in signs. Again we introduce ‘annihilation and
creation operators’ B* and B} = (B%* by setting

Bé(x) = 3(n*(x) — € n3(x)). (4.3)
Then by (4.2)

(B}(x) B} (y)> = (Bi(x) B¥(y)> = (B} (x) B(y)> =0

(Bi(x) B}(y)> = 83 8%x — ).
The inversion of (4.3) is

7%(x) = B*(%) + €% B} (x). (4.4)

We skip the rest of the construction which is standard. We only mention that

B*:fy > Bi(f)) = [ B¥0)fi(x)d*x

is a continuous map from L,(R*) @ L,(R*) into the bounded operators on &, where
& is now the suitably enlarged Fock space of the fields U* and 7"
" If now we replace U* by the field

~ . ~

Ué(x) = Ub(x) — m~' n*(x)
= —m™ (PP ey, U?(x) + (%) (4.5)

X
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- then we find by (4.1/2)

Ui(x) Ub(y)> = (T%(x) TB(3)> + m~2 (i) P (9)>
=—85(x - y). (4.6)

Hence the two point function of U is again equal to G%(x,y) for x # y, and (4.6) defines
an extension of &% to points of coinciding arguments which is more regular than the
one defined by (4.1) : the unwanted 8-function has disappeared due to the contact field.

It has to be pointed out that the fields U% are by no means less singular than the
fields U“ Introducing contact fields will never improve the singularities of
(U*x) U%(y)> unless the contact fields destroy the positivity of the metric in the
Hilbert space &. However, as the expressions for the Schwmger functions never
involve the fields U*, it suffices for us to have no 8-function in (4.6).

The same trick also works in the case of a Dirac field. We write the Euclidean Dirac
spinors U*and W*aslinear combinations of two Euclidean Majorana spinors, see (3.14).
Hence, to eliminate the 3-functions from the two point functions of

~

U& = —m‘1 PB&E‘”W?
and
W = —m~1 pbé €5, U

we have to introduce two contact fields % and 5% (anticommuting, mixed two point
functions equal to zero, otherwise according to (4.2)). Then we define

78(x) = \/2( (%) + in3(x)),
£i(x) ——-\% (3(3) — ini(#) @)

Ué(x) = U(x) — m~* n()

We(x) = Wé(x) — m=" &i(x). (4.8)
It 1s straightforward to check that

CO%(x) UB(y)y = (W(x) Wh(y)> = 0

(U4(x) Wh(9)) = - S(x — ).

IV .2. Relation to earlier work

The Schwinger function corresponding to the Wightman distribution

Cu*a(%y) . .. w¥%n(x,) WP (D1) . . uPm(Y)D

can be written as

St = (Ua(xy) ... Din(,) UPs(yy) . .. UPm(y)>
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(Majorana case). In that sense we can say that the Euclidean field U? corresponds to
the relativistic field ## and U* corresponds to #*¢.

Writing the Dirac spinors as linear combinations of two independent Majorana
spinors, (2.8), (3.14) and (4.7), we find the following correspondence for Dirac spinors

Ur=2"Y2(US +1U3) 272 (u] + i) = u®

Wa= 2712 €p(UT — iU3) 27 2e p(uf — iu}) = v}

W, =212 ¢4(08 +il8) 2712 ¢45(uf? + iutb) = vz

U = 2-V2(U ¥ — iU%) o> 27 V2 (wfe — jukd) = y#é, (4.9)

To establish the connection with the work in Ref. [OS 4] we write the Dirac spinor
as

f=m1/? ( u) and y* = m'/2(u*, v¥),
v

where u = u*, v = v,. With y-matrices defined by

0 To - O _6'
.},0-_-(0_0 O), y=0(a_ O),

the Dirac equations (2.1/2) take the usual form (y*p, +m) =0, see [LL 1], §21.
According to (4.9) the Euclidean counterparts ¥! and ¥? of ¢ and ¢+ = ¢*4° are

wi_ mw( ‘f) and ¥? = m!/? (W) , (4.10)
174 U

where U= U, W =W, W = W,, U = U For the two point function we find

CPL)PRY)D = (m+ipoy° + Py)as S — )

in agreement with the Schwinger function for ¥'! and ¥2 constructed in [OS 4]. Notice
however that the other two point functions such as (¥1(x)¥1*(y)> are not the same here
and in [OS 4]. We now understand where the need for doubling the number of degrees
of freedom comes from: If we do not care for behaviour of the Schwinger functions at
points of coinciding arguments, then #zo additional degrees of freedom are necessary.
However, if we want the Schwinger functions to behave as nicely as possible if two
arguments coincide—and we must require that if we want to consider interactions - then
we have to introduce contact fields to eliminate unwanted 8-functions. This amounts to
a doubling of the number of degrees of freedom.

IV .3. Physical positivity

It was shown in [OS 1], chapter 6, that Schwinger functions of a Wightman quan-
tum field theory satisfy a certain positivity property (axiom (E2)), which we call here
‘physical positivity’, because it is an immediate consequence of the fact that the Hilbert
space of physical states has a positive metric. (Schwinger functions sometimes have
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other, additional positivity properties, see e.g. [Sy 1], [Ne 2] and Chapter V of this
paper.) Because physical positivity will be crucial in the next chapter when we intro-
duce the currents as building stones for theories with local interactions, we briefly
explain how it is formulated best in the context of our Euclidean field operators.

Let the field algebra S be the algebra generated by the operators

{U(f,), Waf), Walf), Oé(f2); f2 S(RY)}. (4.11)
Let 3, be the subalgebra of  generated by

-~

{UAf,), Wo(f9), W, (9, U%(f,); frie P(RY),
supp f < R3 [0, )}. (4.12)
On 5 we define an antiautomorphism by
NUf) =U(fos); HWalf9) = Walf)
HMN) = H(N) HM); H(H(M)) =M (4.13)

forall M, N € §, fe #(R%), f34(x°, %) f;—xo %) ; fHx0,%) = f2(—x°, ).
A linear funcational L(-) on J is said to have the physical positivity property, if

L($(M)M) >0, forall M € §,. (4.14)
The vacuum functional e.g. (- has this property, see [OS 4]
(H(M)M> >0, for all M e 3,.

Asin Ref. [OS 4], it is easy to see that there is a unitary involution § on & such that for
anyM e

HM) = 60M* 6. (4.15)
6 is defined by
692 =Q

0A43(x) 071 = A%A(x)
= —m~1[ P78 A%(—x°,%) + € BY(—2°,%)]
9B (x) 6~ = B3*(x)

= m\[—(p? + m?) € A}(—2°, %) + P B} (0, 3)]. (4.16)

We leave it to the reader to verify that (4.16) defines a unitary involution # on & and
that @ satisfies (4.15). Notice that from the definitions (4.10) and (4.13) we obtain

KL () = P2 ((°1)p), (4.17)
where f = (f1,. f“ or formally
L (#°, %)) = (P2 yo)q (—4°, 7).
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V. Euclidean Field Theory for Fermions?

In this chapter we study different possibilities of associating a Euclidean field
theory with the Schwinger functions of a free relativistic spin 4 field. Of particular
interest to us is the question of stability of a Euclidean field structure when we intro-
duce interactions. ,

As we have seen in the previous section, the construction of the Euclidean Fermi
fieldsis not unique, because we have some freedom in choosing those two point functions
which are not given by any Schwinger function. The freedom of extending the Schwinger
functions to points of coinciding arguments however should never be a source of non-
uniqueness; if we require that the conventional Euclidean power counting laws for
Feynman diagrams be preserved. If one tries to work with extensions of the Schwinger
functions which violate this rule (see e.g. [Wi1, 2]) then it is impossible to introduce an
interaction via a Euclidean action such that physical positivity is preserved.

In the following we work with the fields constructed in Chapters III and IV, but our
main conclusions will not depend on the special choice of Euclidean fields.

We study three different structures. In Section V.1 we introduce and discuss a
gage space (&, M, m) for Euclidean fermions and argue that we cannot pass to inter-
acting theories by simply changing the central normal state # on i, a procedure which
is suggested by the successful use of multiplicative functionals in the bose case?).

In Section V.2 we investigate properties of the Grassmann algebra generated by the
fields U and W, in particular we establish a Euclidean positivity property and a Markov
property.

In Section V.3 we look at Euclidean Fermi currents and briefly discuss the problem
of whether there exists commutative functional integration for these Euclidean currents.
Our conclusion is negative.

V.1. The gage space and conditional expectations

In this section we construct a finite regular gage space in the sense of Segal [Se 1, 2]
from the Euclidean Majorana fields of Section II1.1. Our construction of the gage space
can easily be extended to the case of the Euclidean Dirac fields of Section III.2. For
most of our statements we refrain from giving the proofs, because they are immediate
consequences of results in [Se 1], [Gr 1], [Ne 1, 2], [W11].

We define the gage field D by

D(f) = A*(f,) + AX(f*
where f, is the complex conjugate of f* (notice that 4%() is antilinear, while A}(-) is
linear), and we let N be the von Neumann algebra generated by {D(f)|fe §?V}. It
follows from Theorem 5 in [Gr 1], that (&, M, (D) is a strongly finite regular gage space,
where (- is the trace on R defined by

for A € M. As usual, for 1 < p < o, let the Banach spaces L?(9) be defined to be the
completion of 9 with respect to the norm ||4||, = (|4 |*>VPfor 1 <p < « and ||4|, =
lA|| (the operator norm), respectively. The elements of L,(N) may be identified with
operators on &. Furthermore the map 4+>AQ, A € N, extends to a unitary map 1

%)  This remark is not original. Some people argue, that one should give up centrality of m for
interacting theories.



Vol. 47, 1974 Is There a Euclidean Field Theory for Fermions? 795

from L2(MN) onto &. A vector X € & is called positive if I71 X e L*(M) is a positive
operator on &, and a bounded operator on & is said to be positivity preserving if it maps
positive vectors onto positive vectors.

We now introduce alocal structure on R. If A is an open set in R* we let 9t(/1) be the
von Neumann algebra generated by

DO =11 e &P, supp f* = A, =1, 2}.
If A is an arbitrary subset of R* we let

R = N RNA)

A'DA

where the intersection is over all open sets A’ containing A. L*(M(A)) is a subspace of
L?*(M), and we denote its image I L2(N(A)) by &(A). Let P, be the projection onto &(A)
and for A e L2(RN(A)) set p,(A) =I"*P,LA. p,(*) is a map from L?*(N) to L*(N(A))
and is called a conditional expectation.

Theorem 5.1[W11]: For any set A,
a) P, is positivity preserving

b) |lpa(A)l, <||4l, forall 1 < p < o, 4 € L3(N) N LP(N) i.e. p, extends to a con-
traction on LP(N).

Proof: For A € L*(N) = N we let p(A4) be the restriction to &(A) of the operator
Pa(4). For R and S in R(A) we find

(RR,$4(4)SR) = (RS*Q,p4(4) Q)
= (RS*Q,A90)
= (RQ, ASQ),

where we have used the cyclicity of the trace (- > = (2, - ). As N(A) Qis dense in &(A),
it follows that for all X, Y in &(A)

(X,94(4) Y) = (X, 4Y). (5.1)
Now we use that 4 ,(4) and p 4(A) must have the same spectrum to conclude from (5.1)

p(A)=0if 420 (5.2)

and
I24(A)11 < ], - 5.3

Part (a) of Theorem 5.1 follows from (5.2), while (b) is a consequence of (5.3) and results
in [Ku 1].

Theorem 5.2: Let A be an open set in R* with complement ~/ and boundary 9.
Then

pP,P,=P ,P,= P,, (Markov property). (5.4)
The proof is as in [Ne 3], Theorem 5.
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We now study the sharp time subspaces &, of & and the sharp time fields. Let 4,
be the set {x = (x°,%)|x° = 7,% € R} and set |(4,) = N, and &(4,) = &,. [tiseasy to see
that M, is the von Neumann algebra generated by the ‘sharp time’ fields D(f,), f%(x) =
(8. ® g% (1) = 8(r — 9)-g*(), where g% € #_,,(RY).

The time-zero subspace &, can be naturally identified with the relativistic Fock
space J,.; of the free spin 1 Majorana field, if we set the Euclidean vacuum £2 equal to
the relativistic Fock vacuum £2,, and define relativistic creation (resp. annihilation)
operators by

atel.a(ﬁ) = (237(;:5’,1;) jA:(x) gIBES(xO) d*x (55)

(this equation has to be understood in the distributional sense*)) where
w(p) = Vm* + B2,

In other words, (&0, My, {*>) is the gage space for a free relativistic, time-zero
Majorana field.

For A € L2(N,), we denote the vector A, when interpreted as vector in J,; by
4. The scalar product on J,, is given by (4, ) e = <(4* B) for A, B e L*(N,).
The free Hamiltonian on J,., is denoted by H,:

Ho= | a%, () ata() w(p) d*p
and we write T, = U(1,1, (¢,0)) for the Euclidean ‘time’ translation group.
Theorem 5.3: a) Let A, B € L?(N,). Then
CA*T, B) = (P, ™" Hoify),
(Feynman—Kac formula)

b) There exists a continuous increasing function () on R* with B(0) =0, B( ) =1,
such that for all 4, B € L?(N,)

[<A* T, B>| < || 4|, | Bll,

for
1 1
—+—=14+B(t]), te R.
g

c) The trace {-) has the reflection property
A*T,B) =<A*T_, B)

forall4, Be L*(N,), t € R.

A gage space (&, M,{-)) with a local structure as described above and with a
Markoff property (5.4) is a natural noncommutative generalization of Markoff processes.
The gage fields D are therefore the natural analog to Nelson’s free Markoff (Bose)

4)  Seealso [SU 1].
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fields [Ne 3]. Introducing interaction however causes problems. In the commutative
case the idea was to use multiplicative functionals [Ne 1]. The natural generalization
of that concept to the gage space formalism would be to use normal central states
w, on N to describe the system with interaction (x denotes some cutoff). The main
obstacle to thisidea is the Radon-Nikodym theorem (see[Se 1], Theorem 15), which says
thatif (&, M, <-)) isaregular gage spaceand w(-) anormal central state on N, then there
exists a unique positive self-adjoint operator Z affiliated with the center of 9t such that
w(Ad) =<AZ> for all A € N. But in the case discussed above, N is a factor and hence
there are no normal central states on M other than ¢-). The gage space structure is
therefore not stable under ‘turning on interactions’. A further problem is connected with
Euclidean covariance. The von Neumann algebra 9t defined above is nof invariant
under Euclidean rotations. We show now that there is no choice of Majorana gage
fields such that 9 is Euclidean invariant. In the case of Dirac fields, however, it is
possible to construct Euclidean covariant gage fields.

We begin our argument in a general context. Let ¥%(h,), h = (h,) € & (R*)*™, be
an m component, free Euclidean Fermi field, acting as a bounded operator on the Fock
space & = @R o #@", where # is some complex Hilbert space containing & (R*)*" with
scalar product (-,-). We assume that ¥ transforms covariantly under some repre-
sentation of SU(2) x SU(2). We let A%(f,) and A%(f,) (e =1,...,7 < m) be the anni-
hilation and creation operators associated with ¥; 4%(f,) 2 =0, for all (f,) € #, where
is the vacuum in &. With U (%, %,) being the unitary representation of SU(2) x SU(2)
on & we assume that

U, ) A%(f,) Uy, ) = A%(VfR),), (5.6)

where V = V(u,,%,) is some finite dimensional representation of SU(2) x SU(2) and
fr(®) =f(R™'x), R= R(u,,u,) being the element in SO, corresponding to (u,,%,).
Also

A*f,) A" = (/.8)- (5.7)

We now call D*a gage field associated with ¥*if D*is a densely defined operator-valued
function on # of the form

D(f) = Dy(f*) = 4%(f,) + A(C/))
for some (anti-)linear mapping C on 4 such that

(D(f) D(g)> = {Dfg) D(f)> (5.8)
and

D(f)* = D(k)
for some h = h(f) € #, for all £, g € H# see [Gr].

Lemma 5.4: Let D be a gage field associated with ¥. Then

1) Cislinear and € =CT
2) If D transforms covariantly under the representation U(u,,%,) of SU(2) x SU(2)
then

V(uy,45) C = CV (13, 145)
for all (uy,u,) e SU(2) x SU(2), i.e. V has to be a potentially real representation.
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Pyoof: By (5.7) and (5.8), forallf, g e S#

(D( f D(g)> = (f.Co)
D(g) D(f)> = (&.Cf)
= (Cf.8)
=(£,.C"g)

From the first and the third line we conclude that C is linear and from the first and the
last line that C =CT.
For (2) we compute

U sy, u3) D(f) U™ (g, ) = A*((Vr)a) + A2(VCSR)?)
and if D* should transform covariantly then we must have

CVf=VCf i.e.CV =VC.
Q.E.D.
It is well known [Wg 1, 2], [Ma 1] that

a) Even (odd) dimensional irreducible representations of SU(2) are pseudoreal
(potentially real).

b) The direct product of two pseudoreal (potentially real) representations contains
only potentially real irreducible components.

c) The direct product of a pseudoreal and a potentially real representation contains
only pseudoreal representations.

According to (3.11), for Majorana fields we have V(u,,%,) = #;, which is a pseudoreal
representation. By Lemma 5.4 this excludes the possibility of Euclidean covariant gage
fields.

However, if we take the direct sum of two spin 4 representations of SU(2) x SU(2)
then we can obtain a potentially real representation:

u

V(ul, %2) = ( 01 ”
1

we have proven the following:

0 ) is potentially real; for, with C = ((1? 1(])), we have CV = VC. Hence

Theorem 5.5: There are Euclidean covariant gage fields associated with a Dirac
field.

For the sake of concreteness let us exemplify Theorem 5.5. Let 4 and A3 be the
annihilation operators belonging to the two Majorana fields U, and U,, resp. which
constitute the Dirac field U; see (4.9). We let 47,(+) be linear, j=1,2; a=1, 2. We
define the (four component) gage field D by

D(f) = AY(f,) + A5 f,) + Af(easf ***) + A3, (f**), (5.9)

o« B=12;f=(fi.fof*f*)
Then using

CAHT) A5(6")> = 8ulfe,Sg) = 8, 3 [ ful) St ~ 5)(y) dcdy
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we find
D(f) D(g)> = (fa, SE***) + (€apf**?,Se™g,)
= (far S87**) + (f7**,Sg,)
= (D(g) D(f)-
Furthermore with U = U(%,,%,) and R = R(u%,,%,) we infer from (3.11) that

UD(f) U™ = A1(#%, frg) + A%u(415€"" fr,)
+ A5 (g, [R) + Auis f27F)
= D(f),
where 7= (f},/5,/3,7%) is defined by

Fol®) = BE, frpl) = Wb, f5(R™'2)
F2(x) = uly f28(x) = uly f2H8(R1x).

This establishes the Euclidean covariance of the field D(f) and proves Theorem 5.5.
Notice that D(f)* = D(g), g, =f***, g*** = f,.

It is easy to see that the #-point functions of the gage fields D defined in (5.9)
can be analytically continued in the time variables to real times (i.e. to the Minkowski-
space region). The distributions obtained in this way are Poincaré covariant. They are
well suited for the description of free, relativistic Fermi (gage-) fields. The (time 0-)
relativistic gage field can be identified with the (time 0-) Euclidean field D(§, ® -).

In spite of its success in the free field case the gage space approach seems to us
to be unnatural as a general framework for Fermi field theories:

a) Asnoted above there are #no non-trivial ‘multiplicative functionals’ on a gage space
(€,M,<-). Thus, it is impossible to describe cutoff interactions within the frame-
work of the free field gage space.

b) Ingeneralit seems to be impossible toformulate the principle of locality in terms of
(anti-) commutation properties of the gage fields.

c) As the reader may easily convince himself none of the local Euclidean Fermi
currents (such as the one used to describe the Yukawa interaction) can be expressed
in terms of the Euclidean gage field D. (Similar negative experiences on the level
of the Hamiltonian formalism were earlier made in [Gr 1]). Remarks (b) and (c)
are of course connected with each other.

In conclusion we think that although the gage space approach (i.e. a probabilistic
approach) is attractive for the description of free fields it yields at best some technical
tools (such as ‘conditioning’ in the sense of [GRS 1] or Hélder inequalities) for the con-
struction of local, interacting fields.

V.2. The field algebra

Let U be the Euclidean Majorana field constructed in Section I11.1, and let J be the
Grassmann algebra generated (algebraically) by

o =3 vlre o)
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Then (-) = (£, - £2) defines a linear functional on J. Our first goal is to construct an
antilinear operation o mapping J into itself, such that

(o(MYM> 2 0, forall M € 3. (6.10)

Notice that vacuum expectation values of elements in J can always be expressed in
terms of Schwinger functions. In particular (5.10) is a positivity property of the
Schwinger functions and we may think of it as the Fermi field analog of the Nelson—
Symanzik positivity property for Boson Schwinger functions. In order to construct o
we let X be an arbitrary vector in &. Then, with : : denoting Wick ordering,

(1vmt0:2.x) = ({-emazm 2.x)
- (211 east ) X)

- (211 entm7pyix )

We conclude that o, defined by linear extension of

(HU“f(f: ) TT (eus, UB(R) 5.11)

i=n

satisfies inequality (5.10). Notice that o is #nof an antiautomorphism (i.e. a * operation)
on J.

Because £2 is cyclic and separating for J§ we can reconstruct & just from J, {-)
and the mapping o: J with inner product (M,N) = (o(M)N) is a pre-Hilbert space
whose closure we denote by &. Then the map I: M M2, M € J extends to a unitary
from &5 and &. Asin the previous section we can unitarily embed the relativistic Fock
space J;e; in &.

A local structure on J can be introduced as before. For /4 < R* an open set, we
let J(A) be the Grassmann algebra generated by

U(f)|fe 6V, suppf* < 4, =1, 2}

and for a general set 4 < R* we define

S(A) = (A’ A Ql'open}S(A’) '

By P, we denote again the orthogonal projection onto J(A) 2. Let T, = (1,1, (¢, 0)) as
in V.1.

Theorem 5.6
1) For all open sets 4,

p,P,=P.,P,=P,;, (Markoff property)
2) ForallM,Ne J,=3({t=0})

(o(M) T, N = [y, e”"Moghy),y (Feynman-Kac)
where iy, = ML € 3, etc.
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3) ForallM,Ne3,

MT,N>={MT_,N) (Reflection property)

Is this structure, when abstracted from the special case of free fields a useful non-
commutative version of functional integration, if we want to study interacting models
involving fermions? The answer is probably no. The problem is again that it is not stable
under turning on interactions. (There is of course no covariance problem in this set up.)
If we replace the functional (- by {-e7"*>/(e™"*) = {-),, where V, is some cutoff
Euclidean action — see section V.3 - then in general {(o(M) M), will not be positive
anymore and we would have to find a new o-operation. A possible way out of this
difficulty would be to try to choose o such that it defines a * operation on 3, i.e. such
that it be antilinear on I and o(M - N) = o(N) o(M). However, this is impossible as
shown in the following:

Theorem 5.7 Let J be the Grassmann algebra generated by some vector space W.
Let (-} be a linear functional on J such that (P> = 0 for all odd monomials P (P is an
odd monomial if it isequal to f, f,...f,, f; € W, kodd). Then there is no * operation on J,
such that (P*P) >0forall PeJ, P #£0.

Proof: Let fe W and suppose there is a * operation on J. Then f* € J and we can
write it as

fr=P+0

where P(Q) is a sum of even (odd) monomials in elements of . Using the assumptions
of our theorem we find

XA =100 = - =—<F* \ (6.12)

The left-hand side of (5.12) must be nonnegative, the right-hand side nonpositive and
hence (f*f) = 0. If we assume that thisimplies: f = 0, then the existence of a * operation
on J necessarily implies that W = {0}. This proves the theorem.

We could also try to make J a * algebra and () a state on J by giving up anti-
commutativity of the Euclidean fields U?, by changing the Schwinger functions in
points of coinciding arguments. But such a procedure always conflicts with conven-
tional Euclidean power counting. Furthermore the fields obtained in this manner are
so singular that it is impossible to introduce cutoff Euclidean actions wich are well
defined and satisfy physical positivity.

V.3. Euclidean currents

An attractive idea seems to be to work with the commutative algebra generated
by Euclidean Fermi currents only, since all physical information can in principle be
obtained from vacuum expectation values of products of currents. The interesting
question of course is whether the current algebra can be connected with commutative
functional integration; one might be hopeful for an affirmative answer, because in
Schwinger’s model for one (space) dimensional Quantum Electrodynamics [Sc 1,
SL 1] the vector currents can be interpreted as derivatives of a Bose field, for which
commutative integration is well known to apply. We will show, however, that this
result is misleading. In the case of interest to us it is not possible to imbed the current
algebra in a commutative *-algebra such that the currents are formally self-adjoint.
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This rules out the possibility that the current functional is the Laplace transform of
some probability measure. We do however not exclude more general forms of functional
integration, where the measures are signed or even complex and where the currents do
not correspond to real functions.

For the Dirac fields constructed in Chapter IV the unrenormalized Euclidean cur-
rents are given (formally) by

Flk) = AP () (scalar current)

Iy (x) = W2(x) p*W¥l(x): (vector current)
or using (4.10)

3,(%) = m(:Wa(x) U(x): + U Wy))

and similarly for J%. For simplicity our following discussion will mostly be limited to
scalar currents.
By (4.17), J(x) satisfies

PH(3,(2°, 7)) = 3y(—=°,%)

and thus the formal expression

= [ ax3(x) f

is {-invariant if only the real function f is invariant under ‘time reflection’: f(x°,%) =
f(=2,3).

To make things rigorous we introduce cutoffs, but we want to do it without de-
stroying the J-invariance of J;. There are two possibilities:(a) replacing the space time
continuum by a space time lattice, (GRS 1] or (b) replacing the fields ¥ {(x) by

Ylx) =(x*¥*) (x), (5.13)

where y,(x) = (x°) ® pn(%) 1sa cutoff function (for the spatial momentum components).
We will choose p,(%) to be the Fourier transform of the characteristic function p,,(E) of
the set S, = {#| |£ | < n}. As in (5.13) we also define (momentum) cutoff versions of the
fields U?, W¢, etc. Now we define the cutoff Euclidean current to be

— j dx: W3 (x) P h(x) f(x),

where f1s some test function.

Theorem 5.8 [0S 4]: Let f € L1(R*) N L?(R*), and let 4 be an arbitrary polynomial
inWig),ge #(R*. ThenforallneZ,

a) (Ae?!"% is an entire analytic function of p, and
b) If fis real and {-invariant, i.e. if

f(x°,%) = f(x°, %) = f(—°,%),
then the functional {A4e’»" satisfies physical positivity.

The significance of this theorem is of course that the physical positivity property is
shown to be stable under turning on interactions. We now prove that there is no way of
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embedding the field algebra J in a * algebra J, such that a Euclidean Fermi current
3J is self-adjoint with respect to the * operation of J,.

- Theorem 5.9: Let * be an arbitrary * operation and J, the * algebra generated
algebraically by the operators

{PHA)L L), P2(f), ¥2*(f)| fr - foin S(RY},

where ¥ and ¥? are arbitrary Euclidean Fermi fields. Let J, be represented as a sub-
algebra of the algebra B(#) of all bounded operators on a complex Hilbert space 5.
Suppose [ is an even, self-adjoint, operator-valued functional on the field algebra J
generated by ¥, W2, (e.g. a current). Then J commutes with all operators in the weak
closure of 3, on . If ¥! and ¥? are free, Euclidean Fermi fields, J is a multiple of
the identity.

Proof: Since [ is even, it commutes with all operators in J. Since J = J*, J com-
mutes withalloperatorsin J*={A4|4* e J}. Since J,isgenerated by {J, J*}, / commutes
with all operators in J,: here we say that J commutes with the bounded operator A4
if (J*, Ap) o = (A%, J@) ¢, for all @ and ¢ in D(J) = D(J*). Therefore, since the weak
and the strong closure of J, coincide, J commutes with all operators in the weak closure
Jx of Ju.

If ¥ and ¥? are free Euclidean Fermi fields then

(AT, BT¥*> — (AXBY, as |x| — w, (5.14)

for all 4 and B in J,. Here x = {¢,%) € R* and |x| denotes the Euclidean length of x;
{T,} denotes space-time translations on 3 = &. In the case of free fields {T,}is contained
in 3. Thus T, JT% = J is independent of x! By (5.14) it follows that

J=<J>1
This completes the proof of the theorem.

We can now argue that Theorem 5.9 nolonger applies if we work with the Euclidean
Fermi currents only and never introduce Euclidean Fermi fields. Then the Euclidean
Fermi currents might turn out to be self-adjoint and there would exist a satisfactory

commutative functional integration theory. Let us therefore consider the current
functional

Zn(f) = <e""(f)>’fe yreal(R4):

where ], is the scalar current built from the cutoff free Euclidean fields ¥}, ¥2. The ex-
istence of Z, is guaranteed by Theorem 5.8. Taking the structure of boson theories as a
guide we might hope that Z,(f) is the Laplace transform of a probability measure u
on the o-algebra generated by the Borel cylinder sets of & 1..;(R*), i.e.

Z,() = [ eedp, (@). (5.15)
&1

Such a structure would lead to a satisfactory functionalintegration theory for Fermions.
However it can be shown that Z,(f) does not have the necessary positivity property
consistent with the integral representation (5.15):

(5.15) is equivalent to:

N
i }2_ e, Z,(fi+1) >0, (5.16)
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for arbitrary N, arbitrary complex numbers ¢y, ..., cy and real Schwartz space functions
f1,++- fn. This inequality can be disproved by explicit counter-examples.

The situation remains the same if we consider the renormalized limit functional
Zion(f), f € Frear(RY), (constructed for the case of two space-time dimensions in [Si 1];
also it is known from covariant perturbation theory that there exists a Schwartz
space norm |- |, such that for | f|, small enough

Zoewl) = exp 3 LS, ....f),

where L™(£,,...,&,) is the renormalized nth order loop and > , L™ (f,..., f) converges
absolutely; the techniques of [Si 1] permit one to define Z,,(f) without restrictions of
the size of | f|,).

It is possible to find test functions such that the inequality (5.16) is false for Z,.,,.
The simplest counter-example to (5.16) can be constructed by using the ‘mean field’
calculations of Ref. [CW 1].

(The experienced reader will conclude from the fact that (5.15), (5.16) are not
valid for the scalar current that it is hard (if not impossible) to prove correlation in-
equalities in models like the Yukawa model in two dimensions.)

Note added in proof. We would like to point out again that the fact that the functionals
Zu(f) and Z,,(f) violate inequality (5.16) does not depend on the existence of
Euclidean Fermi fields but is a direct consequence of the relativistic, free field theory
and the Bargmann-Hall-Wightman theorem. This result does not apply to the
regularized currents associated with a free, massless Dirac field in two space-time
dimensions for which inequality (5.16) is true.
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