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Theory of Coupled Hydrodynamic Modes Applied Above
Structural Phase Transitions

by Charles P. Enz
Département de Physique Théorique, Université de Genéve, 1211 Genéve 4

(1. X. 74)

Abstract. Starting from the fluctuating part of the lattice free energy the coupling between a
soft shear mode and the heat diffusion mode is established. The soft mode response function is de-
rived and compared with neutron scattering data for the two cases of a soft staggered (R-corner)
mode (SrTiO;, LaAlOj;) and a soft sound (zone centre) mode (Nb;Sn). In an appendix the classical

form of the fluctuation-dissipation theorem is derived in the framework of a classical many-body
theory.

1. Introduction

In this paper we wish to demonstrate the fruitfulness of the hydrodynamic
description of many-body systems by developing a purely classical many-body theory
and applying it to the particular cases of the coupled modes discussed earlier [1].

Examples of couplings between hydrodynamic modes have been known for a
long time. The most common and physically the most important example is the thermal
expansion coupling between the isothermal sound mode w = (1 — 7w7,/2) vg and the
heat diffusion mode w = —iDg? which occurs in practically all hydrodynamic systems
(see the review of Ref. [2]). This coupling gives rise to the transition from isothermal to
adiabatic sound (velocity v,) and to the occurrence of a central (w = 0) peak of width
Dg? in inelastic light scattering, the socalled Landau-Placzek peak [2].

Another example is sound in a molecular liquid which couples to internal molecular
degrees of freedom, as was first discussed by Mandel’shtam and Leontovich in 1937 [3].
This coupling is characterized by a relaxation time = which governs the transition from
ordinary (first) sound (velocity v,) at low frequencies (w7 < 1) to zero sound (velocity
v,) at high frequencies (wr > 1). As was emphasized by Mountain [2] the effect of the
coupling again is a central peak in inelastic light scattering.

The central peaks evidenced in inelastic neutron scattering near structural phase
transitions in the perovskites SrTiO, [4] and LaAlO; [5] and in the Al5-compound
Nb;Sn [6, 7] are of a similar nature. In fact, they have been interpreted as Mountain
modes [3, 5, 6] in the sense that the relaxation time 7 serves to distinguish between
Cowley’s first and zerosound in crystals[8]. In these cases the response function has been
parametrized in the form

pxid, w) = {wi(g) — w? —iwl(g, w)} (1.1)
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where [1, 7, 9]

(g, w) = Iy + 83/(yo — iw) (1.2)

so that 82 describes the coupling between the modes w = w,(g) — il p/2 and w = —iy,
(here the index zero serves to distinguish y, and 83 from the critical index y and the
particular 82 [1] occurring later). This parametrization gives rise to a three-pole struc-
ture of y;, as is explicitly shown in Appendix D.

The similarity with the examples mentioned before is brought out by the fact that
the same parametrization also applies to the response function of the thermal expansion
coupled sound where [2]

o -

wi(q) =vq, I'o=r70v2¢?
8= (=) ¢* yo= D¢ (1.3)

and of the molecular deformation coupled sound where

—

wi(g) =v0q9, IH=0
B=w2—v)q vo=1/r. (1.4)

While in these examples the coupling is not at all related to a phase transition it
was the main idea of Ref. [1] that the strong temperature dependence of the soft mode
frequency is the reason for the coupling of the soft mode to temperature fluctuations
and hence for the central peak in perovskites. Without this idea it was indeed difficult
to explain the value of the coupling constant 83 in the mentioned case of perovskites and
A15’s because of the difference with the examples of sound in fluids. In fact, all known
cases of central peaks in perovskites and A15’s refer to shear modes; in the perovskites
they are in addition modes of the staggered displacement [1] (i.e. modes with wave vector
near the R-corner ¢ = (m/a) (1,1,1) instead of the centre of the Brillouin zone).

While in Ref. [1] only the case of the soft staggered mode was investigated we give
in Section 3 below a general derivation of the response function y; valid also for the soft
sound mode. Starting in Section 2 from an expression for the fluctuating part of the
lattice free energy the mode coupling follows quite naturally. This will show convinc-
ingly that the soft frequency coupling near a phase transition is a feature of similar
generality as the thermal expansion coupling.

In the case of Al5-compounds a different phenomenological model, which also
leads to the form (1.1), (1.2) of the response function, has recently been proposed by
Kragler and Thomas [10]. In this work a coupling of the soft sound mode with the d-
electrons is introduced with the result that w,(g) =vg, I'y =0, 83 = (v3 — v?) ¢*> where
vo and v are, respectively, the unrenormalized and renormalized sound velocities and
o describes the electron dissipation. Unfortunately this model yields no information
about 83 and the estimate of y, turns out to be much too large.

Experimentally, information about y, is limited to order of magnitude bounds
(4, 5]. The reason is that the central peaks have not been resolved in the neutron
scattering experiments done so far [4-7]. The only existing estimate of the central
peak width in SrTiO, is due to the electron paramagnetic resonance (EPR) measure-
ments of Miiller et al. [11], the theory of which is discussed in Sections 3 and 4. As
already mentioned in Ref. [1] the wave-number average over y, which in our theory
is implied in this estimate, sets a limit to the validity of the hydrodynamic form of
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¥o- In terms of the wave-number cutoff ¢,, already introduced in Ref. [1] this means that
the average ¥, = Dg¢? defined in Section 3 is meaningful only for g,, < m/a.

While it is evident from the above that little can be said at this moment about y,,
the tests of 63 turn out to be quite explicit, with respect to both the wave-number and
the temperature dependence. For the soft R-corner (staggered) mode the frequency

—,

behaves as w2(g) « ¢°¢” and leads to [1]
8(2) o qo €,‘.qu—z (15)

where € = (T — T,)/T,. For the soft zone center (sound) mode, on the other hand,
wi(q) « ¢*€"and

82 oc g2 €22, (1.6)

Both these results are derived simultaneously in Section 4. The difference between the
two cases is that only in the first case the response function has the Ornstein-Zernike
form [9] so that w,;(0) = w, defines a correlation length.

On the other hand, neutron scattering at SrTiO, [4] and LaAlQO, [5] indicates that
83 o« ¢°¢0. This suggests a discrepancy with (1.5) which, however, was shown in Ref.
[1] not to exist within present accuracy. Similarly, while the experiments with Nb;Sn
[6] indicate that 8% « ¢%€°, there is at present again no discrepancy with (1.6). All
problems related with experimental results are discussed in Section 5.

As shown in the general derivation of the response function y,; in Section 3 the
coupling parameter &3 is proportional to the (integrated) order parameter correlation
function S;(g, w) which, in turn, is related to y,(¢, w) through the fluctuation—dissipation
theorem. The classical form of this theorem needed here is derived in Appendix A
which, more generally, sketches a framework of classical many-body theory. The idea
is to cast the hydrodynamic equations of motion into a canonical form by extending the
fluctuating part of the internal energy into a Hamiltonian. This formalism is in many
respects complementary to the way Zwanzig [12] and Kawasaki [13] introduce fluctua-
tion dynamics but is developed with the same goal. In turn our theory has many paral-
lels with the works of Kadanoff and Swift [14] and of Halperin, Hohenberg and Ma [15].

Finally, it is worth mentioning that in limiting this analysis to the cubic symmetry
above the phase transition we voluntarily eliminate unessential complications. Thus,
the mode frequencies in the vicinity of both the zone centre and the R-corner have a
particularly simple parametrization [16]. In Appendix B the related eigenvalue prob-
lem as function of the direction of g is solved algebraically and the connection with the
group theoretical notation [17] established. In particular the form expressing w;(g)
in terms of the anisotropy parameter 4 [9] is justified for SrTiO;. With the explicit
form of w;(g) the various integrals over the Brillouin zone, appropriately restricted by
the cutoff ¢,,, then are easily evaluated in Appendix C.

2. The Hydrodynamic Equations

In the terminology of Ref.[2] hydrodynamics in a crystal is described by the equa-
tions of motion of the elastic continuum and of the fluid of thermal phonons. For the
latter a flow or drift may safely be neglected here since effects of second sound or
Poiseuille flow [2] are of no importance.



752 Charles P. Enz H. P. A.

The elastic equation of motion may be written in the form

pit; =—ply + 3 051 V; Vi thy — 0F [0u,. (2.1)

Jkl

Here u, is a component of the local displacement vector #(7,#) of the soft mode with
damping I' (I" = 0 for a sound mode) and %, ,, are the components of the viscosity or
staggered viscosity tensor for a zone center or an R-corner soft mode, respectively.
F, is the fluctuating part of the lattice free energy and p the mass density. The relation
between density fluctuation and displacement,

Vi =8(4V)/AV = —8p/p (2.2)

where 4V is a macroscopic volume element, shows that §p = 0 for a shear mode.
Without drift the only equation of motion of the thermal excitations is the entropy
balance equation [2].

(ps)" +V.I, =0 2.3)

where s is the entropy per unit mass and

L=~V (2.4)

the entropy current which in the absence of a phonon dirft is entirely due to an effective
heat conductivity A* (which for simplicity is assumed to be a scalar) and to the local
temperature fluctuation 87'(7,#). The entropy production density o can be shown [2]
to be quadratic in V87, in # and in § where 8 is the deformation tensor defined by

01 =3Viu; + V;u,). (2.5)

Since terms proportional to (87)2, #? and #8T and spatial derivatives thereof will be
neglected we may drop o and, according to (2.2), also (8p)s in equation (2.3).

While in general the lattice does not contribute to the entropy [2] this is not so
in the presence of a soft mode. Indeed, the soft mode parameters which occur in F
strongly depend on temperature and hence

ps, =—8F /8T (2.6)

is an entropy density carried by the lattice.
Thus F; is a functional of the local displacement #(7,¢) and the local temperature
fluctuation 67(7,¢) and has the form

Ljkl

FL[@_E, ST] = J d31’{§ wg(T + ST)EZZ + ‘k Z Cij,kl(T + ST) Bij 9“ = p’IFZ'_}? " (2.7)
1 4

Here w, is the soft mode frequency (wo = 0 for a sound mode). C;; ,, are the isothermal
elastic or staggered elastic constants for a zone centre or an R-corner soft mode, re-
spectively, and ﬂr, f) is a local external force per unit mass.
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Performing a partial integration with the second term of (2.7), making use of (2.5),
the equation of motion (2.1) takes the form
2 2% s Levev_lE (wn+stvi @V

2 a1 ). -
+—=+I=—-VV_—ju=f (2:8)

valid up to bilinear terms in # and 87. Here CV ® V is the symmetric matrix with
elements

(CV ® v)il - Zk Cu ki Vj Vk (2‘9)

and 7V ® V is defined in the same way.
The lattice entropy per unit mass is found from (2.6), (2.7),

10w? 1 oC;; |
8, e e Z a‘;:” 0., 0x, (2.10)

where the dependence on 87 is of higher order and hence neglected. Thus the effective
entropy fluctuation due to fluctuations # and 67 is

8s=(ct/T)dT + s, (2.11)

where ¢, is an effective specific heat (per unit mass). Inserting equations (2.4), (2.10),
(2.11) into (2.3) we find

) T 0w2ou? T ~0C 4 0
(«——DV2)8T— ik LE (6,6, (2.12)

= + s
2c% 0T ot ZPC,‘ttju oT ot

= M*/(pc}) (2.13)

is an effective heat diffusion constant. In (2.12) the entropy production ¢ as well as the
term (6p)s could be neglected because we have retained only linear terms in 87 and in
d/0¢ while, as mentioned before, o is quadratic in V87, in % and in § and (8p)s is propor-
tional to V-#8T.

Equations (2.8) and (2.12) reduce to equations (3) and (4) of Ref.[1] if the tempera-
ture dependence of the staggered elastic constants and the viscosities are neglected.
In introducing an effective heat conductivity A* and an effective specific heat ¢} we
want to take into account the facts i) that in general the transport coefficients depend
on frequency [12] (which for the neutron scattering data in question is rather high) and
ii) that not all the thermal degrees of freedom participate in the soft frequency coupling.
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3. The Soft Mode Response Function

We define the soft mode response function by
1 Su,(7, b)
p &7, 1)

Introducing in addition the temperature response function

Xu(" L7 ) = (3.1)

L 18(TFY)
(7,87 ) =— ——— (3.2)
p Of(r.¢t)

functional derivation of equations (2.8) and (2.12) with respect to the external force f
yields, respectively,

Ow? 1 aC
> w0+—8T-—CV @V -———[VeT)+8TV]I®V
oT p poT

k

0? d 1 0 0w}
= ob P B Vel Byt — gy
Taatla =1 @ Vg Xt g s
1 acim,nl
- T £(Vmcpj)(vnul)+quv v ul]
pmnl
1 g
——8,8(7—7)8(t—1) (3.3)
p
and
0 T dw? 7] ¢ 3 oC
__sz '=__0 e - T hr sk S 3.4
(at )% o7 2. ) Y > () B9

where we have used (2.5).

In order to eliminate ¢; we multiply equation (3.3) by ¢’ = -9/t — DV’2, noting
that this operator has the same effect as 9 = 0/0f — DVZ when applied to functions which
depend only on the coordinate differences 7 — 7' and ¢ — ¢'. Substituting dg; from (3.4)
equation (3.5) can be written as

1 = “*y ’
%Am%,‘j+Bi(8’—8)<pj=;81188(r—r)8(t—t) (3.5)

where

2

dew 1aC
- e Y et i
A= +aT8T pCV@V — ~[(V8T) +8TV) ®V +—

0 1 0 T (0w} 0 T awo
———nV A% _— | —
+T pn & },-k+03(aT) (uk-é-ukat)-l-pc* 3T
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acln,mk V R V a V T aw% acim,nl
ar | Vet + "“‘)E_ " ey 0T & 9T

mnl

ot

] s 0 9
x‘(V,,, V. u,)(uk + u, a) + (Vo)) | (Vi) + (Vi) — + %, Vo + 9, V"'a_t] }

acim nl achr ,5k 0
- 6*2 2 {(vm v,,u,)[(v th) + (V,4) at]

mnl hrs

0 0
¥+ (V,, ul)[(vm Vruh) + (Vm Vruh)EE + (Vruh) Vm + (Vr uh) Vm a} }Vs (36)

and
awo 1 aC‘m,n,

U; ——

oT p oT

mnl

[(Vn ul) Vm 5 (Vm Vn ul)]

gas

Since the external force f was introduced only to generate the response functions
(3.1) and (3.2) we now let f go to zero. Then 4 and § T become thermal fluctuations which
essentially form a Gaussian distribution around zero with width proportional to the
temperature 7. All physically relevant information is then contained in the average
{ o over this distribution whose precise definition is given in Appendix A.

At this point we introduce a random phase type approximation by writing the
averaged equation (3.5) as 1)

~ s/, 1 = =y /

g CAudolXksPo + {Bo(d — 0){p;p0 = ; 8,;08(r —7) 8(t —1). (3.7)
From Appendix A it follows that

BT (7,859 =0, (i(7,8))o =0 and {(@,(r,t)u,(7,t)>o =0 fori +#j and any 7,7’
and, by time reversal invariance, (u;(7,#)%;(#,£)>o = 0 for any 1, j, 7, 7'. Invariance of
averages under space and time translations (compare equations (A.30) of Appendix A)
then implies that (¢’ — 9){g;>¢ =0 and that

(w7, 8) uy(7,9) >0 = ¢ 8y (3.8)
with ¢, > 0 and

<Vr ui(?» t) Vs uj(;» “') >0 =—- <ui(;: t)Vr Vs uj(?) t)>0 = ‘)bri Srs 811‘ (39)

1y Equation (3.7) is essentially a mean field approximation and hence may not be adequate in the
critical region. However, since the goal of this paper is to understand the physics underlying
soft mode-related central peaks we seek the simplest mechanism yielding the form (1.1),
(1.2) of the order parameter response function. In an improved solution the basic ‘interaction
Hamiltonian’ (2.7) would have to be treated in perturbation theory along the lines of Ref.
[15], in which the critical behaviour is determined by recusion formulas. Presumably, such a
treatment would also modify the e-exponent in relations (1.5), (1.6). We plan to come back to
this problem in the near future.
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with ¢, > 0 are independent of 7,  and are the only correlation functions left in (A4 ;-
Hence we find from (3.6), after replacing d’ by 0,

A 9 DV? CV®V 62 + I e V&®V— ¢
CAudo = FTi —; MEY Py p’? Py
a d T aC m,sr acrs ,n 0
wo (ﬁi !k * ‘ - lybsr m (310)
TPt &4 T 7

Since {§¥>, only depends on 7 — #, ¢ — ¢ we may now go over to the Fourier repre-
sentation

Xi(d, @ j 7 | A< 7,10 expl—iG -7 — wh)). (3.11)

Multiplying the Fourier transformed equation (3.7) from the right by (—iw + Dg?)™!
x~(¢, ) we find with (3.10)

1

;X:kl@: w) = (3 — w? — iwl) 8 + Ru(q) (1 —iwy(() — iw8}(q) (—iw + Dg?)~!
(3.12)
Here
—» ].
Rulg) == > CimnkInd . (3.13)
P ‘mn
1s the elastic matrix used in Ref. [1],
Ru(q) @ Z i,k Gm & (3.14)
defines a relaxation time matrix = and
T awg 2 T acim sr aC,,s nk
=— 8 : — e G I 3.15
8ix(9) ( oT ) bidu + pioy Lo 0T  oT Im9q (3.15)

are generalized coupling constants.

Equations (3.12) to (3.15) give the general response function valid for any crystal
symmetry and any type of soft staggered or sound mode. We now assume cubic
symmetry so that in the parametrization (B.3) of Appendix B

1
; Cijaa= (A1 —A2) 858161 + Ay{8: 851 + 811855 — 810t} + A3 645 811 — 8y))-
(3.16)

This reduces equation (3.13) to [15]

Rik( ) =[A2¢% + (A; — A2) ¢7) O + A3 43 i1 — O)- (3.17)
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Furthermore, for cubic symmetry ¢, in equation (3.8) becomes independent of 7 and
i, in equation (3.9) has the form

¢ri - ')bu Sri + ¢'_L ri (318)
Then the coupling constants (3.15) may be written
8iu(q) = 828, + Vm(&) (3-19)
where
T a 2\2
P (3-20)
¢k \oT

is the coupling constant of Ref. [1],

Vulg) = —{!/l (A2 + 205 — X)) g7 + 2, A7(9% — 7))} Bue

+ F {¢u (X3 - Xz) (2A; + /\’3 - Xz) + 250_1 ’\’22} g Qk(l - aik) (3-21)
Vv

and we have put A; = dA,/0T.

In the case of the soft staggered mode of the perovskites wqy #0, I'#£0 and C;; 4
are the staggered elastic constants. We may therefore neglect the temperature de-
pendence of the C;; ,, as well as the staggered viscosities 7;; ;, so that A; =0, 7, =0
and V; = 0. For SrTiO, a further simplification comes from the fact that to a good
approximation A; =0 (see Appendix B) which makes the staggered elastic matrix (3.17)
diagonal with eigenvalues 7;(g) given by equation (B.14) of Appendix B. The response
function (3.12) now assumes the form (1.1), (1.2) with

X:k@» w) = Xi@: w) Oy

2

W) =wi+7(g), To=T
0g = &2, vo = Dg? (3.22)

where 82 is given by equation (3.20).

In the case of the soft sound mode of the A15 compounds wy =0 and I'=0, so
that 8% = 0 and the elastic constants C;; ,, and viscosities %, ; ;, become the leading terms
of the soft mode. For Nb;Sn, in particular A; # 0 at T, [18] so that diagonalization of the
elastic matrix (3.17) is non-trivial (see Appendix B). We therefore restrict the discussion
of the response function (3.12) to the soft 7', mode [6, 18] with propagation direction
do < (1,1,0) and polarization direction é, o (1,—1,0) (see Table V in Appendix B).
Projecting equation (3.12) onto é,, making use of (3.19) we recover again the form (1.1),
(1.2) with

X;‘ (_q” )= (60:
6) (20»R(99'o)

= (0, R(990) 7(Jo) € )Efov392
= (%0, V(q90) 20) = A* ¢* (3.23)
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where from equation (3.17)

VE=3A + A, — Ay) (3.24)

and from equation (3.21)
‘l’il T av(z) >
2 - —

A2=2 ox (BT) . (3.25)

From (3.8) and (3.9), (3.18) follows

b= Ku, (3.26)
and

= 3(V-%4)>,. (3.27)

Thus the existence of a central peak associated with the R-corner mode, equations
(3.22), and with the T, mode, equations (3.23), crucially depends on the fluctuations
(3.26) and (3.27), respectively. In particular, ¢, £ 0 means, according to (3.27) that
an appreciable amount of longitudinal thermal phonons must be present which evi-
dently is always the case.

It is useful to express the fluctuations (3.26) and (3.27) in terms of the Fourier
transformed correlation function or dynamical structure factor

Si(q, w) = j ar f at 2%<“:(7, t) (0, 0) >0 exp[—i(g- 7 — wi)] (3.28)
1

because S;; is related to the response function (3.11) by the classical fluctuation—
dissipation theorem

pkg T

mw

Si(g, w) = Xii(q, w) (3.29)
derived in Appendix A (see equation (A.38)). Here yx;, is the dissipative part related to
the response function by the dispersion relation (see equation (A.33))
N dwy!(q, w
X1i(q,2) = —X”(q ); Imz>0. (3.30)

T Ww—2z

With (3.29) and (3.30) the dynamical structure factor associated to the form (1.1),
(1.2) of the response function readily follows [4],

T 8¢y 5 2w? \?
Si(d, w) = Ty + —222 2@ —?+ 22
P T i, ) ( 0 B i w/(g) —w Bt a?

82 2}-1
+w2(P0+ 20:"’ 2) } . (3.31)
Yo T @

From (3.26) to (3.30) one also finds the fluctuations, namely with (3.22) and (1.1)
(1]

$ls T=V"'2 1 ? xu(@0) = (V) 2 wi*(@) | (3.32)
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and with (3.12) and wy =0, I'=0

gy lkg T =V"1 Z 1 iZ 4195 X1(4. 0)
=BV Z(3. R ). (3.33)

In certain paramagnetic impurity centres the local displacement generates an
effective magnetic field via an effective coupling constant G. In such a case time-de-
pendent fluctuations (#,(0,%) #,(0,0) >, at the centre give a contribution 4H to the EPR
linewidth. Since the time imprecision of these fluctuations is T >~ (4H)~! this contri-
bution is roughly given by

(AH)? ~ 622D | at 21 (0, 8) 1,(0,0)>, (3.34)

or making use of (3.28), by

(n/2)AH

dw 1
(4H)* =~ G? j _—Zsii@ w). (3.35)
m V&
0 q
If S;; is given by the diagonal form (3.31) and if this expression is dominated by the
central peak, i.e. close to 7', the effect of the time averaging in equation (3.34) depends
sensitively on the width of the central peak in S, relative to the width (m/2) 4H de-
scribing the time imprecision in (3.35). We assume here that the coupling constant G
varies little with temperature. (For a detailed analysis of the EPR lineshape and
crossover problem see Ref. [19].)
In the fast motion regime [19] the central peak averaged over ¢ is broad compared
to 4H, or {u,;(0,#)u,(0,0)>, varies fast during the time imprecision (4H)~. Hence we
find from (3.35), (3.31) and (3.22)

AH,=3G*V~13 S,(4,0)

q

= (G*ky T|2mV) 3, (I'+ 8| Dg?) w74 (g). (3.36)

In the slow motion regime [19] the §-averaged central peak is narrow compared
to 4H, or {u;(0,8)1,(0,0)>, varies slowly during (4H)~! so that we may use equations
(3.26), (3.32) in (3.34),

p "
(AH )% = GZE (ut>o = (G* Ry T|27V) Z w;%(g). (3.37)

For further discussion it is useful to normalize the g-averaged central peak by
defining the function

o(@?) = V' 3 S(§ @)V 3 Si(4,0). - (3.38)
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The coupling constant G may be eliminated from (3.36) and (3.37) in the form

F do (4H )?
—_— 2y = 3.39
= o) = 3am, (3.39)
0
and equation (3.35) may be written as
(x/2)4H oo
dw dw
A R T ) (3.40
w ™
0

4. Critical Behaviour

Above T, the isothermal susceptibility diverges with exponent y [20]. For the
parametrization (1.1), (1.2) this means that in the limit ¢ — 0

X;:'(§0) = pwi(g) « €. (4.1)
Hence we have in the case (3.22) corresponding to the R-corner mode of SrTiO,

wi=Ar}e (4.2)
and in the case (3.23) corresponding to the 7', mode of Nb;Sn

v3=2,Bo¢€". (4.3)

In the first case equations (3.22), (B.14) lead to the Ornstein-Zernike form [9]

w}(@) =Xl +¢*— (1 -2 ¢} (44)
where the inverse correlation length « vanishes with exponent v [20]

K = Kq €. (4.5)
In the limit ¢ — 0 equations (4.4), (4.5) lead to (4.2) with

n=2—y/r=0 | (4.6)

where 7 is the critical exponent describing the deviation from Ornstein—Zernike
behaviour [20].
In the Ornstein—Zernike case we may define new variables

X = K|qn = (€/€o)" (4.7

where ¢, is a cutoff wave number which comes from the fact that equations (3.26),
(3.27) and (3.34) actually involve a spacial average of the correlation function
(uy(7,£) u,;(0,0) >y over microscopic distances. The critical region is then defined by

'y=2v>1, x <1, €L €y <€y (4-8)
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whereas in the mean-field region
y=2vr=1, 221, €€ e | (4.9)

If a mean field region exists it is obvious from (4.9) that the changeover temperature
from critical to mean-field behaviour determine by e, , should be close to €, as defined by
4.7).

Since the critical behaviour occurs only in the limit ¢ — 0 of the soft modes (4.2)
and (4.3) it is evident that the integration over the Brillouin zone smooths out the
singularity in equations (3.32) and (3.33) so that ¢ and ¢, are non-critical. Indeed with
equations (C.6), (C.7) of Appendix C we find

¢ = (kg Tq,/27* pA, V' A) (1 — xtan~1(1/x)) (4.10)

and with (C.11)
y = (kp Tqm/187% pad;)d(e) (4.11)
where #(¢) as given by equation (B.27) is slowly varying and of order unity.

Parametrizing the specific heat ¢y in terms of an effective number of thermal
degrees of freedom 2f* as

[Ty e — (4.12)

where a is the lattice constant and the last factor takes care of the leading temperature
dependence near T, (see Section 5), the coupling functions (3.20) and (3.25) may be
written, respectively, as

82 = g(e) e+2  (4.13)
and
A? = k(e) €272, (4.14)

Here g and % are smooth functions of € obtained with the help of (4.10) and (4.11),
respectively,

£(0)/g(0) = (1 + ¢ (1 — xtan=(1/x)) (4.15)
with

§(0) = (202 X, o gm(are)*fm* f* v/ 4) (4.16)
and
RO = (N, B2(ag,) (97 a) (1 + €) (e). (4.17)

By comparison with (3.32), equation (3.37) may be written, with (4.10), (4.15),

(dH,)* = (dH,.)*g(€) /g (0) (4.18)
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where
(AH)? = (G* kg T, g5 /4m* X, V' A) (4.19)

and g3, is the cutoff for the slow motion regime. From equation (3.36) we obtain with
(C.6), (C.8)

AH, = AH, h(e) € (4.20)
where
Bl — q—'{'-(l ML )(1 +4) (tan-ll e ) (4.21)
Ko\  I'y(e) x 1422
and
AHop = (G*kp T I'[87° X VA 7). (4.22)

Here g}, is the cutoff for the fast motion regime and the average () is defined by

1/7(e) = (Dg(e)) ' = V' 3 (Dg) " wi*(@)/V ™' T wi*(g) (4.23)

—
q

g(e) is explicitly calculated in equations (C.9) and (C.10). From (4.19) and (4.21) the
coupling constant may be eliminated [1],

(AHoy)*|dH oy = 22, g g/ T (4.24)
The transition between the two regimes (4.18) and (4.20) is governed by tempera-

ture. At a fixed T the right hand side of (3.40) is a monotonically increasing function of
A4H, so that

AH 2 AH 2 AH,; T =const (4.25)

Since 4H, « €®and 4H; < € ¥ as € — 0 it is evident from (4.24) that, sufficiently close
to T., AH = AH,, and according to (4.18), (4.7) [21]

(AH,)? = (AH¢)* {1 — Cer + O(e>)} (4.26)
with [1]

C=T(e)"=2 4.27

_E(GO) _2q;:,' (4.27)

For sufficiently small e the dynamical structure factors S; is dominated by the
central peak part (D.11) of Appendix D for which equation (3.40) becomes

AH \?
4

2 2 n/2) AH 2
g [k —tan y-1
Hs) Z.waf ™ ( )/ Z.Q,"w?
q q

- Etan‘l(g- AH/<,,;,>) . (4.28)

o
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Here the second equality defines the 4H-dependent average {y;> over g of the central
peak width y,. This quantity defines a transition line-width

4d,, = ;27—<y6> ~ AH [+/2 (4.29)

where the second equality determines the transition temperature to the fast motion
regime as function of the coupling constant [11, 19], € = €,(G).

5. Discussion of Experimental Results and Conclusion
1. SrT105: Neutron scattering

In Table I are compiled the parameters for SrTiO, used in Ref. 1. M = N 4pa?
is the molecular mass, N, being Avogadro’s number. The values of the parameters
A2, A; and 4 are discussed in Appendix B. 2f = 2pa3c, (T ) /kg is the experimental num-
ber of thermal degrees of freedom. The temperature dependence of equation (4.12) is
justified by the fact that near 7', approximately, ¢, « 7" [17, 23].

Table I
Numerical values of the parameters characterizing the displacive phase transition of SrTiO,, as
used in Ref. [1]

a=3.904 A [22]

M = 183.5 g/mole
p=5.12 gfcm3 [22]

Az = 89 (meV A)2 17

A3 =0 [17]
4=0.04 [17]
I'=0.88 meV [4]

T.=1056 K (4, 21)

Mcy(T,) =11.6 cal/mole K [17, 23]

f=584

MT,) =016TW/cm K [24]
MT.)/pey(T,) = 812 meV A2

The parameters of the fit of the neutron scattering data for SrTiO; [4] obtained in
Figure 1 of Ref. [1] are collected in Table II. As has already been remarked in Ref.
[1] it is not possible to fit the §2-data of Ref. [4] with the more realistic critical value
v = 0.65 of Refs. [11] and [21]. The use of the value 0.92 obtained from the wj-data of
Ref. [4] is justified only by the internal consistency with this reference achieved in
this way.

This consistency is well born out by the values of ¢, given in Table IT which not
only are in agreement with equations (4.8) and (4.9) but also with the changeover
point Ine,,; ~ —1.2 or ¢, = 0.30 of the w-curve in Figure 1 of Ref. [1]. Also the values
of the fraction of the Brillouin zone involved in the integral in (3.32) and measured by
¢ /misreasonable; in the critical region the neighbourhood of ¢ = 0 is clearly enhanced.

The ratio f*/f given in Table II may be interpreted as the fraction of thermal de-
grees of freedom not taking part in the freezing out of fluctuations. It therefore is
expected to parallel the number ¢,,4/7 which is well born out in Table II. This inter-
pretation of f*/f suggests that the effective heat conduction is frozen out accordingly,
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Table I1
Numerical values of the parameters characterizing the critical and mean-field behaviour of SrTiO,
above T, = 105 K, as obtained from the neutron scattering data of Ref. [4] fitted in Fig. 1 of Ref.[1]

Parameter Critical Mean-field
v 0.92 0.50

Ko, A1 0.676 0.405

In g(0), (meV)2 5.2 1.5

€o 0.080 0.30

In ¢, —2.53 —1.20

Gm A1 0.066 0.22
qmalm , 0.082 0.27

I 0.34 1.8

Fadli 0.058 0.31

so that A*/A =~ c}/c, = f*/f, and the value D = A/pcy given in Table I is indeed realistic.
Note that in this point we deviate from Ref. [1], where in addition the fraction (f*/f) M
was related to the oxygen rotations. This fraction, however, has no obvious physical
meaning (but rather (f/f*) M).

With this new value of D we have to re-estimate the parameter y, = Dg? of equa-
tion (3.22). A representative value of ¢ is obtained with the help of the average g
defined in (4.23), taken at ¢,., & 0.013 which corresponds to the temperature resolution
of Ref. [4], see also [1]. From equation (C.9) we find §(e.s) = 0.021 A and

Y res= DT (€res) = 0.12meV (5.1)

which happens to be the same as the value obtained in Ref. [1] from the wave number
resolution g,.s = 0.003 A~ (note that here Dg2,, =0.0073 meV). Since v, represents
a lower bound of y, the minimum 62 =0.3 + 0.1 (meV)? obtained in Ref. [4] is easily
explained by the estimates of Ref. [1], so that there is indeed no discrepancy with (1.5).

With the above interpretation of the ratio f*/f it is also possible that f* goes to
zeroat T, which means that all the thermal degrees of freedom freeze out. In particular,
f* « €2 would lead to a finite limit of 82 at 7. On the other hand, as remarked in Ref.
[1] the value of y,, disagrees with the bound y, < 0.02 meV given in Ref. [4].

Note that both values g(e,.) and ¢, are smaller than the critical g,, of Table II.
And since g, a/m = 0.082 € 1 the hydrodynamic form y, = Dg? as well as the average 7
defined in (4.23) are well justified. We see, therefore, that, apart from (5.1) the consis-
tency of our fit with the SrTiO;-data of Ref. [4] is quite good. As to LaAlQO; the data of
Ref. [5] are unfortunately not sufficient to go beyond the comment made in Ref. [1].

1. SrT105: Electron paramagnetic resonance

The parameters of the fit of the EPR data for SrTiO; [21] obtained in Fig. 2 of
Ref. [1] are collected in Table III. In the fast motion regime the impurity spin senses a
time-averaged displacement fluctuation. This time average smears out the micro-
scopically long range correlations in equation (3.34), so that the impurity centre
appears strongly localized. Hence the §-integration in equation (3.36) extends over the
full Brillouin zone and ¢}, = #/a.

In the slow motion regime the impurity spin senses an instantaneous displacement
fluctuation. Hence the microscopically long range correlations simulate a large ex-
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Table III ‘
Numerical values oft he parameters characterizing the critical behaviour of SrTiO; above
T, = 105 K, as obtained from the EPR data of Ref. [21] fitted in Fig. 2 of Ref. [1]. The slow
and fast motion regimes are defined relative to the reciprocal EPR linewidth 4H

Parameter Slow motion Fast motion
v 0.65 0.65
Ko, A1 ‘ 1.19 1.19
10—° meV 9.0 0.25
H,, 1 2 Py -1
4Ho Gauss 16 _ 0.42 x(1+8&/Iy)
€ 0.022 0.55
ln €o —382 —0.60
G A1 0.10 0.805
Gm a|m 0.12 1

tention of the impurity centre which reaches over many unit cells and g¢;, <€ n/a.
Since equations (3.32) and (3.37) contain the same g-integral it is quite satisfying that
the value of ¢, in Table III is of the same magnitude as the g,-values of Table II.
The value of «, in Table III is obtained from ¢f, = m/a and the fitted value of €f via
equations (4.5) and (4.7). Using the same value of ko and of v in the slow motion regime
the value of ¢, is then determined from the fitted value of €. With this €§ equation
(4.27) leads to C = 18.6 [1] in accord with Ref. [21]. As remarked in Ref. [1] the slow
motion fit is quite insensitive to the value of v; we also produced a fit with the value
v = 0.92 of Table II which covers both the slow and fast motion data of Ref. [21].
Insertion of the values of Tables I and III into equation (4.24) yields

(1 + 82/I'y) =~ 8/ = 4400 meV (5.2)

(note that in Ref. [1] this value is too small by a factor of ). Thisis to be compared with
the value obtained from equations (4.5), (4.13), (4¢.23) and (C.10) and Tables I, II, III
(note that, according to the values of ¢, of Table III, x < 1 holds practically for all
data in Fig. 2 of Ref. [1])

82/y = (g(0)/D«}) €2 = 0.16 € *7 meV. (5.3)

The discrepancy with (5.2) comes from the fast motion fit where ¥ given by (4.23)
is not justified since g,, = 7/a while y, = Dg? is valid only for hydrodynamic values
g < 7/a. Therefore it was argued in Ref. [1] that (5.2) is preferable to (5.3) and may be
used to estimate the average 7 of the central peak width vy defined in equation (D.11)
and approximately given in equations (D.8).

For w2 < 8% which according to Figure 1 of Ref. [1] holds for Ine < —2.2 we deduce
from (D.8) ¥ ~ w}(82/y)~t. With equations (4.2), (5.2) and with A, from Table I, xq
and v from Table III we find, 9" being measured in Gauss [1],

In(7%)=13.1+1.30Ine; Ine<—2.2 (5.4)

(note that in Ref. [1] the wrong factor # in (5.2) is just compensated by having used for
Ko in (5.4) the critical value of Table I instead of the value of Table I1I). Equation (5.4)
or '[e'30 ~ 0.029 meV ~ 5000 Gauss >~ 4.4 x 10'° sec™?, valid for € € 0.1 is the main
result here, giving the first estimate of a central peak width (see also Ref. [11]).
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Equation (5.4) represents the dividing line between slow and fast motion regimes
(the broken line in Figure 2 of Ref. [1]). This interpretation also follows from equation
(4.29) if we identify the average (24/2/m) (y,) with the above %’. The transition tem-
perature between the two regimes obtained in this way is the intersection between the
slow motionline and equation (5.4), i.e. according to Figure 2 of Ref. [1], Ine,, > —4.6 or
€, >~ 0.010.

111. NbySn: Neutron scattering

The available parameters for Nb,;Sn are collected in Table IV. The elastic para-
meters A,, a, B, and the exponent y are discussed in Appendix B. We note that the value
of the exponent v is almost the same as that for SrTiO; from Ref. [21]. The g-dependence
of equation (1.6), 8, = Ag in equations (3.23), agrees with Figure 10 of Ref. [6]. This

Table IV
Numerical values of the parameters characterizing the Martensitic phase transition of Nb;Sn
a=>5288A [25]
M = 397.4 g/mole
p = 4.46 g/cm?
Az Bo = 3.34 x 10'° cm?/sec? (6, 18]
o« =588 (18]
Bo=1.05 [18]
T.,=45K (6, 18]
Mecy(T,) = 25.6 J/mole K [26]
f=3.07
y=1356 [6, 18]
A2 =10.417 x 10'° cm?/sec? (6]

Figure 10 also indicates that A is at most weakly temperature dependent, which is
consistent with the fact that from Figure 12 of Ref. [6] a unique value of A* can be ex-
tracted. This Figure 12 also yields values for A, 8, and y which are consistent with those
obtained from Ref. [18] in Appendix B.

From equations (4.14), (4.17) and with the values of Table IV we deduce

(FFHe? A
Gmalm? L+ 0 9ofA?

=0.30 ~ (5.5)

which is a very reasonable number. Since (1 + €) {}(€) is of order one the most obvious
conclusion from equation (5.5) is that, as discussed in the case of the neutron scattering
data for SrTiO,, f* « €272,

In conclusion we hope to have demonstrated the validity of our hydrodynamic
understanding of soft mode related central peaks. The theory presented in this paper
may be oversimplified in many respects and therefore fail to explain certain finer
features such as the parameters vy,, ¢,, and f*. But the quality of the experimental
results does not allow at present to go beyond the 10 to 309, accuracy of the fits dis-
cussed in this last Section.
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APPENDIX A

Canonical Fluctuation Dynamics

In order to gain a systematic description of the dynamics of the fluctuations #%
and 67 we here define canonical variables and construct a Hamiltonian which leads to
the equations of motion (2.8) and (2.12).

It is important to realize, however, that dissipative terms cannot be described
by a time-independent Hamiltonian because the corresponding terms in the equations
of motion have the wrong signature under time reversal [2]?). We therefore put I"' =0,
i, = 0and D = 0 in this appendix, it being understood that the corresponding terms
can be generated by a linear response treatment based on the dynamics developed here.

The total free energy fluctuation is given by

Fl#,8T] = Fp — jda a:r) (A.1)
where F, is the lattice part (2.7), so that with (2.6)

OF *
. . p(sL+%ar) s (A.2)

Since the natural canonical coordinates turn out to be % and p8s we perform a Legendre
transformation to the internal energy fluctuation

Uli, pbs] = F + | @7 8T pbs (A.3)
vV

so that, according to (A.2) and (2.10),

SU T T awo - T aC” kl
= o674, p83]——p8 + — u? + :
8(p8s) pcy 2¢% 0T 2pct oT

ijkl

015 0. (A.4)

The dynamics of the system may now be obtained by associating canonical
momenta p and = to % and p8s, respectively and by defining the Hamiltonian as

—

S p*
Hp, s, pbs;f) = Ui, pds] + [ 7 = (A.5)
p

14

2) A homogeneous equation of motion of type (2.8) is obtained with a time-dependent Hamiltonian
of the form H(t) = (1/2) (e T*$% + wie™T¢?). T am grateful to W. Schlupp for this example.
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Here the parametric time dependence comes from the external force f(7, ). The canonical
equations of motion now follow with the help of (2.7) and (A.1) to (A.5),

. 8H
U=—-——=—
& »p
] oH 5 aw(z,ST ICV v
p=- i P “’°+a_r > ®
1 oC PR -
———=[V8T)+6TV] ® V + 0(u2)}u+pf
poT
SH
(pds) =+—=0
o
SH T T 0w} T 0C 1 ke
F = o e PO o s s G —0,.0,=8T[u . (A6
T TS pes) petl 2ok AT +2pc;§z o7 ufu=0Tlh sl (A.6)

ijkl

These equations are the same as (2.8) and (2.12) with I'=0, %;;,, =0 and D =0.

In order to develop a many-body theory of classical observables we restrict the
fields %(7, 1), pds(7,f) and the associated momenta to the discrete set of points R spanning
cells whose linear dimension, b, is a multiple of the lattice constant a (an even multiple
for staggered fields). In renormahzatlon group theory this corresponds to integrating
out the irrelevant Fourier components u;; etc. with |k| > A [27]. Writing the complete
set of these discrete coordinates {ui(R t),b pSS(R £)} as vector Q(¢) and the canonically
conjugate momenta {b*p,(R,?),m(R,)} as vector P(f) equations (A.6) are the special
case 4 = P,(Q of the following general equation of motion:

A(P,Q:t) =LA + 34 /a. (A.7)
Here
SH
Emot, 8 SH (A.8)

SP 80 8Q 8P

is the Liouville operator where the dot designates a scalar product in the vector space
of P and Q. In terms of Poisson brackets

54 8B 5B 84
[4,B]=—[B,A] = — " == — — - (A.9)

equation (A.7) may also be written as

=[4,H] (A.10)
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The formalism could be developed further into a Hilbert space formulation of classical
mechanics [28]. This, however, is not our aim here.

Writing the set of external forces {&* pfi(ﬁ,t),O} as vector E(f) and making
use of (2.7), (A.1) and (A.3) the Hamiltonian (A.5) may be written as

H(P,Q;%) = Ho(P,Q) —Q-E(Y) el

where H, is independent of the external force and hence contains no parametric time
dependence. Similarly we have from (A.8)

Lt)= Lo+ E()-8/SP. (A.12)

The classical time evolution depends on the initial values P, Q which we take at
¢t =0. It is convenient to express this dependence by a double time argument [29],

P(,0)= P(P,Q;t); P(0,0)=P
Q¢,0)=0Q(P,Q;%); Q(0,0)=0. (A.13)

Without parametric time dependence, E = 0, the time evolution can be obtained in the
form of a Taylor series, expressing the nth time derivative with the help of (A.7) as L,

40 =5 12 400 = explLofe - ) 400, (A14)

n=0

Including parametric time dependence iteration of equation (A.7) yields success-
ively more complicated expressions,

A=L24A+ LA+ A/at?

A=L3A+3LLA+ LA+ 408

etc.

Restricting the class of functions 4 by the condition 04 /0f = 0 the time evolution may
be expressed as

A(t) = Ut t)Alty) (A.15)

where, according to (A.7), the operator U obeys the equation
0
5 Ult,tg) = L) U(2,2,)- (A.16)

Integration with U(¢,#) = 1 yields

Ult, o) = Texp{ j ar L(t’)] (A.17)

to
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where T is the chronological ordering operator and the group property
U, t) U, t) = Ut t,) (A.18)

immediately follows.
Application of equations (A.15), (A.17), (A.18) and (A.12) to the response function
(3.1) yields in the notation (A.13) and labelllng vector components,

00,(t,0) 83U, (t,0)
SE,(t)  SEst) 7

8
= 0(t =) 0) Uny(t,) 5= (Uns (£, 0) Qo)
B

= 0(t— ) 0() U, (6, ¥) 8Q,(t, 0)/S P, (A.19)

This equation depends on three times but, due to the deterministic nature of the classical
time evolution, only the time of preparation, ¢ =0, and the time of perturbation, ¢/,
arerelevant. Thusit is natural to define the classical response function X( ) as the change
in the initial values, induced by the perturbation,

Xaﬂ( t) = t,l_lbrtriosQa(t: 0) /aEB(t’)|E=o

= 8(¢) 80,(t,0) /5P,
=—0(2)[Q4(t,0),05(0,0)] (A.20)
where we have made use of the relation
84,/6P; =[Q5, 4,] (A.21)

which follows from (A.9).

In order to be physically meaningful the result (A.20) has to be freed from the
particular initial values by taking a statistical average over the fluctuations P,Q.
These fluctuations essentially form a Gaussian distribution around zero with a width
depending on temperature. Hence, as in renormalization group theory [15, 27], the
distribution is that of the canonical ensemble3)

Po(P,Q) = exp{(¢o — Ho(P,Q)) ks T}. (A.22)

3)  In the case of friction type [380] or Ginzburg-Landau type [15] equations of motion the distri-
bution function G (%, %, f) at time ¢ of the variables » with initial values %, (G is the fundamental
solution, i.e. G(uy, u, 0) = 8{u — u,), of the associated Fokker—Planck equation) can be constrc-
ted with the device of ﬂuctuatmg forces [30]. G has the property that (i) G(ug,u, ) = Py(u),
independent of #,, and (ii) [dug Po(ue) G (%o, #,t) = Pg(u), independent of ¢. Thus the averaging
over the initial values with the eqnilibrium distribution Pgy(%#) leads to equilibrium values.
Furthermore, Py(u) = exp[(¢o — Ho(u))/ks T] is essentially a Gaussian distribution; for a
velocity # (Brownian motion) H o(u) is the kinetic energy [30], for a thermodynamic variable »
(diffusion) — Hy(u)[kg T is the entropy [31, 15]. The mentioned equations of motion [15, 30]
are all of first order in the time derivative (rate equations). It is the virtue of the canonical
formalism to cast the second order equations of motion of mechanics also into the form of rate
equations. The difference is that the equations of motion mentioned before [15, 30] are essen-
tially dissipative. It is therefore important to note that the parameters describing this dissi-
pation (the friction coefficient f of Ref. [30] or the time scale I'; of Ref. [15]) do not enter the
equilibrium distribution function Py(#). In fact, the only relevant feature for the above pro-
perties (i) and (ii) to hold is that the equations of motion have the form of rate equations so
that there exists an associated Fokker—Planck equation. This justifies both the use of averages
(A.24) over initial values and the form (A.22) of the equilibrium distribution.
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Here the normalization

j

determines the unperturbed ‘free energy’ ¢o(7) [27] (¢, of course has nothing to do with
the thermodynamic free energy of the system) and the average is defined as

fdp d0P(P,0) =1 (A.23)

o0

(ADe= f dPdQ(A P,). (A.24)

—

A straightforward application of the definitions (A.8) and (A.9) leads to the
identities

Lo(AB) = (L,A) B+ A(LyB)

L,[A,B]l=[(LyA),B]+[4, (Lo B)] (A.25)
which by iteration can be generalized into

eLot(A B) = (eLo* A)(e“o*B)

elot[A, B] =[(eLo* A), (eLo* B)]. (A.26)
On the other hand it follows by partial integration that for any 4 bounded by a poly-
nomial in P,Q

j dPdQ Ly(APy) = 0. | (A.27)

— ®©

Since according to (A.10), (A.25) Ly(H3) =0 forn =0, 1, ... it follows by iteration of
equation (A.25) with B = H§ that for any power series f

Lo(Af(Ho)) = (Lo A) f(Ho)- (A.28)
With this result iteration of (A.27) yields, in the notation of (A.24),

(eLot Aq = {(A4),. (A.29)
In particular, application of (A.26) results in the time translation invariance [29]

CA(#) B{t'))o=<A(t+ 7) B(t' + 7))o

[A®), BE)Do=<[A{E+ 1), B’ + 7)o (A.30)
where the unperturbed time evolution (A.14) is understood.

Taking the average (A.24) the initial time arguments in equation (A.20) may
obviously be dropped,

Kas)>o = — 0(O)<[Qu(t), Q5(0)]o- (A.31)
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This response function has the correct causal behaviour, so that its Fourier transform

=J'dtetm<§(t)>o (A.32)

satisfies the dispersion relation

x(2) = X @, miso. | (A.33)

mw w—2z

From (A.31), (A.33) one finds, with (A.30) and the antisymmetry (A.9),

2iyzp(w) = — {[Qu(w), 05(0) D0 (A.34)

where ((w) is the Fourier transform of Q(f). Making use of (A.21) equation (A.34)
takes the form, after a partial integration and use of (A.22),

. 3Ho
21 A.35

Writing 8H,/8 P = L,Q and shifting the Liouvillean to Q(w) with the help of (A.27),
(A.28) we obtain

D) 05(0) 0. (A.36)

i) =
B

Defining the correlation function

~

P
Sep(t) = 7 Qu(t,0) 04(0,0) - (A.37)
and using for it the analogous definition (A.32) we finally arrive at the classical fluctu-

ation—dissipation theorem [29]

pk gT

TW

S(w) = X"(w) (A.38)

in agreement with the limit % w <€ k5 T of the quantum mechanical case [32].

APPENDIX B

The Elastic or Staggered-Elastic Matrix for Cubic Symmetry
The matrix (3.17) may be written
Ayt (A — Ay) 22, Ay xy, A3 %2

Rig) =| Aayx A + A — X)) y2 Ayz |2 (B.1)
A3z2%, A3 29, A, + (A — A,) 22
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where

§=4lg=(x,,2) (B.2)
and

Ay=0C11, Ay =44

A3 =Cyp+ Cas (B.3)

are the cubic elastic or staggered-elastic constants.
Introducing the unit polarization vector

€= (u,v,w) » (B.4)

the eigenvalue equation

R(q) &) = r(g) £(g) (B.5)
takes the form

T
-
Al"""'Azu y

s=2%+

As Y
1. 4%

A3 4 .
= B.6
Al_Azw(ux+vy) (B.6)

=zz+

where the eigenvalue is written as

r=[A+ (A, — Ap) s] 4% (B.7)
Defining the quantities
As
p=1- (B.8)
AL — A
Ay
- 20 - (B9
=525 (B.9

and making use of (B.2) and (B.4) equations (B.6) can be solved for %, v and w with
the result that

5(é)=€( - 4 : ) . (B.10)

s—pux?' s —py?'s — u2?

Insertion of (B.10) and (B.8) into (B.9) then leads to the cubic equation in s

$2(s = 1) = (2 — ) P(§) s — 423 — 2) 0(@) (B.11)
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where
P@) =22y +y*22+ 222> < 1/3
Q(q) =x*y%22 < 1/27. (B.12)

For given values A, A;, A; equations (B.8), (B.11) and (B.12) constitute an
elementary determination of the eigenvalues (B.10) in terms of the wave normal (B.2).
The three solutions of (B.11) can for example be determined graphically as intersections
of the variable straight line on the right hand side with the fixed curve of third degree
on the left hand side. In particular one finds for the symmetry directions one longi-
tudinal and two transverse solutions as given in Table V.

Table V
Eigenvalue parameters of the elastic or staggered elastic matrix for the longitudinal and transverse

modes along symmetry axes, for cubic symmetry. The labels are those of Refs. [17] and [6],
respectively ‘

Const. § 7lq® Label Al Label Const. &,
(1,0, 0) A 4, A 45, T (0,1, 0)
0,0, 1)
(1' 1’ 0) %‘(Al + A2 + A3) ZI AZ 22» Tz (0, 0: 1)
1A+ 22— 23) >3 T, (1, =1, 0)
(1,1, 1) A4+ 224+ 20) A4, A+ 22— A3) As él: -1, 0)
1,0, —1)

From Table 2 of Ref. [17] we deduce, for the high temperature phase of SrTiOj;,
Al=8+2 2,=205+27, A, +A+2A;=224+44 and A, +2X,— ;=393 + 69 in
units of 108 cm?/sec?. The last two values combined with the first two yield, in the same
units, A; = 11 + 52 and 25 + 88 which both are compatible with A; = 0 or, according
to (B.8), with u = 1. In this case the solutions of equation (B.11) are trivial, namely
s =2, y%, 2%, so that the eigenvalues (B.7) reduce to the expressions given in Ref. [1],

n(@ =2 0-01-4)¢¢ (B.14)
where
4 = A/, (B.15)

is the anisotropy parameter of Schwabl [9] and has the value 0.039 + 0.015 [17].
In equation (3.33) we need the inverse of the matrix R(g). Introducing the abbrevi-

ations

a, =[A; + (A, = A,) #%] @2, etc. (B.16)
for the diagonal elements of R and

by = A3 y2q°, etc. (B.17)
for the off-diagonal elements the corresponding elements of R~ are

A, = (ay ay — b))/||R|, etc. (B.18)
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and

B, = (b, by —ay b))/||R]|, etc. (B.19)
where

|IR|| = a, a,a; + 2b, b, b5 — ; a; b? (B.20)

is the determinant of R. With equations (B.16) to (B.20) the evaluation of

(g, R™Y( Z A;q} +2(B, g, 95 + cycl.) (B.21)

is straightforward and yields

ady(§, R7(g)9) =N (é)/ [N @) += d +4 ;BQ (B.22)

Here we have introduced two new parameters

o= (A; — Ay + A3)/(2A,) (B.23)
and

B=v2A=(As+ A, — A3)/(2A;) (B.24)

and the function

N@ =1-4(1-p) P@g) +12(1 - B)*Q(3) (B.25)

where P(§), Q(§) are defined in (B.12).
The parameters o and B are chosen such that « is to a good approximation inde-
pendent of temperature while 8 becomes soft as

B=Boe" (B.26)

With the identification of the modes in Table V we have extracted from Figure 1 of
Ref. (18] «=5.88 + 1.6, valid for T, < T<2 T, Bo=1.05, y=1.35 and A, =3.17 x
1010 cm?/sec?.

It is then obvious that the right hand side of (B.22) is never larger than one. And
from (B.25) one finds that the numerator N(§) > min (3, 8). Hence the expression (B.22)
is always between zero and one and the angular average

=

99 = .- § 42 ahld. RD) ) (B.27)

is a slowly varying function of order one.
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APPENDIX C
Evaluation of Wave number sums
In equations (3.32), (3.36) and (3.37) expressions of the form
I, = @2ule)> V' 3 (w}(g)/ wd)" | (C.1)

->

q

occur where integration is restricted by a cutoff. The simplest form of cutoff is obtained
with the ellipsoid defined in (B.14),

@M=+ e+ 49 <q; (C.2)
or in terms of the variable x defined in (4.7),
V=) lei=+n+<x? (C.3)
where, according to (4.2),
E=q.fc, M=k, {=Vdg/x. (C.4)
With (4.4), (C.3) and (C.4) the integral (C.1) becomes
1/x
I(x) = (4=/V/4) j (1 + )" 2 dy (C.5)
0
or
V1S w'(g) = (k/2m)3 w2 I,(%). (C.6)
q
The functions needed in Section 3 are
1 1
I_,(x) = (4m/ \/A)(— - tan‘l-—) (C.7)
x X
and
v i 1 x c8
I_,(x) = 2=/vV4)| tan F Ta) (C.8)

The average defined in (4.22) is also best evaluated in the coordinates (C.3),
(C.4). Writing g% = «2v?[1 + ((1/4) —1) t*] where ¢ = {/v one finds

+1 1/x 1/x
‘2_1 dt 2\ -2 2\-2 )
(x[2) —E_.[1+((1/A)—1)t2j 1+v) dv/! (+»)7d

1 x

—1_
_ tan™'v (1/4) —1 tan x + 1+ %2
S vuah-1 0, 1 #

an~!

x 1442
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or

(g) tan”'v/(1/4) -1 { 1+ 0(x?) (C.10)

VA —1 | (1/3¥) (1 +0(x7?).

Note that with other forms of the cutoff the integrals (C.7) to (C.9) become more

complicated expressions which, however, vary little numerically. An exception is the

integral in equation (3.33) which in terms of the angular integral (B.27) is simpler with a
spherical cutoff |§|? < ¢ instead of (B.2),

V13 (@ RQ) 9) = (gal6m?) d(e). (C.11)

APPENDIX D
The Three-Pole Structure of the Response Function
Equations (1.1), (1.2) may be written as
pxi = (Yo — tw)[D(w) (D.1)
where the denominator is factorizable,
D(w) = (@? — w? — iwl) (yo — iw) — iwd}
’2

= (w2 — w? — iwlg) (y§ — iw). (D.2)

The last equality leads to the following three conditions for the renormalized coefficients
w;, I'gand yq:

vo+Tog=yo+ I

volo+ 2=y [o+w?+8

Yowi® = yo w?. (D.3)
Expressing the numerator of (D.1) in terms of the factors of D(w),

Yo — tw = (@, + twb;) (y§ — iw) + b(w? — w? — iwl) (D.4)
the real coefficients a; and b; are determined by the conditions

a;+b,(I'c—yg) =1, a; v+ bywi = y,. (D.5)

With these decompositions (D.2) and (D.4) the response function (D.1) splits into a
central peak part and a soft mode part

X=X+ X (D.6)
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where

PXT" = b,[(ys — iw)

pxim = (a; + twb) [ (w? — w? — iwl) (D.7)

explicitly exhibit the three-pole structure of y;,.
The iterative solution of equations (D.3) used in Ref. [1] is

w? =} + v, L6837 + O(y3)
Y6 = vow} [} + O(y2)

Tg=To+ 082/ + O(»2) (D.8)
where
Q3(g) = wi(g) + 8. (D.9)

Substituting into (D.5) we also find

a;=1— ’)’01—‘083/!2:“*' 0(73)
b= 7083124 + 042, (.10

The fluctuation—dissipation theorem (3.29) then yields, to lowest order in vy,

T 33 Yo
SP(q, w) = o D.11
and
I
5y ) = D.12

in accord with equations (6) and (7), respectively of Ref. [4] (except for the wrong factor
y’? in the numerator of equation (6) of Ref. [4]). The integrated intensities of the two
parts are (equation (8) of Ref. [4])

. . 5

I*(g)= T sz"(q, w) d"’"‘”ggowg (D.13)

0

and
2 1 |
I™(q)= T JS;‘"‘(q, w)dw= 17 (D.14)
i
0

2 1
I+ I = _ﬁ%ww=§. | (D.15)
i
0
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