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Perturbation Expansions in Quantum Statistical Mechanics

by Irja Nieminen')
Institut fiir Theoretische Physik, ETH, Ziirich

(26, TX. 74)

Abstract. The perturbation expansion introduced by C. Bloch and C. de Dominicis [1, 2]
for the reduced density matrix (RDM) is investigated for multi-time-temperature complex variables
for T > 0. A uniform upper bound is found for the truncated RDM, and in the Euclidean case lower
bounds are derived for potentials of one sign. It is found that, for a bounded number of particles
in any intermediate state, the partial expansion defines an entire function of the coupling constant.
At least in the case of bosons, however, the complete expansion diverges.

Introduction

We investigate, in this paper, thermodynamic perturbation expansions in quantum
statistical mechanics for finite non-zero temperatures. More precisely, we study such
expansions in the form introduced by C. Bloch and C. de Dominicis [1, 2].

We consider a system of identical, spinless, non-relativistic particles, interacting
through a two-body potential in a cube of volume V' = L3 We set m=1/2, a=1.
The particles are either bosons or fermions with ¢, (k) as the annihilation operator for a
particle of momentum k, and with c¥(k) as the respective creation operator. These
operators satisfy the usual commutation relations. The Hamiltonian of the system is
given by '

H,=H2+U,, (I.1)
where
HY =3 E,c}(k) cy (k) (1.2)
k

1s the free particle Hamiltonian and

Uy Z (k, k2| Ulks k,) ctky) cE(k,) ey (Ky) oy (K3) (1.3)

4

1
Y%
k

1

describes the interaction. The momenta in these sums run over the allowed valuesin a
box V' = L3, and E, =k?2 is the energy of a particle of momentum k. The potential

1) Permanent address: Department of Theoretical Physics, University of Helsinki.
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function in (I.3) satisfies

(k1 k2| U|k3k4) = (kz l"1|U|k4k3) = U(kl - k4) S(kl + kz, ka “+ k4): (1-4)
U(k) = U(-k) = U*(k), (1.4a)

where the Kronecker 8 expresses the conservation of momentum.

We investigate the Bloch perturbation expansion for the reduced density matrix
(RDM), which is defined as the thermodynamic expectation value in the grand canoni-
cal ensemble

Py =exp[B(Ry — Hy + uNy)] (1.5)

of a product of operators (1.7) given below. Here 8 = 1/&T is the inverse temperature
(T = temperature, £ = Boltzmann constant) of the system, u the chemical potential,
Ny the particle number operator, and the thermodynamic potential Ry, is determined
from condition Tr P, =1. We choose as fixed thermodynamic parameters 8 and pu,
restricted to values 0 < B < o, —e < pu < 4+ for fermions and p < 0 for bosons.

Let 7,, 75, ..., 75, be a set of complex quantities (Rer = inverse temperature and
Im 7 = time) satisfying

Rer, > -->Rer,,; Re(r,—m,,) <B. (1.6)
Define operators
cy (k;, 7)) = exp[r,(Hy — uNy)] ¢t (k) exp[—7,(Hy — pNy)], (L.7)

where symbol # in ¢§(k;) means that it can be either a creation or an annihilation
operator. Then the RDM is defined as

RDM = V"<<c$(k1: 71) e Clt (k2m TZn)))V: (IS)

where {A4», = Tr(4 P,). In order that (I.8) be non-trivial, it must contain # creators
and » annihilators.

To obtain the Bloch perturbation expansion for (I.8), one considers [2] the ‘time’
evolution operator

U(r, ) = exp(rHP) exp[—(r — 7') H,] exp(—THY) (1.9)

with complex 7 as described above. This quantity satisfies the Bloch equation, which
for Rer = 0 is identical with the equation of motion in the interaction picture. Conse-
quently, the Bloch equation can be treated formally as in ordinary quantum mechanics.
This leads to the Dyson expansion for U(r, '), which is then used in (I.8) to obtain a
perturbation expansion. This expansion is discussed further in Section 1, where we
write down the final perturbation expansion for the truncated RDM.

In Section 2 we prove three theorems. In Theorem 2.1 we find a majorization for
our expansion, and Theorems 2.2 and 2.3 give minorizations for the Euclidean truncated
RDM.

In Section 3 we turn to convergence questions. We find that for potential U,
(given by (2.1) below) the partial sum over graphs with less than N (a finite integer)
particles in any intermediate state yields an entire function in the coupling constant
A. In Theorems 3.2 and 3.3 we find that, for potentials U, and U, (given by (2.2) and
(2.3) below), the truncated RDM expansion is not analytic in A at A = 0. The expansion
clearly diverges, at least in the case of bosons.
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1. The Perturbation Expansion

In this section we shall write down the Bloch interaction expansion for the trun-
cated RDM.

As explained in the Introduction, one uses the Dyson expansion for U(r,7’) to
get a perturbation expansion for (I.8). The expansion thus obtained is then developed
further with the aid of the Wick-Bloch—de Dominicis Theorem [1-5] to obtain the ex-
pansion in a form in which each term corresponds to a graph. The Linked Cluster
Theorem [6, 7] yields then the result

RDM = Gy, G, **G,,, (1.1)

A
in which G, (i=1,...,7) are connected graphs each containing at least one pair of
external vertices; each external vertex appears in one and only one G, . The sum is over
all possible products with 1 < 7 < #. The procedure to arrive at (1.1) is well known;
we refer to the book by Mills [8], in which this derivation is given in detail for » = 1.

We now define recursively [9] a truncated RDM, which we denote by the super-
script T

ey (ki 74) cy (ka, T2) DV = «Ct(kp 1) ¥ (Ka, T2) Dy
et el cfdy=Let et v

# # Lo T
- Z Part €AP<<(:;’1:11 C;’*n U 0#15(1)>>IT’ Tt <<cPr1 Cppy ™" CP,,(,)»V! (1.2)

where >, extends over all partitions

{P117 P12, . e '!PIS(I)}{PZIJ PZZ’ * 8 st(Z)}' L {Prl’ PF'Z’ § ey Prs(r)}

of {1,2, ..., 2n} with » > 1 and
P11< P12< .'.<P13(1);"‘;Prl<P]‘2< .‘.<PI'S(I‘)'
e = 1 for bosons and € = —1 for fermions. In f we have P =0 for an evenand P=1

for an odd permutation from 1, 2, ..., 2n to Py,, Py, ..., Py With this definition we
arrive at

) r(m)
Vigey Ky, 7)) oo c¥ Ky T D0 = S S Gk 1y ki Ty (1.3)

m=n—1 r=1

which is a sum over all connected graphs containing all external vertices. For each
graph we have two indices, # and 7. m is the number of interaction lines in the graph

B Re ReT; ReTs =0

Figure 1.1
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and is called the order of the graph. There are, in general, a large number of different
graphs having the same order. These we have distinguished with the additional index 7.
The analytic expression corresponding to a graph G{™ is

i=1

i i
AT L H LT
G = (—1)meltS+C ] ( f do J daj+-- J. dcr,f,') .
Ty

T Ty

2n mi
prm S [Hexp[in(Ei—p)]H(k}lk}AUlk:-akL)
j=1

. 2m+n %
explo}(El, + EL — Efy —E4)] 11 8(1, lf)f;(lv)] . (L4)
v=1

An example of a graph is given in Figure 1.1. At each interaction line we have two in-
coming and two outgoing particle lines as shown in Figure 1.2. The integration path
in (1.4) for the complex o-integrals must be chosen so that Reo increases along the

Figure 1.2

path of integration [2]. In exp[+7;(E; — n)] we have (+)-sign for a created and (—)-sign
for an annihilated external particle. The integer m,; gives the number of interaction
lines in interval (r,_;,7;). We have > m; = m. Further we have denoted E/; = (ki)>.
In the last product in (1.4) 1, and 1% are the incoming and outgoing particle lines, which
are connected to produce particle line 1, in the graph. Each particle line in the graph
gives rise to a factor f3(l,), where

1
fe(l) = (1.5)
1 — eexp[B(p —13)]
corresponds to a particle line going from right to left, and
fz (1) (1.6)

~ exp[B12— p)] — e

corresponds to a particle line going from left to right. The former are called (4)-lines
and the latter (—)-lines. € = 1 for bosons and e = —1 for fermions.

Then we still have the sign factor in front of (1.4). To find the sign of the graph in
the case of fermions, we proceed as follows. We complete the graph with extra particle
lines connecting the external vertices pairwise with dotted lines as indicated in the
special example shown in Fig. 1.3. L is then the number of closed loops and S the
number of (—)-lines in the completed graph. C is the number of crossings among the
completion lines. In Figure 1.3 we have L =3,S=5and C =1.
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There arem 8-functionsin (1.4) coming from (I.4) and 2m + » §-functions appearing
in thelast product. These reduce the number of independent momenta. One of the former
8-functions reduces to §(Z + k;), in which created and annihilated particles appear with
opposite signs. Thus we have m — # + 1 independent momenta. If we write

G™&*, 1), = V(S + k) G™K*, 1)y, (1.7)

then G is independent of volume in the limit V — oo.
p

-

Figure 1.3

The grand partition function can be obtained as a special case of the RDM, and it
is given by [2]

Ge. (1.8)

where Zy is for non-interacting system, S, is the symmetry number of graph Gy,
and the sum runs over all connected graphs containing no external vertices. The
pressure is then given by

Py, = lR-"l
v= VV_BV

The thermodynamic limit exists also for pressure.

Our description differs somewhat from the conventional one (see, for instance
[6, 8]). We have definite signs for the particle lines in the graph. This is not the case in
the description normally used. One usually takes the o-integrals from 0 to B and re-
places the last product in (1.4) by a more complicated expression

log Zy. (1.9)

2m+n
11 8(1,, 1) [0(0; - 0,) fF(1,) + €B(a, — 07) fe (1,)] (1.10)
v=1
to take care of the different possibilities for (+)- and (—)-particle-lines. Here

O(0) = +1 foro>0 (1.11)

0 foro<0
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o, is the complex ‘time’ at which 1, is annihilated and o} is that for the creation of 1,.
Thus in the usual description all such graphs are identical, in which only the directions
of the particle lines are varied. If we expand the analytical expression of such graph by
taking explicitly account of the @-functions in the o-integrals, we get a sum of terms in
which each term corresponds to a distinct graph in our representation.

2. Uniform Bounds for Diagrams at T > 0

We consider the thermodynamic perturbation expansion for grand canonical
pressure and multi-time-temperature RDM at 7 > 0. In this section we shall derive
uniform upper bounds for every term (characterized by a diagram) in such expansions.
Uniform lower bounds will then be established for positive (or negative) potentials for
the pressure and the Euclidean RDM.

Without striving at the utmost generality we investigate a system of i1dentical
non-relativistic spinless particles with mass 1/2, interacting through a two-body
potential U(x) in three-dimensional space. We set 5= 1. Let IV = L3 be a cube

{xeR? |x;| < L/2}

and I = I'(V) the set of lattice points k = 27n/L with n € Z3. The two-body potentials
U (x) with Fourier transform U (k) are assumed to belong to one of the following classes:

U, : The potential function is continuous and satisfies
U(k) = U(-k) = U*(K),
1Ull =sup |U(K)| < e,
K

HUIII=Slszl,kZEr |UR)| = sup U]y, < . (2.1)
s

UeU, UK >0 U0 >0 (2.2)
U,:

UeU,, Uk) >ae forsomea>0,b< . 2.3)

Obviously U(x) € L?(R3), if U € U,.

Theorem 2.1: Assume U e Uy, 0 < B < o, u € RYu < 0 for bosons) and n=0, 1,
2, .... Then there exist constants A, B < o such that every term in expansion (1.3)
with (1.7) satisfies
2n
- 1 e mi
G, 71 Kaw Tanly | < AanL“_l (24)

m,!
i=1 l

where the 7’s satisfy (I1.6), 7o =, 7,,=0,0< V < wand > + k; =0.

Proof: The whole o- and 7-dependence of G{™(k*, 7), is in the exponent of (1.4)
and can be easily estimated. We write
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and obtain

2n
exp{— S [efELF 1, E]

i=1

=exp{—zz"[(n_1—oi)cf:;+m‘z_ (0} — ;+1)é",‘-+<o;.i—n)£:,,,]}, 2.6

i=1 j=1
(2.7)

where E, appears with a (—)-sign for a created and with a (+)-sign for an annihilated
external particle. The energies & can be read off directly from the graph: for & one
has to cut the graph vertically between 7,_, and o}, and for &4(j > 1) a similar cut after
of. Then & is the sum of the energies of the cut (+)-lines minus the sum of the energies of
the cut (—)-lines. The cut (+)-lines and (—)-lines define an ‘intermediate state’ of the
graph.

The absolute value of (2.6) is smaller than

eXP{ min (&) B} 22 %‘ exp{-&7} B}, (2.8)
since
2n m;—1
Re 3 |(ria—ol) + 5 (o}~ ol + (oh, — 70| = .
i=1 Jj=1

When 0 < B < o, u € R and k € R?, we have from (1.5) for bosons

1
1 +k 0
SO <oy <Y

and for fermions
0<ftk) <1

Consequently,
0 < f7 (k) < Cexp[—B(k? — w)],

where the constant satisfies C > 1 for bosons and C =1 for fermions. Thus the absolute
value of G (k¥ 1), (V < ) is smaller than

2n 2n mi
|"'i—1_”'t|
n—m ¢~ 2m+n i i i
yromcamen | I_—m,z z [Ttk Ulkls ko).
=1 kml”4 i=1 J= 1

2m+n 2n my

H1 8(1%,1,) exp{_ﬁ[g; +3 (12— p.)]}, (2.9)

i=1 j=0
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where > _ extends only over the (—)-lines in the graph; I* and I, are the outgoing and
incoming momentum belonging to the same particle line. The energy (&% + > _13)
can again be read off from the graph: at the appropriate cut it is the sum over the ener-
gies of all cut (+)-lines and uncut (—)-lines. This factor, together with the potentials

[TI(kS k5| Ukl ko) | ~ TT|U (k) — ki),

will provide a uniform majorization for the sum (integral) over the » + 1 — » indepen-
dent loop momenta, after the complete use of the §-functions.
Consider one of the m + 2n — 1 cuts, which gives rise to factor

exp[—ﬁ(@@} + 213)].

Those closed loops which are crossed by this line contain at least one (+)-line which
1s cut. Those loops which are not cut contain at least one (—)-line each. Denote these
distinguished particle lines by p;, p,, ..., p.. The remaining m + 1 — #» — L independent
loop momenta are labelled according to the following algorithm. Start at any open
orbit at one end or at any closed orbit at the distinguished particle line in the direction of
the arrow. Denote by p, ., the first internal momentum, which is not determined (via
the é-functions) by ki, ..., K,,, Py, ..., p.. If there is none, proceed to the next orbit.
The subsequent particle line is either independent or a linear combination of k,,
.- Ky, Py, -.., Pryg. I 1t 1s independent, denote it by p,,,. The next particle line is
again either independent, when it is denoted by p; .5, or it is a linear combination of
ki, ...,k Py, ..., Pria. We proceed in this manner, until all particle lines are labelled.
After this we write down the potentials corresponding to the interaction lines in the
graph in the same order as the labelling was performed. Each potential is written down
when it appears for the first time in our path. In this way we obtain the following
product of potentials

Ulq) U@3) --- U@o') U@o —Pr+1) Ulay _PLtz) vor U@pi—i = Pryp)
U@u,) U@z, - U@2) U@y, —Prouys1) U@y o1 — Pranys2) -- -
U@y, -1 —Priw,) UML) U@Z,) ... U@hs1—n) Uldmt1—n) - - - Uli1-). (2.10)

where q}, (with or without superscript ») is a linear combination of ky, ..., k;,, Py, ...,
Pr., There appears in (2.10) chains of potentials

U@do—Pr+1) Uds —Pr+2) - - - U@y, —1 —Prsu,);

U@y, = Prewiet) Uuy+1 = Pranys2) -+ - Uy -1 = Pray)s -+ (2.11)
corresponding to chains of independent momenta:

Pri1sPrszs -« :Priyys

pL+u1+1,pL+u1+2’ < 'JpL+.u2; G ' (212)

on various orbits. We split the product of sums (integrals) over the independent
momenta to two independent sums (integrals)

AR

P1s---»PL PL+1s---sPm—-n+1
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as follows. We replace the product U(q}) U(q3)... U(q}) by [||U| )" In place of (2.12) we
introduce new variables of integration

’
Prip=4Qu—1 —PrLip

The momenta in [£} + > _12] different from p,, ..., p, are replaced by zero. We thus
get for G (k¥ 1), the followmg majorization, when u < 0

m+1—n—L
C2m+n nl i—1 |U“ )n+L 1 ( z |U pL+u )

exp-Llu ] | (Il, S exp(mﬁp%)) S on+
or

CZ’“*“H' LI (e (Ut

exp(—Lp|u|) d“(m + 2n), (2.13)
where

d=sup % > exp(—fp?) (2(14)

In the case of positive chemical potential (fermions only) the factor exp(—Lf|u|) is
to be replaced by exp[(2# + n) Bu]. For bosons C > 1 and for fermions C = 1.
Expression (2.13) can be brought into the form of the right-hand side of (2.4).

QED

Theorem 2.2: Let Ue U,, 0 < B < w0, peR! (u <0 for bosons), and 0 < V' < co.
Then every graph for the pressure or the truncated Euclidean RDM

(Im'rl:"'=Im 1-2'!=0)

satisfies

~(m) o # " # U(ﬂ)m = lTi'l_Tilmi 2m+n 15
IGE0%, 7,;.. ;0% 7,0, > Vm_"ﬂexp(zif,-p,)l—[ —Tf ., (2.15)
i=1

where f = min{f;(0)}

Proof: We observe, that for potentials of uniform sign and real temperatures 7,
G (k*, 1), is a sum over a function of uniform sign. As Iower bound for |G¢™ (0,7 i
we restrict the k-summation to the contribution with ki, = -+-=k3" , =0, which is
consistent with the §-functions. This leads to (2.15).

For V — o estimate (2.15) breaks down. For convenience we shall then restrict
our discussion to a class of potentials, to which the techniques of Feynman integrals
can be applied. |
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Theorem 2.3: Let U e U;, 0 < B < o, pe R (u < 0 for bosons), and Imr, =

Im7,, = 0. There exist constants 4 > 0, B > 0,C < o such that every graph G/ (k*, 7)
of order m for the pressure or the truncated Euclidean RDM satisfies

7i l—nl ( [ zn ])"‘
i Tl 2 AT exp|—C > ki|) . 2.16
K3 T2n) ]__[ P Zl i (2.16)
Proof: From (1.5) and (1.6) one finds lower bounds
fi(K) > cexp(—Bk?), (2.17a)
where

|G(kF, 7y

1
O0<c< .
1 + exp(B|p)

Further we have

Uk —1) > aexp[—b(k —1)?] > a exp[—2b(k? + 1%)],

(2.17b)
explo} (E}y + EL — EL — EL)] > exp[

-B i Ejv] (2.17¢)
and

exp[+7, E;] > exp[-BE/]

(2.17d)

Using these lower bounds and the fact that the integrand of G (k¥, 7) _ has a uniform
sign, we get according to (1.4), (1.4) and (

1.7) in the limit ¥V — «

S m) (1 # # = L i .
|Gk, 705 kY, Tl = [0 £ k)] | ] — 7P _Biz1ki
i1 i- =

1

X (2,")3(M—n+1) j dg: T J. daPZM—n a" ﬁ exp[—b(Q‘{ —q'i)z] ﬁ 8((]1/)

v=1

i=1

* 12:[1 ! exp(_ﬁ él Ej") “Hexp ("3 b kz) exp (—B 2"12_" pv), (2.18)
whereq{ —

q3 is the momentum transfer at jth vertex and 8(q,) expresses the conserva-
tion of momentum at the vth interaction line
X 2m—n 2n
qi,qz € ( U pv) U (U ki)
v=1 i=1

andq, is a linear combination of vectors belonging to the same set. The same momentum
p, belongs to two different vertices and each k; belongs to just one vertex. The energies
E:, are eitherpZor k? (v=1,2,...,2m —n;7=1,2,...,2x): each p3 appears twice and
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each k7 only once in the sum

2n mgp 4

2 2 2 Ej

i=1 j=1 s=1

From (2.18) follows

am C2m+n 2n

im _ |Fi1 — 7™
GEct 7. iy radal 2 B 4 K0 o | | =5

m 2n 2m—n
<[ @pro [ @pona T 5la) exp {—g[g ki+ 3 pﬁ] ] , 2.19

where a, ¢ and g are constants independent of the graph. The Gaussian integral in (2.19)
can be obtained from a calculation given by Symanzik [10] (or use [11]). The result is

m 2n 2m—n
[ @ [ a1 8@)esp| | 13+ 3 93]

- (3/2) (m—n+1) "
= (E) 3(2 + k) [T(G(,m)]—s/zexp{— 2z AS(g) ki-kj} (2.20)

where T(G{™) is the number of trees in graph G¢™. It can be shown that 3 A5k, k;
1s a positive definite quadratic form of the k,’s. The proof for this is the same as given in
the book by Bogoliubov and Shirkov [12] on pp. 324-6 for an analogous problem.
According to this same source

2n
0< > A5kk < 3 A5 (9k kK, (2.21)

i,Jj=1 i, j=1

if G’ is any tree of G. For tree G’ with m — 1 internal lines the momenta p,, p,, ...,
Pn-i are linear combinations of k;, k,, ..., k,, with coefficients +1 or 0 satisfying
P <2n X" kZ Hence

m—1

2n 2n
> AT @k k=3 gki+ 3 gpi<2gmn 3 ki (2.22) -

i, j=1 i=1 Jj=1 i=1

Finally, we find an upper estimate for the number of trees of a graph of order m. The
number of internal lines is 2 — #, and each tree contains #» — 1 particle lines. Thus the
number of trees is smalier or equal to (2:::;]'
formula x! & (27x)/?x*¢~*, which is good for x> 1. From this one finds that the number
of trees is at most (7m)~1/222m-" These minorizations can be combined into form (2.16).

). For m —»n > 1 we can use Stirlings
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3. Partial Summations for T > 0

In this section we shall apply Theorems 2.1-2.3 to investigate the convergence
properties of the perturbation expansion in quantum statistical mechanics. The
systems considered interact through two-body potentials AU, where A € R* and U € U,
(¢ =1,2,3). We ask for analyticity properties at A =0.

Theorem 3.1: Let Ue U;, 0 < B < o, u e R! (u <0 for bosons), N a fixed integer,
and 0 < ¥V < . When 2'+ k; = 0 and {r} satisfies (I.6), then the partial sum over all
graphs G (k¥ 7,;...;k¥, 75,y in the truncated RDM with less than N intermediate
particles is an entire function of A, which is continuous in {r} (and continuous in (k)

for V' = ) and uniformly bounded for {r} varying over a bounded region satisfying
(1.6).

Proof: We apply Theorem 2.1 to prove absolute and uniform convergence. We
only need a bound on the number of graphs contributing to the truncated RDM, when
the number of particle lines in every intermediate state is bounded by N. It is not diffi-
cult to see that there exists a constant M = M (N) which gives the maximum number of
different choices for the next interaction after a certain intermediate state. Thus the
subclass of graphs of order # contains <CM™ graphs where C < «. Now it follows im-
mediately from Theorem 2.1 that our partial sum represents an entire function of A.

QED

A uniform bound N of the number of intermediate particles is obtained, if one
requires that the number of (+)- or (—)-lines in an intermediate state is bounded by K.
Thus those Brueckner—Goldstone and Bethe-Faddeev ladder expansions which fulfil
this requirement always converge. This is true for attractive or repulsive potentials
both for bosons and for fermions. The ladder expansions which do not satisfy this
requirement may converge or diverge. As an example of this we refer to the zig-zag
expansion treated in [13] for which both convergence and divergence can occur.

The above results hold for T > 0. When T — 0, expansions which converged for
T > 0, may become divergent. Finally we remark that C. Gruber [14] has proved the
analyticity of the Euclidean Green’s function at A = 0 with V' < o for fermion systems
with 0 < 8 < o0, u € R?, and [|U]| < .

Since € = +1 for bosons, no cancellations between contributions of diagrams of the
same order occur for boson systems if U € U, or U,. Therefore, as in quantum field
theory [15], sufficiently strong lower estimates on the contributions of individual
graphs lead immediately to:

Theorem 3.2: Let Ue U,,0 < B < o, u<0and V < . Then for a boson system

the interaction expansion of the truncated RDM is not analytic at A=0, if
Im7ry = +«=Imr;, =0.

and
Theorem 3.3: Let U e U;,0 < B < 0, u <0and V = . Then, for a boson system,

the interaction expansion for the truncated RDM is not analytic at A=0 if
Im+;,=++=Imvs,,=0.

Proof: A necessary condition for a series >_o @,,A™ to define a holomorphic
function at A = 0is that > |a,,|*™ converges for some 7 > 0. This can be easily disproved
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for the interaction expansion using the violent increase of the number of graphs G¢™
with the order m together with Theorems 2.2 and 2.3. Consider the set of connected
graphs of order m. Connect first the m lower vertices of the interaction lines by one
closed orbit ((m — 1)! different possibilities). Select among the m upper vertices »
vertices, and attach to each of those an incoming and an outgoing external line

(( n) - (n!)? different p0551b111t1es). Connect the remaining m — # upper vertices in any

way ((m — n)! different possibilities). We obtain >(m — 1)! m! connected diagrams,
which produce for the interaction expansion a divergence at least as > #™m!, when
(2.15) or (2.16) is used.

QED

We remark that the divergence of the interaction expansion for bosons has nothing
to do with the Bose-Einstein condensation, since it occurs at all temperatures.

The work of Ginibre [16] and Gruber [14] has shown that, for positive Gaussian
potentials, the Euclidean Green’s functions exist for V' < «, u < 0, and for sufficiently
small values of the activity z = ¢#* (no phase transition at this temperature and small
densities), and are analytic in z around z = 0.

For 1-dimensional quantum lattice, H. Araki [17] has proved analyticity at A=0
of the pressure and the RDM, while our divergence proof for bosons systems also holds
in one dimension.
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