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Helvetica Physica Acta
Vol. 47, 1974,. Birkhäuser Verlag Basel

Effet Jahn-Teller quadratique sur un ion de configuration d9

dans une structure fluorine

par R. Lacroix
Département de chimie physique, Université de Genève

(26. VIII. 74)

Resume. Le cas général d'un système dans un état triplet orbital Tlg soumis à l'eflet Jahn-
Teller dû au mode vibrationnel Tlu a été examiné. On montre que la déformation résultante, due à

un effet quadratique, correspond à un déplacement dans l'espace de configuration dans l'une des
trois directions (100), (111) ou (110), selon la valeur numérique des constantes. Dans le problème
particulier traité, ces constantes sont évaluées par l'approximation de Wolfsberg et Helmholz. Les
valeurs numériques obtenues pour le cas de Ag2+ dans SrCl2 montrent un déplacement de l'ion
Ag2+ dans la direction (111).

Abstract. The general case of an orbital triplet T2g undergoing a Jahn-Teller effect due to a
Tlu vibrational mode has been studied. The occurring deformation, produced by a quadratic effect,
is shown to result in a configurational space displacement along one of the (100), (111) or (110)
directions, depending on the numerical value of the constants. In the particular case in consideration,

the constants were estimated by the Wolfsberg-Helmholz method. Numerical application to
the Ag2+ ion in SrCl2 crystal shows a displacement of this ion in the (111) direction.

Introduction

En vue d'interprétation de résultats expérimentaux [1], nous avons été amené à
étudier l'effet Jahn-Teller quadratique dû à un mode TXu pour un ion de configuration
d9 (Cu2+ ou Ag2+) substitué dans un cristal de structure fluorine.

Cette question a déjà été traitée par Fedder [2], mais cet auteur trouve assez
curieusement un effet linéaire, ce qui laisse planer un sérieux doute sur la validité de son
résultat.

Dans la structure considérée, l'ion substitué est au centre d'un cube de huit
anions. Il est bien connu que dans un tel environnement, les cinq orbitales d se
répartissent en un doublet eg et un triplet t2g, le triplet étant supérieur en énergie. Comme
notre configuration compte 9 électrons d, il subsistera un trou dans l'une des orbitales
t2g. En conséquence, le niveau fondamental de l'ion sera un triplet orbital T2g.

Le cas général

Nous allons tout d'abord considérer le problème général d'un triplet orbital T2g
soumis à l'effet Jahn-Teller dû au mode vibrationnel TXu. Nous noterons pa, pb et pc
les trois fonctions d'onde électroniques de T2g se transformant respectivement comme
xy, zx et yz. De même nous écrirons qx, qy et qz les trois composantes du mode TXu.
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Déterminons maintenant la forme de l'opérateur exprimant l'interaction Jahn-
Teller quadratique. Cet opérateur est somme de produits d'expressions quadratiques
en q avec des opérateurs agissant sur la fonction d'onde électronique. De plus, il doit
évidemment se transformer comme la réprésentation complètement symétrique AXg.

Considérant que les expressions en q qui interviennent sont fonctions de base des

représentations résultant de la réduction du produit symétrique [TXu x TXu]

AXg + Eg+ T2g, on trouve pour cet opérateur la forme suivante :

V. ^ (ql + q2y+q2) + Vu-^ (2q\ -q2- q2) + Vv^z; (ql ~ q2)

+ Va qxqy + V„ qzqx + Vc qyqz

les opérateurs Vx, Vu et Vv, Va, Vb et Vc étant des opérateurs tensoriels se transformant
respectivement comme les bases de A Xg, Eg et T2g.

Nous pouvons maintenant exprimer cet opérateur sous forme matricielle dans la
base des états électroniques pa, ph, pc. Appliquant le théorème de Wigner-Eckart, on
obtient en utilisant les coefficients de Clebsch-Gordan du groupe Oh [3], la matrice de
couplage suivante :

'ql + q2 + q2

Ki\ 0 ql + q2y + q:
2

q2 + q2 + q2,

'2q2-q2x-q2 0 0 \ / 0 qyqz qzqj
+ Ke\ 0 2q2-q2-q2 0 \+ K, lqyqz 0 qxqy

0 0 2q2-q2-q2zJ \qzqx qxqy 0

Pour un déplacement q de grandeur 8 dans les directions (001), (111) et (110), cette
matrice prend les formes particulières et donne lieu aux valeurs propres et vecteurs
propres que voici :

(001) qz 8 qx qy 0

'82(KX + 2KJ 0 0

0 82(KX - KJ 0

0 0 82(Kx-KJt

AEX 82(KX + 2KJ pa

AE2=AE3 82(KX-KJ
' *"
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8
(111) qz qy qx

V3

82KX 3-82Kt ±82KJ
%82Kt 82K, 3-82K,

i82K, ±82K, S2 Ai

691

AEx 82(Kx + iKJ

AE2 AE3 82(Kx-3-Kt)

V3
(4>a +9b+ <Ac)

1

V6
(2pa-pb-pc

(110) qz 0 qy qx
A/2

'82(KX-KJ 0

0 82(KX + \Ke
0

0

\82Kt
\82Kt 82(Kx + \Ke)t

AEX 82[Kx + \(Ke + K,)] — (pb + pc

AE2 82[Kx+i(Ke-K,)] ^(9t-9c)

AE3 82(KX-KJ pa

Ecrivons maintenant la forme générale de l'équation séculaire donnant l'énergie
Jahn-Teller AE, en négligeant la contribution en Kx, qui est isotrope et déplace
également tous les niveaux. On pose qx 8 sin 9 cos cp, qy 8 sin 9 sin cp,qz 8 cos 9 et on
introduit les notations x AE/Ke82 et k KJKe. L'équation séculaire, plus simple si
on utilise la variable y x + 1, prend la forme :

y3 - 3y2 + (9 - k2) sin2 9 (cos29 + sin29cos2cpsin2<p)y

- (27 - 9k2 + 2k3) cos29sin*9 cos2 cp sin2 cp 0

Si Ke est positif, la direction de q correspondant au minimum d'énergie sera donnée

par la valeur minimum de la plus petite des trois solutions. Inversement, si Ke est
négatif, il faudra considérer la valeur maximum de la plus grande des solutions.
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Figure 1

Diagrammes angulaires des niveaux d'énergie Jahn-Teller en unités de Ke S2 pour quelques valeurs
de k K,IKe.
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Figure 2

Diagrammes angulaires des niveaux d'énergie Jahn-Teller en unités de Ke S2 pour quelques valeurs
de k K,jKe.
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L'analyse du comportement des solutions de l'équation pour les diverses valeurs
de k, travail simple mais fastidieux, permet d'établir les résultats suivants pour la
direction d'énergie minimum.

1) Ke > 0

K,>3Ke 9 90° cp Ab° (011)

K, 3Ke 9 et cp quelconques

-\Ke<K,<3Ke 9 90° cp quelconque

K, — | Ke 9 et cp quelconques

Kt<-\Ke 0 54,74° <p 45° (111)

2) Ae<0

Kt<3Ke 61 54,74° cp 45° (111)

K, 3Ke 9 et cp quelconques

3Ae <Kt< -3Ke 9 0 (100)

K, -3Ke 9 90° cp quelconque

Kt>-3Ke 9 90° ep Ab° (011)

On voit donc que, suivant les valeurs de Ke et Kt, la position d'équilibre peut être
selon les axes quaternaires, ternaires ou binaires de la symétrie cubique, mais que, pour
certains domaines de valeurs, cette position est indéterminée.

Afin d'illustrer la position des niveaux selon l'orientation de q, nous avons
représenté sur les figures 1 et 2 les valeurs de x AE/Ke82 en fonction de 9 avec cp 45°

(plan 1Ï0) et en fonction de cp avec 9 90° (plan 001), ceci pour diverses valeurs de
k KJKe.

Le modèle

Il convient maintenant de passer à l'étude du cas particulier qui fait l'objet de
cette note.

Pour ce qui est de la déformation Tlu elle-même, nous allons la considérer sous sa
forme la plus simple: le déplacement q de l'ion central dans une cage rigide formée des
huit premiers voisins. Des deux modes TXu possibles, celui-ci est le seul important
lorsque l'ion d9 est substitué à un ion de plus grand diamètre, car alors il correspond à

une faible force de rappel. Il convient du reste de remarquer que cette condition est
nécessaire pour que cette étude soit applicable, car, si la force de rappel est comparable
à celle des modes pairs, ce sont ceux-ci, agissant au premier ordre, qui interviendront en
priorité.

Nous devons donc évaluer la variation d'énergie AE de notre ion d9 lorsqu'il
s'écarte du centre du cube, afin d'en tirer les constantes Ke et Kt. Pour ce faire, le plus
simple est de comparer avec l'énergie d'un ion d10, dont on soustrait l'énergie de la
spin-orbitale vide.

Remarquons tout d'abord que pour un ion d10 AE n'est pas nul, car la variation
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de la covalence change le centre de gravité de l'ensemble des niveaux, liants et antiliants.
Cependant, comme l'ion d10 est dans un état appartenant à la représentation Ax, il ne
sera sensible qu'à un potential appartenant à la même symétrie et la contribution en
S2 à AE sera isotrope, n'influant ainsi que sur Kx.

En conséquence, il suffira de calculer la variation d'énergie de la spin-orbitale vide
pour obtenir, en en inversant le signe, les constantes Ke et Kt.

C'est maintenant qu'il nous faut choisir un modèle permettant d'établir le signe
de Ke et Kt et la valeur de leur rapport. Nous allons traiter le système de l'ion d9 et de

ses huit voisins par la méthode des orbitales moléculaires et évaluer la variation
d'énergie des niveaux de l'ion dans l'approximation de Wolfsberg-Helmholz [4],

Si on néglige les orbitales s et p de l'ion central et les recouvrements entre ligandes,
l'équation séculaire faisant intervenir chacune des orbitales d prend la forme suivante,
où A est l'électronégativité de l'électron d et Bt celle des orbitales des ligandes (i
1 a N), qui sont ici des orbitales de symétrie.

A-E

ki
^(A + BJ-E

kx
A(A+B,)-E

kx

Si

St

(A + BJ-E

Bi-E

Si
kt

(A + Bt)-E

B,-E

0

L'équation ci-dessus est celle du cas cubique, avant déformation, et nous évaluerons

le JF du niveau le plus élevé en faisant varier les différents St. Remarquons que
certains des St peuvent être nuls, car il faut aussi faire intervenir les états qui n'auront
un recouvrement non nul qu'après déformation.

Après développement, l'équation prend la forme :

(A-E)Yl(Bt-E)-^
kt

(A + Bt)-E SjU(Bk-E)=0
k*l

Posant (kt/2) (A + B.) Ci et différentiant, on obtient :

-AE \VKBt- E) + (A - E)Z Tl (Bk- E) -2ZS2(Ct- E) TI (Bk- E)

-252(C,-F)2 2 n (Bk-E)
m*l k*m

l\(C,-E)2Vl(B -£)"Us2)=0
Il **l i

où E est l'énergie du niveau le plus élevé. On en tire :

AE -^FtA(Sf)=lGtA(S2)
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Fl (Ci-E)2U(Bk-E).
k*l

D représente le facteur de AE, qui peut être amené, en utilisant l'équation
séculaire elle-même, à la forme suivante :

D 2Sf(C, - E) n (Bk - E)\(Ct - E)
l k*l

1 1

+
A - E Bt-E

Nous pouvons maintenant établir que les coefficients G, —F,/D sont positifs.
Pour cela, nous remarquons que F est supérieur à A, aux Bk et aux Ck, c'est à dire

que tous les termes (A — E), (Bk — E) et (Ck — E) sont négatifs. Il en résulte que le
signe de F, est celui de (—1)N+1.

Pour démontrer le signe de D, nous effectuons la transformation suivante :

(Ct-E)
1 1

¦ +
A -E Bt-E

1

-2 ki
(A +Bj)-E

1 1

+
A - E Bt-E -2

2(A-E)(Bt-E)
[(kt - 1)(A + B,) (A+Bt- 2F) + (A - B,)2]

kt étant supérieur à 1, il est évident que cette expression est positive, les deux termes du
numérateur et le dénominateur étant positifs. Nous pouvons en conclure que chacun
des termes de la somme constituant D ont le signe de (—1)". Ainsi F, et D sont de signe
opposé et G, est positif.

Dans le cas que nous traitons, les orbitales de symétrie des ligandes sont
constituées d'orbitales atomiques s, pa ou pn. Les orbitales de même nature ont mêmes

Bt et kt, donc même G,, qui peut être mis en évidence.
Nous poserons Zs la somme partielle E Sf portant sur les orbitales s et définirons

de même Za et 2„ pour les orbitales pa et p-rr. Nous aurons alors

AE GsAEs+GaAE, + GnAZ«

Il reste maintenant à calculer effectivement A2S, AU„ et AZn pour différentes
orbitales d et différentes déformations. De fait trois cas bien choisis suffisent pour
déterminer les constantes Ke et Kt et la contribution K'x de ce mécanisme à Kx.

Pratiquemment, nous allons calculer la variation des recouvrements pour les
orbitales |a> dxy et |è> dxz lors d'un déplacement selon l'axe (100) et pour l'orbitale
|a> (l/\/3) (dxy + dxz + dyz) lors d'un déplacement selon l'axe (111).

Du déplacement S selon (100), nous obtiendrons

-AE" - Gs AE! - G„ AEaa - Gn AZZ 82(K'X + 2KJ

-AE"=- Gs AEbs - Ga AZba - G„ ASl 82(K'X - KJ
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Quant au déplacement 8 selon (111), il nous donnera

697

-AE«=-GsAZl-GaAZl-G%A2l 82(K'x + \KJ
En substituant dans ces équations la forme détaillée des AS, qui sont calculés en

appendice, on obtient les expressions suivantes, où l'unité de longueur est choisie
égale à la demi-distance halogéne-halogéne, c'est à dire au quart du côté de la maille
cristalline.

16
K'x + 2Ke -GA—S2' 9 3V3 dl 9

16 dSs 8
S, —+ "A+sJA

dl J dl2

116
2

16 dSa 8

dl) + ' dl2

16
2

32 dS„ 16

~"9 S"+9V35"~Ä~ + 27

dS,

dl
+.S.

d2Sn

dl2

Kx — Ke — Gs
8

2
16 dSs 8

3S2s+3V3Ss^T+9

8 16 dSa 8

3 '+3V3 dl +9

dSA d2Ss

dl f + s
dl2

dSA2 d2S,

dl
+

dl2

ï 16

~G-lZJSi+Z7
dSA2 d2^
dl

+ n dl2

16
K(+iKt -Gs — S2

|27 9^3 dl 27

16 <£SS 56
Ss— +

dSs\2 d2Ss

rfZ / <#2

16
-gJ—s2

127 9V3 i/
16 iS. 56

S„—+ —
27

f^\2 cPS,

dl j dl2

(16 64 ^S* 16
~G" 8TS| + 9V3S,,ir+8Ï dl

+ S.
d2Sn

dl2

Eliminant K'x entre les équations, on obtient

K, — G.
40 32 dSs
— S2 Ss—-
27 9V3 dl

,40 32 rfSa
-G„ — S2 S,—

27 9-v/3 Ä

136 32 iS,"
81 27V3 Ä
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„ 16 dS. 16
k, -gs -si ss — + —

13 3V3 dl 9

16 dSa 16

G"\3S2a~3V3S°dT+9

dSA d2Ss

~dT) + s~dl2

dSA2 cPS,

di A " di2

56 80 dSK 16
1

27 9V3 dl 27

dSA2 &S.
dl

+
dl2

Application

Appliquons ces résultats au cas de l'ion Ag2+ substitué dans un cristal de SrCl2.
Le côté de la maille de SrCl2 valant 7,0 Â, la distance Ag-Cl avant déplacement

vaut 3,02 Â, et le quart de la maille que nous avons choisi comme unité de longueur
pour notre calcul vaut 1,75 Â.

Pour les recouvrements et leurs dérivées, les valeurs suivantes ont été obtenues en
utilisant les fonctions d'onde de Basch et Gray [5] pour l'argent et celles de Clementi [6]
pour le chlore.

Ss -0,01297

Sa 0,03709

dS.

dl

dS,,

dl

dS-

: 0,14399
d2Sf

dl2
-0,68277

d2S„
¦¦ -0,08820 0,19087

dl2

Sn 0,01527 — -0,04613
dl

cPS»

dl2
0,14198

A partir de ces nombres, on trouve pour Ke et K,

Ke -0,00408GS - 0,00875G„ + 0,00087G„

K, -0,0588GS - 0,0401Gff + 0,0066G„

Il est important de remarquer que chacun des facteurs de Gs, Ga et G„ est somme de
termes tous de même signe. Cela veut dire que même si, par un autre choix de fonctions
d'onde, les recouvrements et leurs dérivées étaient modifiés, cela ne changerait pas le
signe de ces facteurs.

Un autre point à remarquer est que les contributions en tt sont beaucoup plus
petites, d'un facteur 6 à 10, que celles en a. Cela va nous faciliter l'évaluation des signes
de Ke et Kt. En effet, les constantes G„ et G„ sont voisines, car Ba et B„ d'une part,
k„ et k„ d'autre part, sont assez proches. Nous pourons donc les égaler sans changer le
signe de la somme des contributions, a l'emportant de toute façon largement sur tt. On
a alors

Ke -0,00408GS - 0.00788G,,

K, -0,0588GS - 0.0335G,,

Comme nous avons montré que les constantes G sont positives, Ke et K, sont négatifs.
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De plus, on a

K, - 3Ke -0,0465GS - 0,0139G„ + 0.0040G*

-0,0465GS - 0,0099Go

donc Kt < 3Ke, quel que soit le rapport de Gs sur G„.
Revenant à la discussion générale du début de cet article, on voit que Kt < 3Ke < 0

implique qu'un effet Jahn-Teller du deuxième ordre dû au mode TXu considéré va
déplacer l'ion Ag2+ dans la direction (111).

Appendice

Il s'agit pour nous de calculer les variations de recouvrement entre les orbitales s

et p des ligandes et les orbitales d de l'ion central lorsque ce dernier se déplace.
Le premier cas à examiner est celui d'un déplacement le long de l'axe (001).

jr?JT?

7-r «

\ jr"

IX»

ïïa

Figure 3

Numérotation des ligandes et orientation de leurs orbitales p (déformation tétragonale).

Pour fixer les idées nous représentons sur la figure 3 la numérotation des ligandes
et l'orientation de leurs orbitales p utilisées dans ce cas.

Sur la figure 4 nous avons représenté les distances et les angles à évaluer. Rappelons

que, pour simplifier l'écriture, nous prenons pour unité de longueur le demi-côté du
cube.

l=V3

cos y V

sin y
1

V3

l' V3- 2S + S2

f / 2

sin v'

V 3

1

- 23 + S2

-8

l"=V3 + 28 + 82

V3-28 + 82
sin y

3 + 2S + S2

1 + 8

V3 + 28 + 82
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Il convient de remarquer que le déplacement de l'ion le long de l'axe z abaisse la
symétrie au groupe C4„ et c'est dans cette symétrie que nous devons discuter les
recouvrements.

P¦¦ \AwrIX

yTas
Figure 4

Définition des distances et des angles (déformation tétragonale).

Examinons tout d'abord le cas de l'orbitale |a> dxy et construisons les orbitales
de symétrie des ligandes appartenant à la même représentation irréductible de C4p.

I"â> \(cri-a2 + a3- aj |o-;> %(a5-o6 +a-, - a8)

\0 iK - < + it\ - K) K> i (ri - < + «S - O
2« <.a\a'J)2 + (a\a"ay2 A{a\axy2 + 4<«|a5>2

Z* <a\TT'ay2 + <,a\TT'Jy2 4<a|7rï>2 + 4<«|t7?>2

\/3 V3
<a\axy —cos2y'S'a <«|a5> TA cos2 y"S"a

ff _* » C"y siny Sn<[a\rriy — COS y'sin y'Si <«|7r|> — COS y" sin y

où on note S' et S" les recouvrements pour les distances V et l".

AZ„ 3 cos4 y'S'2 + 3 cos4 y "S"J - 6 cos4y S2

n2 y'S'2 + cos2 y " sin2 y "S^2 - 2 cos2 y sin2 y S2

: de S jusqu'au deuxième degré.

Ji:n cos2y'sin2y'S;2

Développons AEC et AEn en série

dS 1 d2S
S' S+—(l'-J) + (/' - T)2

dlX ' 2 dl2
K '

dS\2 d2S

m)+ ~dp

dSas
S'2 S2 + 2S—(l'-l) +

dl
(l'-t)2

dS 1 / S-\
S2 + 2S \-8 + - \ +

dl VA a '
<fS\2 rf2S

Ä J + dl2

82

3

COS4,s4y' |(1 + f 8 + -fS2) cos2y'sin2y' -§(1 - f S - S2)

Les expressions pour S" et y" sont les mêmes en changeant le signe de S.
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En introduisant ces développements dans AEa et AEn on obtient pour ceux-ci les

expressions suivantes :

(dsA2 d2s„

~dl^¦=*As'- W3-dl -é
16 dSa 8

:Sa-^ + - + Sa

„v, *, i
16 32 dSn 16

AEn 82{ S2 + Sn—- + —1

9 9-v/3 dl 27

dl2

2 d2Sd±\ +s
dl dl2

Dans le développement, les termes linéaires en 8 disparaissent évidemment, les
contributions de S' et S" étant de signes opposés. Quant à AES, il a la même forme que AE„.

Passons au cas de l'orbitale |6> dxz. Les orbitales de symétrie des ligandes de
même représentation sont les suivantes :

K> \(°i -a2-a3 + aj) \a"„y - \ (a5 - a6 - a-, + aj
K> i« - "ï - *S + O K> - \ (77? - TTl - TTÏ + TT%)

kï> - i(*f + A - tt{ - rri) |tt?*> - i (*r| + *l - ir7' - tt|)

£ff <b\a'by2 + <b\a'jy2 A(b\axy2 + 4<ô|<75>2

^ <%;>2 + <&K>2 + <i|7r*>2 + <jb\rr*b*y2

A(fi\TTiy2 + 4<6|tt1>2 + 4<Ô|7T?>2 + A<b\TTty2

<Jb\oxy Vf cos y'sin y'Si <,b\crsy Vf cos y "sin y "S^

<&K> -^ (COS2y' - sin2 y') Si <ô|rr?> -L (cos2 y" - sin2 y») SJ

<%!> -—sin/s; <ô|rrf> -—siny'S"

au

AE, 6 cos2 y' sin2 y' S'2 + 6 cos2 y" sin2 y"2 S"2 - 12 cos2 y sin2 yS2

J En 2(4 cos4 y' - 5 cos2 y' + 2) S;2 + 2(4 cos4 y " - 5 cos2 y" + 2) S"2

- 4(4 cos4 y - 5 cos2 y + 2) S2„

Comme dans le cas précédent, on développe AE„ et AEn en série de 8 en s'arrêtant
deuxième ordre. On a en particulier 2(4cos4y' — 5cos2y' + 2) f (1 + ^8 + V"82).

On obtient :

i
8 16 dSa 8

^S2!-3S"2+3V3S*lT+9
dSA2 (PS.
dl) + ' dl2

*HP*+£ dSA d2Sn

~dT +**~dp~
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Nous passons maintenant au cas d'un déplacement 8 dans la direction (111), qui
amène le système à la symétrie C3v.

Il convient tout d'abord de fixer la nouvelle numérotation des sommets du cube
et le nouveau choix de l'orientation des orbitales tt des ligandes. La numérotation est

indiquée sur la figure 5.

111

Figure 5
Numérotation des ligandes (déformation trigonale)

V

Figure 6

Orientation des orbitales p des ligandes et définition des longueurs et des angles (déformation
trigonale).

Quant aux orbitales tt, seules nous intéressent celles qui interviennent dans les
orbitales de symétrie appartenant à la représentation Ax, celle de la fonction |a>
(1/V3) (dxy + dxz + dyz). Ce sont celles qui sont dans le plan de l'axe (111). Leur orientation

est indiquée sur la figure 6 pour les ligandes 2 et 5.
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D'autre part les distances et angles représentés sur la figure 6 valent respectivement:

/=V3 /* V3-8 /** V3 + S

v-At^ r=>v!+S!
2V2 2V2 2V2

cos y —-— cos y —======== cos y "

V3 /3-^- + 82 VS /3 + -Ç- + 82
V3 V Vs

1-V3S 1 + V38
siny=^ siny'= siny"

V3 J3-^- + 82 A3 A+^ + S2

V V3 v V3

Les fonctions de symétrie se transformant comme | a> sont les suivantes :

K> —zz (cr2 + cr3 + aj \a"J) =—(as + a6 + aj
yo yi

K> —jz (rr2 + tt3 + ttJ \-TTxy —— (tts + TT6 + ttJ

Ea <a|a*>2 + <a|a**>2 + <«K>2 + <a|aî>2

<a|ax>2 + <«|a8>2 + 3<a|a2>2 + 3<a|a5>2

En i0l\TT'xy2 + (x\TTxy2 3<a|772>2 + 3<a|7T5>2

(<x\axy=S* <a|CTs>=S**

<a|o-2> (1 - f COS2y')S; <a|o-5> (1 - |cos2y")S;

<a|7T2> V3 cos y' sin y' S'„ <a|7r5> VS cos y "sin y "S£

AEa S*2 + S**2 -2SI + 3(1 -f cos2 y')2S'2

+ 3(l-fcos2y")2S:2-6(l- 3rCOS2y)2S|

AEn 9 cos2 y'sin2 y'S'2 + 9 cos2 y" sin2 y"S"n2 - 18 cos2 y sin2 yS2
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Comme dans les cas précédents, nous développons en série de S les distances et les

angles en se limitant au deuxième ordre.

8 4
//_/= +—-S2

3 9V3 l*-l -8

1 16 8
3 1-fcos2/ 2=- 1 + 8+-S22 r 3 \ 3V3 9

8 / 14 82
9cos2y'sin2y' - 1 -8 + —Y 9\ 3V3 9

Développant comme précédemment les recouvrements en série de Taylor et
utilisant les expressions ci-dessus, on obtient :

\27 9V3 dl 27

.*, Mi16 64 dSn 16
AEn 82{ — S2 + —Sn—- + —

81 9V3 dl 81

dSA2 d2^
dl dl2

dS»

dl
+ Sn-

di2
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