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Vol. 47, 1974, Birkh&user Verlag Basel -

Effet Jahn-Teller quadratique sur un ion de configuration @
dans une structure fluorine

par R. Lacroix

Département de chimie physique, Université de Genéve

(26. VIIL. 74)

Resume. Le cas général d’un systéme dans un état triplet orbital T',, soumis a l'effet Jahn-
Teller di au mode vibrationnel T',, a été examiné. On montre que la déformation résultante, due a
un effet quadratique, correspond & un déplacement dans I'espace de configuration dans 1'une des
trois directions (100), (111) ou (110), selon la valeur numérique des constantes. Dans le probleme
particulier traité, ces constantes sont évaluées par I'approximation de Wolfsberg et Helmholz. Les
valeurs numériques obtenues pour le cas de Ag?+ dans SrCl, montrent un déplacement de l'ion
Ag?* dans la direction (111).

Abstract. The general case of an orbital triplet T,, undergoing a Jahn-Teller effect due to a
T,, vibrational mode has been studied. The occurring deformation, produced by a quadratic effect,
is shown to result in a configurational space displacement along one of the (100), (111) or (110)
directions, depending on the numerical value of the constants. In the particular case in considera-
tion, the constants were estimated by the Wolfsberg—Helmholz method. Numerical application to
the Ag?* ion in SrCl, crystal shows a displacement of this ion in the (111) direction.

Introduction

En vue d’interprétation de résultats expérimentaux [1], nous avons été amené a
étudier I'effet Jahn-Teller quadratique d & un mode T, pour un ion de configuration
d® (Cu?t ou Ag?*) substitué dans un cristal de structure fluorine.

Cette question a déja été traitée par Fedder [2], mais cet auteur trouve assez
curieusement un effet linéaire, ce qui laisse planer un sérieux doute sur la validité de son
résultat.

Dans la structure considérée, I'ion substitué est au centre d’'un cube de huit
anions. Il est bien connu que dans un tel environnement, les cinq orbitales 4 se répar-
tissent en un doublet ¢, et un triplet ¢,,, le triplet étant supérieur en énergie. Comme
notre configuration compte 9 électrons d, il subsistera un trou dans I'une des orbitales
t,4- En conséquence, le niveau fondamental de I'ion sera un triplet orbital T,.

Le cas général

Nous allons tout d’abord considérer le probléme général d'un triplet orbital T,
soumis a l'effet Jahn-Teller d{i au mode vibrationnel T',,. Nous noterons ¥, ¥, et ¢,
les trois fonctions d’onde électroniques de T, se transformant respectivement comme
xy, 2x et yz. De méme nous écrirons g¢,, ¢, et ¢, les trois composantes du mode T,



690 R. Lacroix H.P. A.

Déterminons maintenant la forme de I’opérateur exprimant l'interaction Jahn-
Teller quadratique. Cet opérateur est somme de produits d’expressions quadratiques
en ¢ avec des opérateurs agissant sur la fonction d’onde électronique. De plus, il doit
évidemment se transformer comme la réprésentation complétement symétrique 4,,.

Considérant que les expressions en ¢ qui interviennent sont fonctions de base des
représentations résultant de la réduction du produit symétrique [T,,x T4,]=
A4, + E, + T,,, on trouve pour cet opérateur la forme suivante:

1 1 1
vy "ﬁ(qi +gi+492) + Vu%(%ﬁ—g?c—qg) 3 Vv%(%zc—‘?%)

%+ Va qIQJ’+ Vb qqu+ Vc ngz

les opérateurs V,, V, et V,, V,, Vet V_étant des opérateurs tensoriels se transformant
respectivement comme les bases de 4,,, E, et T,,.

Nous pouvons maintenant exprimer cet opérateur sous forme matricielle dans la
base des états électroniques i, ¥, .. Appliquant le théoréme de Wigner—Eckart, on
obtient en utilisant les coefficients de Clebsch—Gordan du groupe 0, [3], la matrice de
couplage suivante: *

i+ +a: 0 0
K, 0 Z+qy+q: 0
0 0 Gta+4:
g2 — g2 — ¢ 0 0 0 ¢,9: 9.9
+ K, 0 2g% — q2 — ¢ 0 +Ki|9y9: 0 4.9
0 0 29 — 3 — ¢2 7.9x 9x9 O

Pour un déplacement ¢ de grandeur & dans les directions (001), (111) et (110), cette
matrice prend les formes particuliéres et donne lieu aux valeurs propres et vecteurs
propres que voici:

(001) ¢,=68 g,=g,=0

(K, + 2K,) 0 0
0 8K, — K,) 0
0 0 82(K, — K,)
AE, = 8(K, + 2K,) b
by

AE,= 4dE,=§*(K, - K,) J



Vol. 47, 1974 Effet Jahn-Teller quadratique sur un ion de configuration d° 691 .

6

111 ey B E —
(111) ¢,=g¢,=4¢, 73

NK, 18K, 18K,
18K, &K, 18K,
10K, 18K, &K,

1
AE, = 8* (K, + % K,) %(‘/’a"‘ b+ )
1
o

AE,=A4E,=8 (K, - 1K,) i
% (2 — s — c)

0
11 =0 =q,=——
(110) ¢, 9y =4x 72
82(K1—Ke) 0 0
0 (K, +3K,) 18K,
0 382K, 8*(K,+ 1K,)
1
AdE, =8[K, + 3 (K. + K,)] —= s+ ¢
V2
1
AEZ = 82[K1 s %(Ke_Kt):J :\—/—2_(9611_ libc)
4E,=&*(K, - K,) tha

Ecrivons maintenant la forme générale de I’équation séculaire donnant 1'énergie
Jahn-Teller AE, en négligeant la contribution en K, qui est isotrope et déplace
également tousles niveaux. On pose g, = 8 sin f cos ¢, ¢, = 8sin fsin ¢,g, = Scosfeton
introduit les notations x = 4E /K, 8% et k = K,/K,. L’équation séculaire, plus simple si
on utilise la variable y = x + 1, prend la forme:

y? —3y* + (9 — %) sin? 6 (cos?8 + sin?f cos? psin? ) ¥
— (27 — 9%? + 2%3) cos?fsin*f cos? psinZg =0
Si K, est positif, la direction de § correspondant au minimum d’énergie sera donnée

par la valeur minimum de la plus petite des trois solutions. Inversément, si K, est
négatif, il faudra considérer la valeur maximum de la plus grande des solutions.
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Figure 1

KK,

Diagrammes angulaires des niveaux d’énergie Jahn-Teller en unités de K, §2 pour quelques valeurs

de %
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Figure 2
Diagrammes angulaires des niveaux d’énergie Jahn-Teller en unités de K, 82 pour quelques valeurs

de %

K/ K,.
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L’analyse du comportement des solutions de I’équation pour les diverses valeurs
de %, travail simple mais fastidieux, permet d’établir les résultats suivants pour la
direction d’énergie minimum.

1) K,>0

K, > 3K, 6=90° @=45° (011)
K,=3K, 6 et @ quelconques
—3K,<K,<3K, 6=90° ¢ quelconque
K,=—-3K, 6 et @ quelconques
K,<—- 3K, 0=>54,74° @=45° (111)
2) K, <0

K, < 3K, 0=>54,74° @=45° (111)
K,=3K, 0 et @ quelconques

3K, <K, <-3K, 6=0 (100)

K,=-3K, 0 =90° ¢ quelconque
K> 3K, 6=90° @=45° (011)

On voit donc que, suivant les valeurs de K, et K,, la position d’équilibre peut étre
selon les axes quaternaires, ternaires ou binaires de la symétrie cubique, mais que, pour
certains domaines de valeurs, cette position est indéterminée.

Afin d’illustrer la position des niveaux selon I'orientation de ¢, nous avons rep-
résenté sur les figures 1 et 2 les valeurs de x = AE[K_8? en fonction de § avec ¢ = 45°

(plan 110) et en fonction de @ avec 6 = 90° (plan 001), ceci pour diverses valeurs de
k=K,|K,.

Le modéle

Il convient maintenant de passer a 1’étude du cas particulier qui fait I'objet de
cette note.

Pour ce qui est de la déformation 7', elle-méme, nous allons la considérer sous sa
forme la plus simple: le déplacement ¢ de I'ion central dans une cage rigide formée des
huit premiers voisins. Des deux modes T, possibles, celui-ci est le seul important
lorsque I'ion 4° est substitué a un ion de plus grand diamétre, car alors il correspond a
une faible force de rappel. Il convient du reste de remarquer que cette condition est
nécessaire pour que cette étude soit applicable, car, si la force de rappel est comparable
a celle des modes pairs, ce sont ceux-ci, agissant au premier ordre, qui interviendront en
priorité.

Nous devons donc évaluer la variation d’énergie 4E de notre ion 4° lorsqu’il
s’écarte du centre du cube, afin d’en tirer les constantes K, et K,. Pour ce faire, le plus
simple est de comparer avec I’énergie d'un ion d'°, dont on soustrait 1’énergie de la
spin-orbitale vide.

Remarquons tout d’abord que pour un ion 4'° 4F n’est pas nul, car la variation
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dela covalence change le centre de gravité de 'ensemble des niveaux, liants et antiliants.
Cependant, comme l'ion 4° est dans un état appartenant  la représentation 4,, il ne
sera sensible qu’a un potential appartenant a la méme symétrie et la contribution en
8% 4 AE sera isotrope, n’influant ainsi que sur K.

En conséquence, il suffira de calculer la variation d’énergie de la spin-orbitale vide
pour obtenir, en en inversant le signe, les constantes K, et K.

C’est maintenant qu'’il nous faut choisir un modéle permettant d’établir le signe
de K, et K, et la valeur de leur rapport. Nous allons traiter le systéme de I'ion d° et de
ses huit voisins par la méthode des orbitales moléculaires et évaluer la variation
d’énergie des niveaux de I'ion dans I'approximation de Wolfsberg-Helmholz [4].

Si on néglige les orbitales s et p de 1'ion central et les recouvrements entre ligandes,
I’équation séculaire faisant intervenir chacune des orbitales 4 prend la forme suivante,
ou A est I'électronégativité de I'électron d et B, celle des orbitales des ligandes (2 =
1 a N), qui sont ici des orbitales de symétrie.

k k
A—E [E‘(A+Bl)—1£}sl [E‘(A+Bi)_E S,
"
5@ +B)-E|S, B,—E 0
L =0
a
5 A+ B)=E|S, 0 B,—E

L’équation ci-dessus est celle du cas cubique, avant déformation, et nous évaluer-
ons le AE du niveau le plus élevé en faisant varier les différents S;. Remarquons que
certains des S; peuvent étre nuls, car il faut aussi faire intervenir les états qui n’auront
un recouvrement non nul qu’aprés déformation.

Aprés développement, ’équation prend la forme:

i k£l

(A“E)H(Bi“E)—Z{%—(A+Bl)—E] S2 ] (By—E)=0

i

Posant (#,/2) (A + B,) = C, et différentiant, on obtient:

—AE[H(Bi—EH (A—E)S IT (Be— E) — 2 3 SHC, - B) [1 (B~ E)

i 1 k#1 k1

—;53(51—5)2 2, ICI;II(B::—E)}—Z[(C:—E)ZH(B —E)]A(S?)=0

k#1
ms£1 K 2m L #*

ou E est I'énergie du niveau le plus élevé. On en tire:

1
AE = — BZ Fy A(S7) =3 G, A(S})
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en notant

Fi=(C—E?II(B«—E).
k%l

D représente le facteur de 4E, qui peut étre amené, en utilisant I’équation
séculaire elle-méme, a la forme suivante:
_ 2}

Nous pouvons maintenant établir que les coefficients G, = —F,/D sont positifs.

Pour cela, nous remarquons que E est supérieur 4 4, aux B, et aux C,, c’est 4 dire
que tous les termes (4 — E), (B, — E) et (C; — E) sont négatifs. Il en résulte que le
signe de F, est celui de (—=1)¥*1!, °

Pour démontrer le signe de D, nous effectuons la transformation suivante:

2 ! 1
D=%SI(CI—E)kl;II(Bk—E){(CI_E)[A__E+BI—E

ky
—(A+B)-E

1
—2
2 A-—E+B,—E]

1 1
[(C‘_E) A_E B —E]—2}=

1
T 24—E) (B, __E)[(kz— 1)(4 + B)) (4 + B, — 2E) + (4 — B))?]

k, étant supérieur a 1, il est évident que cette expression est positive, les deux termes du
numérateur et le dénominateur étant positifs. Nous pouvons en conclure que chacun
des termes de la somme constituant D ont le signe de (—1)¥. Ainsi F, et D sont de signe
opposé et G, est positif.

Dans le cas que nous traitons, les orbitales de symétrie des ligandes sont con-
stituées d’orbitales atomiques s, po ou pa. Les orbitales de méme nature ont mémes
B, et k;, donc méme G, qui peut étre mis en évidence.

Nous poserons 2; la somme partielle X' S portant sur les orbitales s et définirons

I

de méme 2, et 2, pour les orbitales po et par. Nous aurons alors
AE =G, 42+ G, 4X, + G, 42,

Il reste maintenant a calculer effectivement 4%, 4%, et 42, pour différentes
orbitales 4 et différentes déformations. De fait trois cas bien choisis suffisent pour
déterminer les constantes K, et K, et la contribution K; de ce mécanisme a K.

Pratiquemment, nous allons calculer la variation des recouvrements pour les
orbitales |a) = d,, et |b) = d,, lors d’'un déplacement selon ’axe (100) et pour I'orbitale
|y = (1/4/3) (dx, + dy; + d,,) lors d'un déplacement selon I'axe (111).

Du déplacement 6 selon (100), nous obtiendrons

—AE = — G, A5°— G, A58 — G, A58 = 8*(K] + 2K.)

—AEY=—G, 42" — G, A58 — G, 42 =8*(K] — K,y
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Quant au déplacement & selon (111), il nous donnera
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—AE*= — G, A2 — G, 4Z¢— G, 422 =8*(K| + 3 K,)

En substituant dans ces équations la forme détaillée des 42, qui sont calculés en
appendice, on obtient les expressions suivantes, ot 'unité de longueur est choisie
égale 4 la demi-distance halogéne-halogéne, c’est a dire au quart du coté de la maille

cristalline.
16 16 _ dS, 8[(dS,\? S,
K{+2K,=—Gs{— 82— — S, — +S;
9 3v3 " dl 9|\ 4l ar |
16 16 _ dS, 8][(4s,\’ a2, ]
—Go' = czr_'_ o— t =\ +Sd‘
9 3v3 “al 9|\ dl ar
c 1652 32 S S, 16| (ds, 2+s d*Ss,
Tt Twm\a) T
—_ o SS2 16 g dS, 8[(ds, 2+s d2S, |
R IO S I A7 S ar
. 852 16 2 s, 8[/[as, 2+s d2S, |
s s a Tel\@) T
. 88 - 16 [ (dS.\* " dzs,
“egmi T\ ) T
16 16 _dS, 56[(dS,\> d2S,
K{+ %K,=—G;{—S?— s— + — +Ss
27 93 dl 27|\ &l di?
16 16 _dS, 56](dS,\? dzS,
_Ga _Soz'__ d_+_— — +So'
27 93 “dl 27|\ dl di?
. 1652+ 64 _ dS, 16[[dS., 2+s d2S,
18177 943" 4l 81|\ a4l * AR

Eliminant K| entre les équations, on obtient

40 32 _ dS, 40 32 _dS,
K,=—Gy{—S2 — y— ) — Gl —S2— — 5, —
27 9/3 " dl 217 94/3" 7 dl
136 32 ds,
- Gn - % 4= Sn
81 2743 " dl



698 R. Lacroix H.P. A.

X c 852 165455 16'a¢532+S d2S, |
s T s w T |\a ) T ae

cl®s 16 Sds,, 16 [ [(dS,\* d?S,]
T T s w e |\a ) T

56 80 dS, 16[/ds.\? d2s,
_Gn_'_"srzt'l'_sﬂ - +S1!
27 93 " dl 27|\ dl dl?

Application

Appliquons ces résultats au cas de I'ion Ag?* substitué dans un cristal de SrCl,.

Le coté de la maille de SrCl, valant 7,0 A, la distance Ag-Cl avant déplacement
vaut 3,02 A, et le quart de la maille que nous avons choisi comme unité de longueur
pour notre calcul vaut 1,75 A.

Pour les recouvrements et leurs dérivées, les valeurs suivantes ont été obtenues en
utilisant les fonctions d’onde de Basch et Gray [5] pour I’argent et celles de Clementi [6]
pour le chlore.

2
s s

S, = —0,01297 = 0,14399 = —0,68277
] A2
s, - d*S,
S, =0,03709 — —0,08820 = 0,19087
dl dl?
2
S. =0,01527 " —-0,04613 T —0,14198
l a2

A partir de ces nombres, on trouve pour K, et K,
K, =—0,00408G, — 0,00875G, + 0,00087G,
K, =-0,0588G, — 0,0401G, + 0,0066G ,

Il est important de remarquer que chacun des facteurs de G,, G, et G, est somme de
termes tous de méme signe. Cela veut dire que méme si, par un autre choix de fonctions
d’onde, les recouvrements et leurs dérivées étaient modifiés, cela ne changerait pas le
signe de ces facteurs.

Un autre point a remarquer est que les contributions en 7 sont beaucoup plus
petites, d’un facteur 6 a 10, que celles en ¢. Cela va nous faciliter I’évaluation des signes
de K, et K,. En effet, les constantes G, et G, sont voisines, car B, et B, d'une part,
k, et k, d’autre part, sont assez proches. Nous pourons donc les égaler sans changer le
signe de la somme des contributions, ¢ 'emportant de toute facon largement sur 7. On
a alors

K, =—0,00408G, — 0,00788G,,
K, =-0,0588G, — 0,0335G,

Comme nous avons montré que les constantes G sont positives, K, et K, sont négatifs.
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De plus, on a

K, — 3K,=—0,0465G, — 0,0139G, + 0,0040G .
—0,0465G, — 0,0099G,

ne |

donc K, < 3K,, quel que soit le rapport de G, sur G,.

Revenant 4 la discussion générale du début de cet article, on voit que K, < 3K, <0
implique qu'un effet Jahn-Teller du deuxiéme ordre di au mode T, considéré va
déplacer I'ion Ag?* dans la direction (111).

Appendice

Il s’agit pour nous de calculer les variations de recouvrement entre les orbitales s
et p des ligandes et les orbitales 4 de I'ion central lorsque ce dernier se déplace.
Le premier cas 4 examiner est celui d’'un déplacement le long de I'axe (001).

Z

n .JTG

w3 \ e

Figure 3
Numeérotation des ligandes et orientation de leurs orbitales p (déformation tétragonale).

Pour fixer les idées nous représentons sur la figure 3 la numérotation des ligandes
et I'orientation de leurs orbitales p utilisées dans ce cas.
Sur la figure 4 nous avons représent# les distances et les angles 4 évaluer. Rappelons

que, pour simplifier I'écriture, nous prenons pour unité de longueur le demi-coté du
cube.

l=+/3 V325 + & V3 + 28 + &2

. =
comyeyig  S0Ry A/3 28+82 ;\/3+28+82
: I 148
smmy = —— Sln B —

LAy Y= \/3—28+8’- Sy’ = s 1 o
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Il convient de remarquer que le déplacement de I'ion le long de 'axe z abaisse la
symétrie au groupe C,, et c’est dans cette symétrie que nous devons discuter les
recouvrements.

3 o

~ N
- SN
.y \\‘\\
~
Y[ =

Figure 4
Définition des distances et des angles (déformation tétragonale).

Examinons tout d’abord le cas de I'orbitale |a) = d,, et construisons les orbitales
de symétrie des ligandes appartenant a la méme représentation irréductible de C,,.

Ic"‘>=%(°’1—02+‘73_f’4) |0:>=‘12“(05—06+07"08)
|7y =Y (@i —mi+mi—ml)  |mi> = }(m§—ms+ 75— m3)
Z, = <aloiy? + <aloj>? = 4¢a|oy)? + 4a]o5)?
2 =a|me)? + <a|mi)? = 4 a|w])? + 4 a|n5)H?

(aloy) = —2—3 cos?’S, {a|as)y = —; cos?y"Sg
(a|ni) =—cosy’siny’S; <{(a|n) =—cosy”siny"Sx
ou on note S” et S” les recouvrements pour les distances /" et [”.
42, =3cos*y’SZ + 3cos*y"Sy? — 6costy S2
42, = cos?y sin?y’' S + cos?y"sin? y"Sp? — 2 cos? ysin? y S2

Développons 4%, et 42, en série de § jusqu’au deuxiéme degré.

s'=s+‘-l§(z'_z)+ldz—s(z'—z)2
di 2 di?
5'2=S2+25§(z'-1)+[(d—5-)2+5-d2—5- (' —1)?
dl dl dal?
=52+2S§i(—8+§)+ (iz§)2+sdz—s]§i
dl /3 3 dl di? | 3

costy =4(1+%6+ %8%) cos?y sin?y =3(1—%8— 8%

Les expressions pour S” et 4" sont les mémes en changeant le signe de 8.
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En introduisant ces développements dans 42, et 42, on obtient pour ceux-ci les
expressions suivantes:

16 16 dS 8[[dS,\? dzs,
A20= 82 S — — 2 = Sa
{ 3\/3 +9[(d1) + dl’-]}

16 32 ds 16 ds.\? d2s,
4%, = 82 ——sz+-—s,, B s e 2.8
9 9+/3 27 dl d?

Dans le développement, les termes linéaires en  disparaissent évidemment, les contri-
butions de S” et S” étant de signes opposés. Quant a 42, il a la méme forme que 42,.

Passons au cas de I'orbitale |b) =d,,. Les orbitales de symétrie des ligandes de
méme représentation sont les suivantes:

|“3>=%(‘71—02—03+04) |0;>=*%(Us—06—01+08)
|m> = 3 (i — m§ — m§ + ml) |y =— 4 (mi—7g — w5+ 7
|75y =—3(@l+mf—ni—ml) |ap*)=— Y(mi+nwl—m7 — =)

Zo=(blop)? + <blog)? = 4<bloy>? + &(b|os)?
2 = Cblm)? + Cblmp)? + <blmy)? + <blmi*>?
= 4¢b|mE)? + 4<b|wE? + 4<h|mhy? + 4<b|whH?

{blo1) = +/$cosy siny’ S, {blosy =+/3 cosy"siny"S;
1 1
bl = — 2.7 215/ b — 2,,_.2"52
|7y V2 (cos?y” —sin (b|msy = \/ — (cos?¢" — sin? ")
B8 I 3 g’ B l 0 ren
b|mdy = — —\/2 siny’ Sy, (b|mty = — —\-/—-2-sm'y Sy

42, =6cos?y’ sin?y’ S2 + 6cos?y"sin?y,2 Sg* — 12 cos? ysin? y S2
AZ; =2(4cos*y’ —b5cos?y’ +2)S;2 + 2(4cos*y” — bcos?y” + 2) Si?
— 4(4cos*y — 5cos?y + 2) S

Comme dans le cas précédent, on développe 42, et 42, en série de 8 en s’arrétant
au deuxiéme ordre. On a en particulier 2(4cos*y’ — 5cos?y’ + 2) = §(1 + 16 + 12 87).

On obtient:
L a:s,
AZ =86%{— — S2 6 § S,————
3\/3 9 dl?

88 dS,
= X2
4% 8[ 27[(d1) & d12 1
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Nous passons maintenant au cas d’un déplacement & dans la direction (111), qui
ameéne le systéme a la symétrie C,,.

Il convient tout d’abord de fixer la nouvelle numérotation des sommets du cube
et le nouveau choix de I’orientation des orbitales = des ligandes. La numérotation est
indiquée sur la figure 5.

(1m)

Figure 5
Numérotation des ligandes (déformation trigonale).

Figure 6
Orientation des orbitales p des ligandes et définition des longueurs et des angles (déformation
trigonale).

Quant aux orbitales 7, seules nous intéressent celles qui interviennent dans les
orbitales de symétrie appartenant a la représentation A4,, celle de la fonction |a) =
(1/4/3) (dy, + dy, + d,,). Ce sont celles qui sont dans le plan de’axe (111). Leur orienta-
tion est indiquée sur la figure 6 pour les ligandes 2 et 5.



Vol. 47, 1974 Effet Jahn-Teller quadratique sur un ion de configuration 4° 703

D’autre part les distances et angles représentés sur la figure 6 valent respective-
ment: :

I=+/3 *=V3-8 I**=1/3+8

26 26
§—— 4 = [§4—35
ol =%

24/2 , 24/2
COS'}/=T Cosy = COS'};”:
WJ3——+82 V3 3+\—2/8§+82
. .y 1-v38 y 1+ V38
siny =% siny’ = = siny" = =
V3 3—\—/-3-+32 V3 3+%+82

Les fonctions de symétrie se transformant comme |o) sont les suivantes:

loz> = o4 |o¥*> = o

1 o
|0y = —= (0, + 03 + 0y) los> = —= (05 + 06 + 07)

Vi 3
, 1 ) 1
| = %(’”2‘*‘7"34‘“’4) |W;>=V§(W5+W6+W7)

2o = a|oF)? + {a|o¥*)? + {x|0})? + {a|os)?

= (a|op? + {a|0g)? + 3{ax|a)? + 3| 05)?

= Sa|me)? + a|mi)? = 8{a|my)? + 3a|ms)?
(a|oyy =S¥ afogy =SE*
Cafor) =(1—3cos?y)S;  {a|os) = (1 — Fcos?y”)S;
(a|m) =V3cosy siny’S, (a|msy=13cosy"siny Sy
AZ, =S¥ 4+ S¥** — 252 + 3(1 — 3cos?y’)2572

+3(1 — 3cos?y”)2S;2 — 6(1 — 3 cos?y)?S2

AZ, =9cos?y'siny/ S7? + 9 cos® y"sin® y"Sz? — 18 cos? ysin? yS2
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Comme dans les cas précédents, nous développons en série de 6 les distances et les
angles en se limitant au deuxiéme ordre.

3 4
V=l=— 5?2 *—l=-$
37 93
1 16
3(1 —3cos?y' ) 2==|14+—=58+ = &2
( ¥l 3( 3v3° 9 )
8 14 &2
9cos7‘y’sin2'y’=§(1———3‘\/38+3)

Développant comme précédemment les recouvrements en série de Taylor et
utilisant les expressions ci-dessus, on obtient:

ds [ (dS,\? dzs, ]
A2,=82{1652—i5 ——"+5—6- (_) + 8, —— }

27 94/3 ° 27|\ 4l dr?
64 ds,, 16[ [(dS,\* d2S, |
42_82 S2+—S,, + — + S,
94/3 81| \ 4l dr |
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