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On the Approach to Equilibrium in Kinetic Theory.
II. Fluid Mechanics

by Miroslav Grmela

Centre de recherches mathématiques, Université de Montréal

(20. VIIL. 74)

Abstract. The long time behaviour of solutions to the Enskog-Vlasov type kinetic equations is
studied in detail. It is found that for this purpose the Enskog—Vlasov dynamics can be reduced to
fluid dynamics. The quantities that are phenomenological in fluid dynamics appear as functions of
the quantities that are phenomenological in the Enskog—Vlasov dynamics and of the properties of
the fixed point of the Enskog—Vlasov dynamics approached as time goes to infinity. The interesting
case where the fixed point corresponds to a near critical state is also discussed.

1. Introduction

McLennan [1] and Scharf [2] have shown that the long time behaviour of solutions
to the Boltzmann kinetic equation can be obtained by solving the equations of fluid
dynamics whose phenomenological quantities are functions of the phenomenological
quantities entering the Boltzmann kinetic equation. By using the results of Ref. [3] we
can extend the work of McLennan and Scharf to the Enskog-Vlasov dynamics (here-
after the EV-dynamics). This extension allows us to study the reduction of the kinetic
theory dynamics to the fluid dynamics in the situation where the approached (as time
goes to infinity) state corresponds to a near critical state. Both thermodynamics and
asymptotic dynamics are strictly derived only from the EV-dynamics that serve, in
this paper, as the original dynamics with which we start.

The basic ideas of McLennan and Scharf can be formulated, now in the way
applicable not only to the Boltzmann kinetic equation dynamics, as follows.

i) The equilibrium fixed points of the EV-dynamics are defined in Ref. [3] as the
time-independent solutions to the EV-kinetic equation that are moreover invariant
with respect to the transformation f(r, v) > f(r,—v), where r, v stands for the position
and velocity vector respectively and f, a real-valued function of r, v, is an element of the
set o on which the EV-dynamics is defined. All possible equilibrium fixed points are
classified and the thermodynamic interpretation of the classification is developed in
Ref. [3]. It is also proved in Ref. [3] that if the equilibrium fixed point f§&Y corresponds,
in the thermodynamic interpretation, to the thermodynamically stable equilibrium
state then there is a natural Hilbert space structure for the linear space H§®*¥’ on which
the linearized (around fEY’) EV-dynamics is defined such that the infinitesimal
generator of the linearized EV-dynamics is an Onsager operator [4]. It means in
particular that f§FY’ is asymptotically stable.
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i) The similar discussion of the fluid dynamics in Ref. [4] (hereafter F-dynamics)
leads to the identical result, i.e. if f§ is the equilibrium fixed point of F-dynamics
corresponding, in the thermodynamic interpretation, to the thermodynamically stable
equilibrium state then there is a natural Hilbert space structure for the linear space
H{ on which the linearized (around f§) F-dynamics is defined such that the in-
finitesimal generator of the linearized F-dynamics is an Onsager operator [4]. It means
in particular that f§F is asymptotically stable.

iii) Let us take one f§V’ and one f{ that correspond, in the thermodynamic
interpretation, to the same — in the sense of thermodynamics — state. The problem is to
find two subspaces H,, H, of HFV satisfying the following properties:

a) H, and H, are Hilbert spaces having the same dimension as H{P.

b) H,isinvariant with respect to the linearized (around f§V’) EV-dynamics.

c) H, is asymptotic in the sense that the elements of H, characterize the long time
behaviour of the trajectories defined by the linearized EV-dynamics. If for
example the closest to zero spectral points of the linearized EV-operator are
eigenvalues then H, will be chosen as their corresponding eigenspaces.

d) H,is completely isomorphic to H§f” and the linearized EV-dynamics restricted to
H; and transformed (one-to-one transformation) to H, is identical with the
linearized F-dynamics. The identification gives the map from the phenomeno-
logical quantities in the EV-dynamics to the phenomenological quantities in the.
F-dynamics. This map depends on the thermodynamical properties of f§F¥).

The reader who is familiar with the recent Brussels school concept of subdynamics
in the theory of the Liouville dynamics [5] will find that the relation between the F-
dynamics and the Boltzmann-dynamics in the works of McLennan and Scharf is
analogical to the relation between a subdynamics of the Liouville dynamics and the
Liouville dynamics in the Brussels school theory. This observation stimulated our
interest in the extension of the McLennan and Scharf idea to the EV-dynamics since,
as far as we know, the Brussels school theory (based on the Liouville dynamics) has not
yet been extended to include thermodynamical phenomena like, for example, the
critical phenomena. '

In the following sections of this paper the point iii) above is concretely realized
(the points i) and ii) are realized in Refs. [3, 4] and reviewed in Sections 2, 3 respec-
tively). The map from the phenomenological quantities in the EV-dynamics to the
phenomenological quantities in the F-dynamics is obtained explicitly. We would like
to point out that this map is obtained purely from the EV-dynamics. No extra informa-
tion from thermodynamics, equilibrium statistical mechanics etc. is used in this paper.
The final formulas that we obtain are very similar to the formulas derived from the van
der Waal equilibrium theory (this is not surprising, since the theory of the equilibrium
fixed points is equivalent to the van der Waal equilibrium theory [3]) and from the
Enskog dynamics by using the standard methods for calculations of the kinetic co-
efficients, e.g. Ref. [6]. It is well known that the critical phenomena derived from these
formulas are not realistic, which is in our case just a consequence of the fact that the
starting EV-dynamics in not realistic. We believe, however, that the extension of the
McLennan and Scharf idea developed here can be applied to more realistic dynamical
models and in this way results interesting from the point of view of the theory of critical
phenomena can be obtained.
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2. The Enskog-Vlasov Dynamics

The EV-dynamics has been introduced and discussed in Ref. [3]. In order to
establish the notation and the basis (the point i) in the Introduction) for this paper we
mention a few results derived in Ref. [3].

An element f{E¥)f the two-dimensional manifold — parametrized by (e, B8) — of the
equilibrium fixed points of the EV-dynamics is called a single-phase thermodynamically
stable equilibrium state if fEV= n,(«, B)e ", where 1, (depending on (a, f)) is a

positive constant determined by the condition that the function

GEV' =—nln(n) —c; %4me’n I d(n)dn —c, 1BWn? + an — 3In (2‘—8—) n (1)

T

reaches its non-degenerate maximum at # = #,. The parameters («, B) have the follow-
ing thermodynamic meaning: B = 1/T, where T is the temperature, o« = Bu, where u is
the chemical potential. We define

y =maxGEY = gEV(q, B) (2)

that has the thermodynamic meaning y = 8, where p is the pressure.
The phenomenological quantities in the EV-dynamics, denoted #®V), are
{3, ¢4, 0, B(n), Voo (Jr — ry|)}. With respect to the notation used in Ref. [3] we put
¢, = ¢, = 1, the functions$ and ¥, are identical with the functions » and ¥ introduced
in Ref. [3]. The quantity W appearing in (1) equals | 37’V (|r — r'l), where 2 is the
Q

bounded space region in which the system considered is confined. We assume that the
volume of £2 equals one. The physical meaning of &V is explained in Ref. [3]. From
the mathematical point of view c;, ¢, and o are non-negative real constants, 1 is a real-
valued twice-differentiable function of #(r), r € £2, the function ¥, is a once-differen-
tiable function from |r —r’|, r, r’ € Q to the negative real line. Their further properties
are determined by requiring that the geometric properties of the manifold of the
equilibrium fixed points and (2) give the thermodynamics identical with the thermo-
dynamics of a van der Waals gas.

The critical state f &) corresponding to («,, B,) is defined as the equilibrium fixed
point with smallest 8 at which GEV reaches its degenerate extremal value. It means
that («,, B.) are determined by two equations

r=0 . (3.1)
1 dd d?¢
s 2 ool 3 — i 3.2
" 63-_2,-770'( dn+ndn2) n=no, (3.2)
where

dad
r=1+ wny, w=c3%mo3 nd—+2a +c, BW.

n

n=ngy

The solution of (3.2) is called the critical density and is denoted by #,.
The Fourier transform (with respect to r) of the local linearized (around f&Y)
EV-dynamics (in other words the Fourier transform of the Hessian of the EV-vector
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field evaluated at fEY)) with k= (0, 0, %) fixed is

dpEY
ot

where @&V e HEV, HEV is the complex Hilbert space whose elements are ¢®V(v),
v € R3. The scalar product {p{EY?, V) in HEV) is defined by

= QEV) pEV) (4)

T

3/2
(o, gy = [ @ (-2——) 1 (GEV()*AEY GEV(), ®)

where @* is the complex conjugate of ¢ and

3/2
AEY) g5 = ¢+wjd3vno(§;) e~ 112802 (), (6)
The mathematical and physical reasons for introducing this particular scalar product

in H ‘E‘V) are in Ref. [3]. One of its advantages is that we do not need to deal with the
complicated operator Q*¥ but with the much simpler operator AEV)(QEV)

did

AEVQEV) = nod(ng) Rg,1 — ik (’”3 +c3% ""03(71»0 n + ﬂ(no)) +c, BW)

0.3
% J- dsvf fseqs(vl) (vI. 3t '1)3) (P(vl) ¥ 630(”'0) _2— J T

X [ @3V} fraaa(®1) (015 — 09 %53 @(V2 =% (01, = 0,)%,), (7)

where the summation convention has been used, v; means the third component of the
vector v, » is a unit vector, the operator Ry , is the well-known linear Boltzmann
operator. It has been proved in Ref. [3] that the operator AV’ Q®V) in CL, (or Q&Y
in H{EY?) is an Onsager operator [4]. It means in particular that its real part is a self-
adjoint operator and its imaginary part multiplied by the imaginary unit ¢ is also a
self-adjoint operator.

3. The Fluid Dynamics

The fluid dynamics (hereafter the F-dynamics) has been discussed in Ref. [4]. In
order to establish the notation and the basis for this paper (the point ii) in the Introduc-
tion) we mention a few results from Ref. [4].

An element of F = (No, Eg, 0, 0, 0) of the two-dimensional manifold of the
equilibrium fixed points (parametrized by (y, B)) is called a single-phase thermo-
dynamically stable equilibrium state if N,, E, are constants (N, > 0) determined by
the condition that the function

G® = [ Pr(-S(E, V) +yV + BE) - (8)

2
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restricted to the manifold 7(E, V) = 1/B reaches its non-degenerate minimum at
Ny, Ey. In (8) weused V = 1/N, the function S(E, V) is defined by the following relations

oS oS 1
=, S, ©
oV =+ 0 T
We define
a= min G® =gF(y,f) (10)
(E,V)|¢—p-1

The parameters «, B, v have the same thermodynamic interpretation as in the pre-
ceding section.

The phenomenological quantities in F-dynamics 2® are {p(E, V), 7(E, V),
ME, V), n(E, V), 5,(E, V)}. For their physical meaning see Ref. [4], from the mathe-
matical point of view we assume that p and 7 are twice differentiable functions of E and
V, A, m and 7, are continuous, A # 0, 7|,o = T, A, 9, 9, evaluated at £ are positive.

The critical state f{*? corresponding to (y,, f.) is defined as the equilibrium fixed
point with smallest 8 at which G® reaches its degenerate extremal point. It means that
(ve» B.) are determined by the condition that the determinant of the matrix A equals
zero and by the minimality of B.

1 5
Eiﬂg(}bn - ’/1h)l ﬁ31'n, ()) ()J ()
AP — B“'m _B“'e: 0, 0, 0 ) (11)
0, 0, 1, 0, 0
0, 0, 0, 1, 0
0, 0, 0, 0 1

-

where we use the notation 7, = (97/0N)|,, »,) etc.

The Fourier transform (with respect to r) of the local linearized (around f&))

F-dynamics (in other words the Fourier transform of the Hessian of the F-vector
field evaluated at f&)) with k = (0, 0, k) fixed is

seqs.

(F)

a‘; = QP ® | (12)

where ¢ € H{F, o'®) = (n, ¢, u,, u,, #3), H is the complex five-dimensional Hilbert
space with the scalar product

"y
GCoP, 9> = (1, ei,u’r)A(F’(ez ) (13)
u;
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The linear operator QP is given by the matrix

0 0 _ikN, 0 0
Ak g Y 0 0
Ny N, B Ny
1
0® — 0 0 ——ﬁ; $n+n.) R 0 0 (14)
0 0 0 _ T
No
0 0 0 .
0

It has been proved in Ref. [4] that Q) in H{ is an Onsager operator.

4. The Subspace H,

We have to find the five-dimensional subspace H, of H{FY? satisfying the properties
a), b), ) in the point iii) of the Introduction. With the use of Theorem 3 in Ref. [3] we
can follow closely Refs. [1], [2].

Let H, be the nullspace of the operator Ry , with the basis y; =1, y, = (v —
(3/2B)), x3 = Vs, Xa = V5, x5 = v, We shall assume that % is small. The imaginary part of
AEVQEY) s considered as a small perturbation of the real part and, as was proved in
Theorem 3 of Ref. [3], for £ sufficiently small, the eigenvalue 0 of Ry ; will split smoothly

into five eigenvalues w;, ¢=1, ..., 5 that are the closest to zero spectral points of
AEBVIQEV),
The corresponding eigenfunctions are ¢, ¢ =1, ..., 5. The eigenvalues w; and the

eigenfunctions ; can be calculated by using the standard perturbation method and the
corresponding infinite series is, for %2 sufficiently small, convergent. We shall write
explicitly the results for w; up to the order 2% and i, up to the order &.

w,; = wk? + kA
w, = wk? —1kA

Y
w3 = — —q—BZKZ(l =+ %'ﬂ'no 0'3?}(”'0))2k2

wy = —Pr; (1 + Fxmng o D(ng))? k2
Ws = Wy, (15)

where

w=—%B(ry (1 + ‘f‘:s' iy o> H(ne))?) + B %‘32(1 + g 03P (no))?),

1/2
A=(é%) . s=1l+4ey, e=c34mnoa>d(ng), q=3r+2s%
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The quantities x, and «, are defined by

¥ b
3_23 v,,Sj 2—K2811,

((vy vy — 3 811"72). Ttm)u., =K (811 Sjm + Oim 811 - % Su Sim) s

where (, )¢r, means the CL, scalar product. The functions S; and T';; are defined as the
solutions of the integral equations ’

v b
—nod(no)Rp,,; S; = 9 55

—no'ﬂ(no)RB.l Tij = ('Ui 'Uj = %_,02 SU),

that are orthogonal to H,.
The eigenfunctions i, are

b= 0+ B + g, e
where Y{® € H, and in the basis y,

Y@ = (1, 3 Bs, —BA,0, 0)
© = (1, 3 Bs, f41,0,0)

4
¢(30) = (1’ - E—JO: 0) O)
N

$© = (0,0,0,1,0)

$® = (0,0,0,0,1),

P = —1 (BA(L + & o > H(ng)) Ta3 — % Bs(1 + g o> P(no)) S3)
== (BA(L + {5 g P (ng)) T3 + 4 Bs(1 + 70, 05’9(”0))53)

49 =~ E (1t 37y 0005,

P = —iTs,

P =~iTyy,

VP = il + g3 s”)

VP = G + B9

4P = g + 24

4P =0

4P =0,
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where the coefficients g} are arbitrary and will be specified in the next section. The
eigenfunctions ¢, #=1, ..., 5, are orthogonal up to the order %, i.e.

{hi,h = Ni i+ O(F?),

rq 1
Ni=%q, N,= ¢ %N;=

@, N4=N5-_—E.

The calculations leading to (15), (16) are rather lengthy but straightforward.

5. The Fluid Dynamics as the Asymptotic Enskog-Vlasov Dynamics

We shall now find H, and the dynamics in H, transformed into H,. The following
observations help to find H, and its basis vectors ¢;, 7 =1, 2, ... 5.

1) <o, ¢'EY?) has to have the transformation properties ot a vector.

2) The inverse of the matrix B{?’ = (g, ;> has to coincide with the matrix 4®
(see (11)).

3) The straightforward calculation shows that

0
= <L 9> = —ikrus, 9, 17
where @ € HEEV,
We take
g 1, 3
Pr=— p2=K, 57 _ﬁ t K @3=03 @a=1; @s=10; (18)

The coefficients K, K, will be specified later. As follows from (3.1) B — B, implies
r — 0. It means that the changes arising if approaching the critical point can be read
from the dependence on 7. It follows from (18) that the inverse A® of the matrix B® =

Keu @) is

2 K,\? 2 K,r
2E(E) L L2545
3 no \ K, ng B 3 ny K?
2 K 2
qgo = |_2K7P 28 000 (19)
3 n2K3 3 K2
0 0 1 00
0 0 010
0 0 0 01
If we introduce «f and 6! by
5
ei= > oy <)

i=1
and

5
‘nbl: Z 91‘%
ji=1
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then we can write the EV-dynamics in H, as

a;=<{ @i, ‘P(Ev)>

and
! %k
D = [2 aw¥ 8,-] .
[}
We shall write
a=a®j + kaV!
0 = 0O 4 ROWS,
By using (20), (18) and (16) one finds that

3n, 3 ng
2q 2 ¢
3 K +Kls) 3 (K
— r — r
0@ = 2q ? B 2g\"°
1 1
2841 2841
0 0
0 0
D= S o©@igh
14
2 Br e 3 K
SKomg\ 2 28 °
2 3
90> _ 3 K ,ng 28
Br 1
K i
K ngs 27 ¥ Bs
0
0

i _ 5 (0) 1 i
J#I

2 Bs
3K,

2 Ps

21 52
rq
2
-(Kzsz+
0
0
0
q
— 0 0
34
q
— 0 0
34
0 0 0
0O 0 0
0O 0 O

o

685

(22)
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By identifying 4A® with A® and Q® with Q™ we get the so-far unspecified
coefficients K, K,, g4, 4,7 =1, 2, 3 and 2P expressed in terms of PEV,
First we compare A‘® with A®, We get

2
ﬁ"'e:_ﬁ

3 K3

2 K,7
Tp=——

3 ny K3

2 (K,\? r

Pn—y'fn=§ = 72+E- (25)
1

By identifying the corresponding matrix elements Q{¥ and Q{f’ that are propor-
tional to k£ we obtain trivial identities forz=1,7=1,2,3;:=2,7=1,2;:=3,5j=3.
Fori=2;7=3

Y K,s
—=K,r+ —. (26)
78 : B '
Fori=3,j=1
5 2K,s 1
n="7\|— -
3K, B
which, by using (25) and (26), appears to be a trivial identity. For:=3,; =2
1 2 s
%oﬁ‘r" + ";; 'yTe = gKI)

which turns out again to be a trivial identity if using (25) and (26). By comparison of
(26) and (2), (1) one gets

K;=1
K,r=1c,Wny. (27)
Thus
Te=%
Tm=—3c, W
p= % — 4y sWr. (28)

By identifying the corresponding matrix element of Q® and Q® that are propor-
tional to A% one obtains, forj=3,71=1,2,71=3,5j=1, 2,

& + =0
8?+g2=0
g+8=0, (29)
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fori=1,j=1,2

0
+ 00 (g} — g3)) + o O3

From (14) and (26) we have

(F)

2a_ Tn Ky

G

2,2 Te L)
From

(F) )

2,1 __ ¥2,1

F) ~ N2

2,2 2,2
one gets

K,»
B =— 2.5 (81)
Mo

The solution of (29), (30), (31) is

&= -2-3—2 A'w
T3y 3'
gi=—45
g= s Aty
g =&
g = (g;-%w)/l—i
gi=-& (32)
From Q) = 04 = QY = Q0 one gets
7= Bry(1 + 75 710 > B(n))? (ci)
From Q{9 = 09
X = B2k, (1 + 2 7o 6> P(no))? ' (34)

and from Q) = Q42 we get (34) and

M= P21 (1 + F 710 5> (n0))? (s> — ). (35)
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The map from 2V into 2® — depending on («, B) — is now explicit in (28), (33),
(34) and (35). If B — B, then 7 — O (see 3.1) so that the critical phenomena are read
from the dependence on 7.
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