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On the Approach to Equilibrium in Fluid Mechanics

by Miroslav Grmela

Centre de recherches mathématiques, Université de Montréal

(20. VIIL. 74)

Abstract. The method which has been developed for the study of solutions of the family of the
kinetic equations of the Enskog—Vlasov type [J. Math. Phys. 15, 35 (1974)] is formulated generally
and applied in fluid dynamics. The theory of solving the equations of fluid dynamics is in this way
put into the relationship with the theory of solving other dynamical equations of non-equilibrium
statistical mechanics. Some basic results in fluid dynamics are reproduced and a new contribution
to the problem of finding a natural (both from the physical and mathematical point of view) structure
for the space on which the equations of fluid mechanics are defined is made.

1. Introduction

A possibility of extracting a general theory from the discussion of the kinetic
theory dynamics [1] has been already discussed in Ref. [2]. Since there are now several
types of dynamics which can be discussed in a unified way, namely the Enskog-
Vlasov dynamics [1], fluid dynamics (Sections 3 and 4 of this paper), non-equilibrium
and equilibrium thermodynamics [2] and the Liouville dynamics [2], it is convenient to
start this paper with the general theory. The concepts introduced and the relations
obtained in the general theory will then simplify the discussion of fluid dynamics. The
theory of solving the equations of fluid dynamics will also appear automatically as an
organic part of the theory of solving other dynamical equations of non-equilibrium
statistical mechanics. Relatively well-developed (both from the physical and mathe-
matical point of view) fluid dynamics might be very useful for the further development of
the general theory and in this way for development in other dynamical theories of non-
equilibrium statistical mechanics. A detailed study of the relatlonshlp between kinetic
theory and fluid dynamics, as it appears from the point of view of the general theory, is
in Ref. [3]. We also believe that our analysis of the equations of fluid dynamics might
bring closer the rather mathematically oriented [4] and the rather physically oriented
[6] fluid mechanics.

2. A General Theory

This section is an extract and compilation, expressed in terms of the general
dynamical system theory, of the results obtained in Refs. [1], [2] and Sections 3 and 4
of this paper. The reader should consult these references for the motivation and concrete
illustration of the concepts introduced.

Let us have a class & of one-component physical systems and a given set of
measurements and observations €. The experience obtained from measuring and
observing (the observations and measurements are always assumed to be elements of
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0) the physical systems in & is summed up in a phenomenological theory. Let f charac-
terize completely (with respect to @) the state of the physical systems in &. All possible
states form a set #. We shall assume that # is a manifold, in general infinite dimen-
sional. A more detailed specification of # has to come as a result of the comparison of
the properties of solutions of the time evolution equation of the phenomenological
theory

of
i Rf (1)

and the results of observations and measurements. The operator R in (1) is defined
through a set of phenomenological quantities 2 whose values can be obtained only
from observations and measurements,

The operator I: # — s satisfying I? = 1 is introduced. The operator R can be
written as ’

R=R® 4 R , (2)
where

R® =1 (R+ IRI),

R©) =% (R —IRI).

Definition. An element f of # is called an equilibrium state (denoted m) iff Rf =0
and If = f. Equivalently, the equilibrium state is defined by two equations

R(+)f= 0 (3)
RO f=0. (4)

The equilibrium state » will be physically interpreted as the state characterizing
the thermodynamical equilibrium state. A justification of this interpretation will be
given in the discussion following the requirements Al, A2 below.

We assume that (1) represents our knowledge of the class & of real physical systems
provided 0 is given. This assumption defines (from the physical point of view) the
family of the operators R that we want to consider. There is a natural question of
defining such a class of R clearly in mathematical terms. Our study of some concrete
dynamical theories of non-equilibrium statistical mechanics [1, 2] allows us to formu-
late three mathematical requirements Al, A2, A3 that will define the class € of the
operators R.

Al. Equation (3) is solved by a one parameter (denoted 7,) of submanifolds F, of #.
AZ2. Equation (4) restricted to F, for all admissible 7, is equivalent to the equation

gradG(ﬂ'l,ﬂ'z) = O (4:.1)

where G(m,m,): F, — Ris of class at least C?, m, is another parameter entering
the analysis. It is assumed that the admissible values of 7, 7, form an open sub-
set of R2,
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The set of all g € F,_satisfying (4.1) is called the thermodynamical manifold and
will be denoted by .#. The elements of .# are the equilibrium states ». We shall define

73 =.G('n'1, m,) (m). (5)

Since the function G is defined by (4.1) up to a constant, we shall introduce the following
procedure for determining the sign of G and the thermodynamic interpretation of
3, M2, 73. Let our physical system be in the thermodynamical equilibrium state s
corresponding, from the thermodynamical point of view, to a positive energy. Then the
sign of G is chosen as such that (9/dw,) G(m,, m,) (m) is positive. If (8/0m,) G(m,, ;) (m)
is also positive then m; =8, m, =1v, m3=«, where = T"1, T is the temperature,
y = Bp, pis the pressure, a« = B, u is the chemical potential. If (8/dm,) G(my, ;) () is
negative, then #r; = B, 7; = «, 73 = 9. The function G is still determined only up to a
positive constant that has to be determined in accordance with the units of measure-
ments used in thermodynamics. We shall call m € .# a thermodynamically stable
equilibrium state denoted m;, iff the Hessian of G(w,, m,) evaluated at m, is negative
definite in the case m; =8, m, =%, 73 = « and positive definite in the case =, =B,
7, =, m3 = . An element m € # is called a critical state iff the Hessian of G(m,, )
evaluated at m, is not a one-to-one linear operator. Geometric properties of .# and the
function 7, completely determine thermodynamics of the systems considered (see
more details in Ref. [2]).

Before discussing trajectories in the vicinity of .# we need a mathematical

preparation.
Let
afp
— =09 (6)

be the time evolution equation, ¢ € H, where H is a real Hilbert space, Q is a linear
operator. Let us have moreover an operator #: H — H with #2 =1. The operators
Q™ and Q) are defined analogically as R™® and R in (2).

Definition. A linear operator Q is called an Onsager operator iff

1) the operator Q is closed and densely defined in H,
ii) the operator Q' is a self-adjoint operator and non-positive, Q) is a skew-adjoint
operator.

The Onsager operators have the following properties.

Property 1. Onsager operator () generates uniquely a semigroup U,, ¢ > 0 of the
time evolution operators. The operators U, (¢t > 0) are bounded, U, = idy (the identity
operator in H) and

slimU,p=U,,¢ forallt>t,>0andall p€H.

t=>to

This property is a direct consequence of the Stone-Hille-Yoshida—Phillips theory of
semigroup (Chapter IX, Section 8 of Ref. [6]).

Property 2. No point of the spectral set of an Onsager operator Q can lie in ReA > 0
and the residual spectrum of Q is empty.

The first part follows from the non-positiveness of (, the second part is the con-
sequence of two facts: a) Qt = #(Q.#, where the cross denotes adjoint, b) if A is an
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element of the residual spectrum of Q then the complex conjugate of Ais an element of
the point spectrum of Q1.

Property 3. Let us assume that ¢ is a real valued function of ¢, p, Fe(g, p) =
@(q, —p) and U, (¢t > 0) can be realized as a semigroup of integral operators

¢(g.2.9) = U, 9(9.£,0) = f dgodpo K(q.£.¢; 90, Po) P(d0. £o, 0)- (7)

Moreover the scalar product <, > in H is realized by

Cp.4>= | dgidp, [ dqdpA(g,.p::9.5) 9(ar p) $(@.P). ®)

Then the following identity holds
[ dg1p, g, 51:9.0) K(gu, 1. : 90, p0)
= f dg,dpy A(q1, P1; 9o, Po) K(91,—P1:¢, =P, ). (9)

The proof is straightforward, based on Q' =.#0Q# and the known relation between
K corresponding to Q and Kt corresponding to Q1.

Property 4. If Q is an Onsager operator then S#(Q is a self-adjoint operator. The
well-known connection between self-adjoint operators and the variational principle
can be used. Equivalently, we can say that Q is a self-adjoint operator in the pseudo-
Hilbert space H that is equipped with the pseudo-scalar product { , #).

We shall now return to equation (1) and to the study of trajectories in the vicinity
of mg € M. First we construct the Hessian Q of R evaluated at m, (i.e. Q depends on
7y, 7,). Let the tangent space 7, # at m, be a Hilbert space Whose scalar product is
not specified. Let H be the closed complement of T, M inT, #.

A3(a). There is a scalar product in H such that Q is an Onsager operator.

An equivalent formulation of the requirement A3(a) is the following. Let H be the
L, space. There exists a linear operator A: H — H such that a) 4 is bounded, b)
FAF = A, c) A is self-adjoint and positive definite, d) AQ is an Onsager operator in
H (in the L, space).

A3(b). There exists a function V: A — R, where # < # is a neighborhood of m,
such that a) V restricted to F, N A" (m € F, ) is identical with G defined in
A2 and if G reaches at m, its maximum or minimum then also V reaches at Mg
its maximum or minimum respectively, b) the operator 4 introduced in A3( )
equals to the Hessian of V at m, that is equipped with the corresponding sign
to make it positive definite.

The function V is physically interpreted as the non-equilibrium extension of the
thermodynamic potential G. The identity (9) is physically interpreted as the Onsager
reciprocity relations.

3. Fluid Mechanics

The experience obtained from the fluid mechanics type of observations and
measurements of a certain family of physical systems (called fluids) has been sum-
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marized in the phenomenological theory called fluid mechanics. Fluids cannot be
defined in theoretical terms inside fluid mechanics. A phenomenological theory based
on more detailed observations and measurements like, for example, kinetic theory [3],
has to be used to define fluids theoretically. The state of the system in fluid mechanics
is completely described by the triple f= (N,E,U), where N: 2 >R, E: 2 - R, U:
Q- TR=0 x R3 reNisa position vector, 2 is a bounded open subset of R* with
smooth boundary 92 and volume one, T£2 denotes the tangent bundle of £2. The set of
all fis denoted by #. The quantities N, E, U are called local density, local energy and
local velocity respectively. Dynamics in # — fluid dynamics — is given by

E]: = R®f, (1.a)
ot
or in components
oN oN ouU,
R R
NaUdr-*—E'P——NU 8U¢+n62U (37)+"))a aU,,
ot 07, 07, Org Org 074 ar,,
2
Naa—f"=—NUaZ_f°; +Aaia;- aU (a[::) +27]( %‘Dw Saﬂ) ap
where

D 10U, 0U,

“ 2\ or, * or. |
The phenomenological quantities 2P in fluid dynamics (1) are the real-valued twice-
differentiable functions p, = of E(r), N(r), called the local pressure and the local tem-
perature, respectively, and the real-valued functions A, 7, 5, of E(r), N(r), called the
coefficient of thermal conductivity, shear viscosity and bulk viscosity respectively.
The individuality of each particular fluid is expressed just in the concrete specification
of {p, 7, A, 9, n,} which can be done — inside fluid mechanics — only through the fluid

mechanics observations and measurements. We shall assume that A#0and 7|,, =T,
where T is a positive constant.

4. Application of the General Theory in Fluid Dynamics

We shall follow closely Section 2. Equatlon (1) has now the concrete form (1.a).
The operator [ is defined by (N, E, U) ¥ (N, E, —U). The operators R® ™ and
R® O are found easily. It follows from the definition of the equilibrium states that
U,, =0 (we use the notation m = (N, E.q, U,g)), and N, and E,, are determined by

€eq eq>
o’r
== 3.a
07, 07, (8.2)
?_3 =0. (4.a)

or,
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Since we have assumed 7|5 = T, equation (3.a) is solved by 7(N,E) = T. Equation
(4.a) is clearly equivalent to p(V,E) = P, where P is a constant. We introduce new
quantities 8 = (1/T), y = (P|T), V = (1/N). Following the general theory we want to
write (4.a) restricted to the manifolds 7(E, N) = T in the variational form. This can be
done if » and 7 are not independent but related by

G TIE oV o
The function G is defined by

G j @r(=S(E, V) + yV + BE),

Q

where

&S _¢ B_1

Vv 1 OE =
Equation (10) is equivalent to

828 *S
dEQV oV OE (10-2)

The thermodynamics of the system is completely determined by
o= G l M

and geometric properties (see Ref. [2]) of .#. The thermodynamically stable equili-

brium state m, = (N,, E,. 0) is defined as the equilibrium state at which G reaches its

minimum. It is easy to see, just by writing the necessary condition of stationarity of G

explicitly, that the thermodynamical energy E,,, defined in thermodynamics by

E ., = 0a/0B, equals [ &*rE,, (r), and the thermodynamical volume V;,, defined in
Q

thermodynamics by V,, = 0a/dy, equals [ d3rV, (r).
Q

We shall now study the trajectories in the vicinity of a thermodynamically stable
equilibrium state m,. Straightforward calculations give the Hessian Q¥ of R®
evaluated at m,= (N, E,, 0).

dp

=0® 6.
o QP @, (6.a)
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where ¢ = (n(r), e(r), u(r)) and its first derivatives vanish on 682, ¢ € H, H is a Hilbert
space and

0 o 1 o 1 @ 1 0
V_o a_r, - Vo 07, Vo 0rs
02 0? 0 0 2
VoA, 7,—— — -V, P— —V,P— —Vo P —
oMmig . Vohteg = Vo or, ° o, °" o,
| oy A 2\ @ 2
a ofa or, ofe or, ) Or, 07, ML an? o ar, or, o or, or,
V d V ? |4 L 14 i s 2
0Pn or, ol or, ok or, Or, o\ or, 0r, "33 o2 or, 01
v ] - ] P 0% v 02 - 0? " 22
= °P"a73 - °?“a_r, onzm °""’a-r37572 o\"3 5 ’“arg

where

M= TI(VO: Ey), ma= %TI(VO,EO) + ’?u(Vo’ Eo), A = A(Vo» E,),

_a‘r
" ON

_a'r
~ 9E

T?l 3 Te

’ Pn=_

mg

we assume that %y, n, and A, are positive. The operator Q7 is obtained by putting
M=0fori=3,4,5,7=1,2andi=1,2,j=3,4, 5. The operator QP is obtained

- by putting QP =0fori=1,2,7=1,2and7=3,4,5,j=3,4,5.

Following the general theory we shall assume that H is the L, space, i.e.

(p1,22) = [ #rm(®) nafr) + [ Breale) exr) + [ driete) war).

The problem is to find the operator A‘©: H — H satisfying all the properties listed in
A3(a) of Section 2. It is clear that the operator 4P will have the form

Ay, A, 0 0 0
Ay, Ay 0 0 0

A= 0 0 1 0 0 (11)
0 0 010
0 0 0 0 1

From the requirement that A®Q® ™) ig self-adjoint, we have

A227n=A127e: (12)
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from the requirement that 4®Q® ) js skew-adjoint, we have

Pa= A1 | py
n -V02 12
A12
e=PAy+ —

The solution of (12), (13) is

TaPe
AIZ_ -
?':;)!+P're
Pr,p.
An = Vg n— Tnp
V_§+PTe
TePe
P, ..
Th
'],'/'.'(2)' +P7e

Since p and 7 are related by (10), which reads now

Tu=TV3pe— PV},

we have
1
Ay = T'rn
1
Azz = 'i:"'e

(14)

It remains to show that the operator A, defined in (11), (15), is positive definite.
Let us define in a neighborhood 4" of m, the function V by

V= j Br(=S(E, V) + 3BU, U, + yV + BE).
[9]

(16)
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One easily recognizes that V satisfies the property a), in A3(b) of Section 2 and that
2V *V

0 0
dN?* QEON
P’V ?V o o
dEON  OE?
1 PV
AP = 0 0 0 0 17
3 1E (17)
>V
0 0 U 03 0
0 0 0 7V
oU3

The derivatives in (17) should be understood of course as the functional derivatives
(1.e., if using another notation,
2V 3V

357~ SEmoE®) " )

etc.). All derivatives in (17) are evaluated at m,. It follows trom the definition of m,
that AP is positive definite. Standard arguments can be used to show that 4®™Q®
defined on L, space is densely defined and closed and AP Q" is non-positive. It
means, according to the definition in Section 2, that A® Q¥ on L, space is an Onsager
operator.

5. Discussion

We have shown that 4¥Q® defined on L, space or Q™ defined on the Hilbert
space H equipped with the scalar product (,4‘7) is an Onsager operator if m, is a
thermodynamically stable equilibrium state. We can use four properties of the Onsager
operators derived in Section 2 and in this way obtain four properties of the solutions of
the equations of fluid dynamics. These, or similar results, are already known in fluid
dynamics. The advantage of our derivation is, beside the simplicity, the relation —
through the general theory — to other dynamical theories of non-equilibrium statistical
mechanics.

In view of the critique of the Onsager reciprocity relations in fluid dynamics [7],
we would like to point out the application of Property 3 in fluid dynamics. The kernel
K® in the integral representation of U is now a 5 x 5 matrix

K®(r, t;v') = (K{P(x, 8;1)). (7.a)
Equation (9) then reads
AP KB ¢:ry) = I?(F)(ro; r,—t) AP, (9.a)

where the tilde means transposition and the reversion of signs on places 1 =3, 4, 5;
j=1,2andj=3,4,5;:=1,2.
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The scalar product (,4%®) is clearly very convenient from the mathematical
point of view (it makes Q¥ an Onsager operator). At least Properties 1 and 3 have also
direct relation to measurements and observations in fluid mechanics. The semi-flow is
observed so that the mathematical proof of its existence is a check of the consistency
of the mathematical description. For the experimental basis of the Onsager reciprocity
relations see Ref. [4]. Another argument for the naturality of (,A®) is based on the
relation of 4¥) to G (and V), which is the fundamental quantity in other phenomeno-
logical theory, namely thermodynamics. The norm based on the scalar product (,4®)
1s basically the rate of the entropy production.

Finally we shall point out the difference between the approach to fluid dynamics
used here and the approach used in Ref. [4]. We start our discussion with dynamic
equations that are accepted as a summary of the experience obtained from fluid
mechanical types of observations and measurements. Everything that follows (includ-
ing the thermodynamical concepts) is a consequence of dynamics and appears naturally
in the dynamical system theory type discussions of the solutions of the dynamical
equations. On the other hand the fluid dynamics presented in Ref. [4] starts with
thermodynamics, generalizes it to the local thermodynamics and then from balance
equations, by postulating the linear relationship between fluxes and forces and the
Onsager reciprocity relation, the dynamical equations of fluid dynamics are obtained.
The thermodynamics and its generalization that stays at the beginning in Ref. [4]
and the thermodynamics and its generalization that is a consequence of the postulated
fluid dynamics are identical. The advantage of our approach appears clearly in more
microscopic phenomenological theories (based on a more detailed set of measurements
and observations) like, for example, in kinetic theory [1] where the corresponding

thermodynamics and its appropriate non-equilibrium generalizations are not intuitively
evident.
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