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Helvetica Physica Acta
Vol. 47, 1974, Birkhiuser Verlag Basel

Das Zweikorperproblem der Elektrodynamik

by Willy Scherrer

Bern, Justingerweg 18
(25. IV. 74)

Zusammenfassung. Die klassische, im Newton’schen Rahmen definierte Wechselwirkung
zwischen Elektron und Positron wird direkt in die spezielle Relativititstheorie iibertragen.

Als entscheidend bei diesem Vorhaben erweist sich das Problem der korrespondievenden Phasen :
Die klassische Gleichzeitigkeit muss durch die relativistische Signalverbundenheit ersetzt werden.

Anschliessend wird ein Wirkungsprinzip in Gestalt einesinvarianten Linienintegrals eingefiihrt,
das neben den bekannten kinetischen Gliedern ein relativistisches Coulombpotential enthalt.

Die resultierenden Bewegungsgleichungen sind im Prinzip vollstandig berechenbar. Wich-
tigstes Ergebnis ist, abgesehen von einer unwesentlichen Einschrinkung, ein Beweis fiir folgende
Aussage:

Es existiert eine Fiille von stationdven Losungen mit grosser, vesp. kleiner Totalenergie, falls nur
dey totale Drehimpuls gentigend gross ist.

Diese Aussage ist nur eine Folge der Relativititstheorie und daher unabhingig von der Quan-
tentheorie. Offen bleibt also die Frage, ob eine Quantisierung notig, respektive maglich ist.

1. Einleitung

In einer friilheren Arbeit [1] habe ich die Leitgedanken zu einer relativistischen
Theorie der Wechselwirkung von geladenen Teilchen entwickelt. Insbesondere wurde,
gestiitzt auf ein Wirkungsprinzip, die Theorie fiir zwei Teilchen von verschiedener
Masse durchgefiihrt bis zur Aufstellung der Gleichungen fiir Energie, Translations-
impuls und Drehimpuls.

Kurz ausgedriickt ist die Theorie die direkte Uebertragung der klassischen, im
Newton’schen Rahmen definierten Elektrodynamik in die Relativitatstheorie. Im
klassischen Rahmen sind die fiir die Wechselwirkung zwischen zwei Teilchen einander
korrespondierenden Phasen durch Gleichzeitigkeit definiert. Diese Definition ist in der
Relativitatstheorie unbrauchbar, weil hier die Gleichzeitigkeit vom Bewegungszustand
des Beobachters abhingt. ‘

Der Grundgedanke der Theorie ist, die korrespondierenden Phasen durch Signal-
verbundenherit zu definieren. Was damit gemeint ist, soll anhand von zwei punktartigen
Massen m, und m, kurz erliutert werden.

Eine Phase der Masse m, ist definiert durch einen Punkt ihrer Weltlinie, also einen
Weltpunkt P,. Entsprechend sei P, eine Phase von m,. Korrespondierende Phasen
werden nun am einfachsten wie folgt definiert:

Der Zukunftskegel aus dem Zentrum P, trifft die Weltlinie von m, in héch-
stens einem Punkt P,, den wir nun als ‘die P, korrespondierende Phase’ bezeichnen.
Der Vergangenheitskegel aus dem Zentrum P, trifft die Weltlinie von m,
in dem einzigen Punkt P,, der somit ‘die P, korrespondierende Phase’ darstellt.
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Es handelt sich also um eine eindeutige Korrespondenz. Dieselbe setzt sich bei
kontinuierlicher Durchlaufung der Weltlinien fort, es sei denn, dass ein Teilchen
entweder durch Strahlung oder im Unendlichen verschwindet.

Gemiss der gegebenen Beschreibung wirkt das Teilchen m, in die Zukunft und
soll daher ‘progressiv’ genannt werden (p-Teilchen).

Umgekehrt wirkt 7, in die Vergangenheit und heisse dementsprechend ‘regressiv’
(p-Teilchen).

Die beiden Teilchenarten miissen streng auseinandergehalten werden, weil andern-
falls die eindeutige Umkehrbarkeit der Korrespondenz verloren ginge.

Die definierte Signalverbundenheit ist invariant gegeniiber Lorentz-transforma-
tion, weil die Nullstrecke P, P, diese Eigenschaft besitzt.

Die Erfahrung hat gezeigt, dass Elektron und Positron die einzigen Elementarteil-
chen sind, die nicht weiter zerlegt, sondern nur noch zerstrahlt werden kénnen. Einzig
diese beiden Teilchen kommen daher vielleicht als letzte Bausteine der Materie in
Betracht.

Um dieser Frage ndher zu kommen, beschrinken wir die weiteren Untersuch-
ungen auf diese beiden ‘Primdrieilchen’. Nach dem Vorausgehenden zerfallen sie in
zwei Klassen:

Die Klasse der p-Teilchen (progressiv) und die Klasse der p-Teilchen (regressiv).
Um die Ausdrucksweise zu vereinfachen, treffen wir weiter folgende Definition:

1) Zwei Primirteilchen heissen ‘konfragressiv’, wenn sie in entgegengesetzten
Zeitrichtungen wirken (ein p-Teilchen und ein p-Teilchen).

2) Zwei Primirteilchen heissen ‘kogressiv’, wenn sie in der gleichen Zeitrichtung
wirken (2p-Teilchen oder 2p-Teilchen).

Offenbar ist die ganze Begriffsbildung darauf angelegt, um fiir kontragressive
Teilchen eine Fernwechselwirkung definieren zu kénnen.

Fir eine Fern-Wechselwirkung kogressiver Teilchen besteht meines Wissens
kein befriedigender Ansatz. Ich habe daher in [1] nur einen direkten Zusammenstoss
in’s Auge gefasst gemadss folgendem Postulat, das ich ausdriicklich als provisorisch
bezeichnet habe:

Stossen zwei kogressive Primdrietlchen zusammen, so dndern sich ihre Vierer-
geschwindigkeiten unter Evhaltung von Energie und Impuls.

Die hier gegebene Beschreibung von Elektron und Positron weicht wesentlich
ab von der im Gebrauch stehenden. Ob sich diese neue Beschreibung bewédhren wird,
kann natiirlich erst die weitere Ausgestaltung des vorgeschlagenen Modell’s zeigen.

In [1] wurde ein Wirkungsprinzip fiir zwei verschiedene Massen gewahlt, um den
Anschluss an die Sommerfeldlésung zu gewinnen. Lisst man eine dieser beiden Massen
nach o« streben, so ergibt ein Grenziibergang ein Wirkungsprinzip, das diesen Anschluss
an das Bewihrte liefert.

Die Theorie ist damit soweit gerechtfertigt, dass ein Angriff auf das allgemeine
Zweikorperproblem fiir gleiche Massen verantwortet werden kann. Dieser wird im
ndchsten Abschnitt eingeleitet.

2. Vorbereitung

Wir beschrinken uns jetzt also auf zwei Teilchen #, und m, von der Masse eines
Elektrons, wihlen diese Masse als Einheit und setzen iiberdies die Lichtgeschwindig-
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keit gleich 1:

m1=m2'=m= 1 (10)
c=1
Fiir den klassischen Elektronenradius erhalten wir also den Ausdruck
a=e? (1)

Weiter legen wir ein pseudoorthogonales Koordinatensystem zugrunde und
umgehen die Indexrechnung, indem wir die Weltvektoren in ihrer Zerspaltung durch
Vektorsymbole charakterisieren:

U= (u;u)
o= ton | g

Die Gréssen # and v stellen also die Zeitkoordinaten von m, und s, dar, u und v die
Raumvektoren dazu.

Die zu den kontragredienten Vektoren (2) gehdrigen kogredienten sind also gege-
ben durch

U= (u;—u), &
y 2)
B = (v;—v),

und die pseudoeuklidische Bilinearform erscheint als skalares Produkt
UB =uv — uo =UB, (30)

dessen Rechenregeln leicht zu iiberblicken sind.
Der von m, zum korrespondierenden #, fiihrende Nullvektor ist gegeben durch

U-B=(u—v;u—n) | (31)
und erfiillt die Identitit
U-—B)U—-B)=(u—1v)?— (u—0)2=0, (3,)

welche die Signalverbundenheit zum Ausdruck bringt.
Als Systemparameter wihlen wir eine Variable s, die auf eine Linge normiert
werden kann, und bilden dann die dimensionslosen Vierergeschwindigkeiten

au a8
U=—; B'=—0o (4)
ds ds
Weiter definieren wir die fundamentale Lange
R=3W + ) (I - B) | - (6)
Wegen den aus (5,) und (3,) folgenden Relationen
R=wlU—-B)=8'(U-B) (52)

stellt R die Distanz von m, nach m, sowohl im Ruhsystem von m, als auch im Ruh-

system von m, dar, gemessen vermittels der spiter zu normierenden Lange s (Abschnitt
3, (2,) und (2,).
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Man beachte: '
Ro= (U — %) (Il - B) (37)

und R sind immer zwei invariante Lingen. Aber nur im Falle (3,), also Ry =0, tritt R

dank (5,) als einzige Distanz zwischen m, und m, in Erscheinung.

3. Ein Wirkungsprinzip

Wir wihlen als Lagrangefunktion

LE—VLl_VLz—Q (10)
mit

L=wl; L,=%% (1)
und dem Potential

a(VL;+VL,?
D =— (1)
4R
und fordern das Verschwinden der ersten Varianten
$2
8 f Lds =0 | (20)
5

des Linienintegrals

W = j Lds (24)

fiir irgend ein Segment der Systembahn.

Die beiden ersten Terme von (1,) sind wegen (1,) homogen und vom ersten Grad
in bezug auf die Komponenten der Geschwindigkeiten. Nach der Definition von R
gemadss Abschnitt 2 (5,) gilt dasselbe auch fiir das Potential (1,).

Das Integral (2,) ist daher invariant gegeniiber Parametertransformation und
kann somit durch die Bedingung

L=2 (22)
direkt als Lange respektive Zeit

W=2 f ds, (2,)

die Eigenzeit des Systems, interpretiert werden.

Nun noch eine Bemerkung zur Wahl von (1,). Um die erwihnten Invarianz-
forderungen zu erfiillen, steht natiirlich eine Auswahl zur Verfiigung, namlich die
lineare Kombination

Z¥*=a, Li+a,Ly+a; VL, VI, + a, W% (30)

fiir den Zahler, falls man am Coulombpotential festhalten will, wobei die ¢, konstante
Lingen sind. ’
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Der Spezialfall
Z* = 46111’ STV (31)

liefert das Potential von [1], Abschnitt 3 (6,), falls man sich auf Elektronenmassen
" beschriankt. /
Der Spezialfall

Z* =2a(L, + L,) | (32)

liefert genau die gleichen direkten Kollisionen wie (3,). In beiden Fillen aber stehen der
allgemeinen Losung grosse Schwierigkeiten entgegen.

Die Wahl von (1,) ergab sich aus der Vermutung, dass die genaue Wiederholung
der Wurzelsumme von (1,) im Potential (1,) die Lésungschancen verbessere.

Tatsdchlich ist das so spezialisierte Problem im Prinzip vollstindig l6sbar.
Allerdings ist zu vermuten, dass seine erschopfende Auswertung grosse Rechenar-
beiten erfordern wird.

Ich muss mich daher damit begniigen, die wesentlichen Ziige des Losungsver-
fahrens zu schildern.

Wir beginnen mit einer Vektortransformation:

P=3U+B); X=4U-D), | ' (4,)
U=P+%; B=9_X%, 4,) -

welche die Weltvektoren der beiden Teilchen ersetzt durch diejenigen des Schwer-
punkts und des halben Nullvektors. Die Letzteren werden anschliessend zerspalten
gemass

Y= (1), (51)
£= (E?’;I), (52)
7 = |\/;2_|, e2=1. : (53)

Der Vergleich mit den Zerspaltungen Abschnitt 2 (2) ergibt

u=t+e;, Uu=1n$-+zx
v=F(—er; D=1)—%
Durch die Relationen (5) wird also die Korrespondenzbedingung Abschnitt 2

(3,) erfiillt und wir haben nur noch eine unabhingige Zeitkoordinate ¢, Weiter folgt
aus (6): '

Fiir e =1 ist das Teilchen m, (M) regressiv, das andere progressiv; fiir e=—1
gerade umgekehrt. Es gilt also der Satz

S,: Beim Vorzeichenwechsel von € vertauschen die beiden Teilchen ihre Rollen (Zeit-
richtungen). _

Fiihren wir jetzt die neuen Variabeln gemiss (6) ein in L,;, L, und R, so folgen

Li=t?—9242e'r —y'x)— (x2—1r?), (74)

L2 =2 1)12 _ 2(€tf 7 — 1)/ I,) _ (xfz - 1,12), (72)

R=29"X=2(et'r— 1y %). ' (73)
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Figur 1
Erlauterung in Abschnitt 9, unter B.

Da nach diesen Relationen die Lagrangefunktion explizit unabhéngig ist von ¢ und
y, erhalten die aus (2,) fliessenden Differentialgleichungen folgende Gestalt:

oL '_0 "
(aT) ~0, (80)
oL\ _ )
) = N
aL\ oL

(ax’) —a=0- (82)

Dabei mache ich von einer abgekiirzten Schreibweise fiir einen Gradienten Gebrauch
nach den Mustern

0L (dL oL 3L \ )
ox’ \ox| ox, 0x3’)’
9)

ox  \ox, ox, ox,

0x, 0x, 0%,

oL (aL oL aL)- j

Aus (85) und (8,) ergeben sich unmittelbar folgende Zwischenintegrale:

oL

at' = ¢Co, (100)

oL

é; — c’ (101)
WO nun

€ =(co;¢) (11,)
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den konstanten Energieimpulsvektor des Systems darstellt. Weiter schliessen wir auf
das Bestehen der Ungleichung

CC=c2—¢>0, (11,)

denn andernfalls hitten wir es mit einem Licht- oder einem Ueberlichtsystem zu tun.
Dank der Ungleichung (11,) konnen wir also unser primires Bezugssystem auf
Ruhe transformieren, d.h. die Zwischenintegrale von vorneherein in der Gestalt

oL

= Co, _ (12
o | | o
oL
o, (12,)
dy’
annehmen.

Wir befinden uns damit im Ruhsystem des Teilchensystems, das der Beobachter
natiirlich nur dann gebrauchen kann, wenn er die Geschwindigkeit

N (13)
Co :

des Teilchensystems vernachlissigen darf.

4. Die Zwischenintegrale

Wir gehen jetzt an die Auswertung der Zwischenintegrale Abschnitt 2 (12,), (12,),
schreiben aber in Aenderung des Vorzeichens der Energie

oL
— — » (l)
ot’
oL
P (2)
Die Berechnung der linken Seiten ergibt
oL
_at'=F°t,+Go€7"+]€”=F, (Lo)
oL .
8__ o)+ Gox' + Jx=0, (IT,)
9
wobei als Abkiirzungen gebraucht werden
- a(VLi+V L 1 1
g1 VLtV NERY fi
2R - vVL, L,
aVLi+vL 1
GO — 1 . (31)
2R V'L \/ _
a(v/L; + VL,)?
j - ( 1 2) ) (32)

2R?
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Weiter bené6tigen wir die aus Abschnitt 3 (5;) herleitbaren Relationen

or x )

ox 4

o' x

kI 4

S )

ar [z

—=(2}. 4

1 "
Mit ihrer Hilfe ergeben sich:

oL ,

= =Gov' + Fo¥' — Kz, (I11,)

oL , ,

Ly Oy (1vo)
mit den weiteren Abkiirzungen

Go Et, + FO 7’
K= f ’ (51)
Jet' — Ky’
Mo="——. (52)

Schliesslich empfiehlt es sich, die zu L gehorige Hamiltonfunktion herzuleiten.
Nach Leonhard Eulers partieller Differentialgleichung fiir homogene Funktionen
gilt fiir L die Identitat

L L L
& VTt w T

oder
oL vyoL 0L L
e 2 T (6)
o oy t'ox ¢
womit die linke Seite von (I,) als Hamiltonfunktion erscheint.
Damit erhalten wir einen Anlass, die Systemeigenzeit s durch die Koordinatenzeit
t zu ersetzen gemass

f Lds= f Adt 1)
also
L=A¢

Die mit der inhomogenen Wirkungsfunktion /A verkoppelten Grossen sind dann
zu definieren durch

Li=A4"%
L,=A4,¢?
(1255(!1; (74)

R =2Nv¥
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Bezeichnen wir die Ableitung ¢ durch einen Punkt, so erhalten wir

A=A, —VA,~ (80)
mit

A, =4u*—1n? A

A, =02 —p?

a(VA; + V) (8)

== 8N

N=er—nx )
Explizit insbesondere

u=1l+er; U=p+%x

v=1—er; b=?)-i (&)
und

A1=1——t')2+2(e%—1')5£)—(5:2-7"2)} )

Ay=1—1? — 2(er — i) — (¥ — #?) ’

Unter Beachtung von (6) kénnen also die Gleichungen (I,)—(IV,) tibergefiihrt werden
in

H=F+Ger+ Jer=T, | (I)
5I_)_=1~*11)+Ga'e+jae=0, (IT)
g‘—:-=Gf)+F§e—Kx, o
g T K=, (1v)

mit den Abkiirzungen

B aVA,+V)\ [ 1 1
F = (l - T )(\/I + \/Z;) (90)
o1 2V i+ V) ( - 9,)

4N VA, VA4,

_a(V A+ VA,)?
J = 8N? ’ (82)
B Ge—l-F?", _ 9.)

Y

yJe— & (9,)

4
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wihrend (6) in der Gestalt

o4 .04
=9)—+3x—-41 (10)
) ox
erscheint.
An die Stelle der Gleichung Abschnitt 3 (8,) tritt nun
o4\ a4 _ | 0
o) ax e

Wir kénnen jetzt ein drittes Zwischenintegral, den Drehimpulssatz herleiten,
Aus (II)-(IV) folgt unmittelbar

. 04
D, —

=0 12
% (120)

o4 oA
,—|+|x,—
0x Ox

Wegen der rechten Seite von (II) folgt daraus

+

x,f’f] 0 (12,)

ox

{. oA
x, —
%

und in Verbindung mit (11) schliesst man auf

oil =0 12
[E,E = ( 2)

woraus sich das Integral

041
[x, —-—} =dae; (e?=1) (Vy)
0% :

ergibt. Wegen (III) und (II) erhdlt man daraus schliesslich die explizite Drehimpuls-
gleichung

F2_ (2
F

[x,%] = Sae. (Va)

Darin ist nun 6 offenbar die wegen Abschnitt 2 (1,) dimensionslose Drehimpulszahl.
Unsere Aufgabe ist damit zuriickgefiihrt auf die Integration der drei Zwischen-
integrale (I), (II) und (V,).
Zum Schluss ziehen wir noch eine Folgerung aus der Energleglelchung (I). Offenbar
spielt der Term [ e7 in dleser Gleichung die Rolle der potentiellen Energie und es
sich der Satz

S,: Wechselt e sein Vorzeichen, so auch die potentielle Energie.
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In Verbindung mit dem Satz S, von Abschnitt 3 folgt daher weiter

Sy Vertauschen die beiden Teilchen ihre Rollen, so wechselt die potentielle Energie ihr
Vorzeichen.

Mit anderen Worten: Im Rahmen dieser Theorie sind Ladungen nicht Qualitdten
von Quellen, sondern zeitrdumliche Eigenschaften der Wechselwirkung.

5. Die Schliisselvariabeln

Aus dem Drehimpuls (V,) in Verbindung mit der Translationsimpulsgleichung
(IT) von Abschnitt 4 kann man herleiten, dass die raumliche Bewegung des Systems in
einer Ebene senkrecht zur Achse e stattfindet.

Es geniigt daher der Ansatz

2= (%,%,0); p=(¥1,50), (1)

und die Zwischenintegrale liefern miteinander 4 gewdhnliche Differentialgleichungen 1.
Ordnung fiir die 4 Koordinaten in (1) als Funktionen der Zeit.

In Analogie zum klassischen Fall wird man also anstreben, die Drehwinkel der
Vektoren x und y zu eliminieren, um eine Gleichung fiir 2 Schliisselvariabeln zu
gewinnen. Als solche eignen sich aber nicht die Lingen |x| und |y|, sondern die érdgen
Massen der beiden Teilchen: (4/4;)~! und (4/4,)~!, oder irgend ein denselben einein-
deutig zugeordnetes Funktionenpaar.

Wir definieren

1 1
S= ) 21
Vi VT &)
1 1
T = = , 22)
va, VA, (
und
z=z———-—A2_ Al (2)
S VA +VA,

Am giinstigsten fiir die Berechnung ist das Paar (S,2), weil sich fiir dasselbe eine
im Prinzip streng l6sbare algebraische Gleichung ergibt.
Aus (2,)-(2;) folgen
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Fithrt man diese Werte gemiss Abschnitt 4 (95)—(9,) ein in die Zwischenintegrale
(I), (II) und (V,), so erhilt man folgende Zusammenstellung:

H=F +Ger+ Jer=T, | | (I)
oA
— =F)+ Gx+ Tx=0, (II)
09
oA e |
%, 5| = (1 — 2?) F[x,x] = dae, (V,)
mit
F=§—- —2
1-22)N
=zF (4)
_ 2a
J=Sz(1 — 222 N?

Schliesslich noch eine Vorbereitung fiir spitere Eliminationen. Aus (3) ergeben sich

WA+ )= 5 ®
Bl ) = - 8
und in Verbindung mit Abschnitt 4 (8,) folgen-die Gleichungen
1—1')2—(3'52—5'2)=—;2((11J:—i))2, 6,
er_@g=_ﬁ. 6,

Aus der Zusammenstellung der Zwischenintegrale ersieht man, dass der potenti-
ellen Energie Jer ein potentieller Impuls zur Seite steht. Derselbe kompensiert die
Summe aus kinetischem Schwerpunktsimpuls Fy und kinetischem Radialimpuls Gx
zum totalen Translationsimpuls Null.

Durch diese Gleichungen ist also — wie schon einmal erwihnt wurde — das Ruh-
system des Teilchensystems ausgezeichnet. Von diesem System verschieden ist im
Allgemeinen das Ruhsystem des Beobachters mit dem konstanten Energieimpuls-
vektor

€=(F0;'}/oe), . (70)
gemass

I*=T%- v}
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6. Polarkoordinaten

Wir setzen

e= (0,0,1)
1 = s(cosy, siny, 0)
x =r(cos g, sing, 0)

und gebrauchen die Abkiirzungen

O=x—¢
@, =5cos® — sysin®
D, =5sin@ + sycos @
Dann liefert die Berechnung
I-)x - r@l
N = 1’(6 — @1)
§? =3+ 52 = O + 0
nE= D, v+ Dyrep
iZ A 7';2 =& r2 q‘)z
[x,%] =7r*pe

Aus Abschnitt 5 (II) folgt

F(scosy — sysiny) + G(#cosp — r@sing) + Jr cosp =10
F(ssiny + sycosy) + G(rsing + r¢cosg) + Jrsin o =0

und daraus vermittels linearer Kombination
FO,+Gr+ Jr=0
FO,+Grg=0
Aus (3,) entnehmen wir

N
@1 =€ ——
7
Dies ein in €(11I,) liefert

eFN

F+ Ger+ Jer =

Dann notieren wir Abschnitt 5 (I):

F+Ger+ Jer=1T.

657

(I13)
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Der Vergleich liefert
eFN
eine Schliisselgleichung, weil sie die Elimination von 7 einleitet.
Aus (I1;) und Abschnitt 5 (4) folgt
&, = —ori (113)
Jetzt r¢ aus (3,), Abschnitt 5 (V), (I17):
el'da
= — 02 v)
(1—-2)F*N
Dies ein in (II3):
By TR (%)
(1—2%) F2N

Weiter aus (37) und (II7):

¢1=e(1_§). (40

Andererseits Einfithrung von (3,) in die Gleichungen Abschnitt 5 (6,), (6,):

| 4(1+ 2
®f+®§+72q}2=1—m, (41)
; ' 4z
(E—(pl)?’—(pzf’(p=—m' (42)
In diese Gleichungen eingesetzt die obigen Werte fiir @,, @, und r¢:
ry? 0*Ia*(1 4+ 22 4(1 + 22
1——) -1+ ( s == 2( 2)2’
F (1 — 232 F*N? S3(1 — 22)
el’ 82 I%a*z 4

F  (1—22F'N?  S1—z2)2

Weiter (I) mit G = zF und (II7):

N
F 4 zFer + =I
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Hierauf (1) — 2F?|I" (4,) mit | aus Abschnitt 5 (4):

&2 la? 2 2aF 472 F?
(1 — 22 F*N? T IS}l —z22N ISl — 22?2

Schliesslich liefert Abschnitt 5 (4) noch
a
F=8— —
(1-2*))N @

Die Elimination von F und N aus den Gleichungen‘@ und @ ergibt nun also
die gesuchte Relation zwischen den ‘Schliisselvariabeln’ S und z.

7. Elimination

Die Gleichungen Abschnitt 6 und @ enthalten z nur im Quadrat. Wir
setzen daher

A=z (Lo)
und notieren nun die Gleichungen leicht umgeformt:
a

(1-AN

N(I'-2F) &I2a(1+))  4(1+)) | (20)

=S—F, (1)

P (1—AN2F*N2  S%1—)>?
[(F-T) 82 a2 ) s 2a 4 39

F2 (1—N2F*N2 ' S?(1—X2FN S*1—)?* °
Die Operationen F(A(2,) + (1 + A) (3p)) und F2((2,) + 2(3,)) ergeben:

2 2a(1+2A
ra+n-L 20 )
£ S}(1—-)N2N
272 .2 2

ey 021%a 4aF 4F (30)

QI-NFPN?  SA—N°N_ S1-N

Jetzt Elimination von N aus (24) und (3) vermittels (1) und anschliessende Weg-
schaffung der Nenner:

20+ 2) F2—(I'1 —X)2S+2(1 + A))SF + I'*(1 — ) $? =0, (2
4F3 + 21 =X (8*(1 =N —1)SF?2—282T%(1 — N)2S2F + 8*T*(1 — N)2S*=0.

(3"
Weiter Elimination von F aus (2') und (3): Aus (2’) entnimmt man

20+ ) F2= ('l —X2S+2(14+A) F-T?1-X5S)S, (2")
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und reduziert damit (3") auf ein in F quadratisches Polynom. Setzt man tiberdies

F =0S, (40)
so gehen (2’) und (3") schliesslich iiber in

A40Q*+4,0+4,=0 (2)

BoQ*+ B,Q+ B, =0 (3)
mit

Ao=2(1+A)

A =—(1 = NS +2(1 + X)) (44)

A,=17%1-))
und

B,=—44,

B, =—A4,((6*1—-A) —1) A4, +28%(1 —A) A, +4) (4,)

B,=—(1—-XNA4,((I'*-2)8%2—I"?— (I"*+2) %))
Mit den Abkiirzungen

A A 4,4 Ay A
Do=| V7l Dy=| 770 D= (45)
B,, B, B;, By By, B,
ergeben sich daher fiir Q die Relationen
D, D,
= i 5

Q D.~ D, (50)

und als Folge
A‘:—'DoDz—D%=O, (51)

d.h. die gesuchte Gleichung zwischen den ‘Schliisselvariabeln’ S und z.

Fiir das Weitere empfiehlt sich statt S die Variable

2 = "‘Al, (60)
explizit also

Z=T(1-202S+2(1+) (61)

Die Berechnung ergibt
d=-2I"2(1 - )24,, (7)
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mit

4,=28%(1+2A) 23
+ 2821 — A% Q, 2*
—2I'*(1-2%)Q,2
+ I'*(1 — A% Q,

wobei die Q, folgende Polynome in A bedeuten:

Q,=8>-5 ,
Y (81)
—82 A2

0,= (> +2)8*—2(I'2—3)8* + I'?
(2 —2)8 — (I + 6)) 62
— (T2 +2) 8% — I'?) 8212
(2 —2) 842

Qa= (' + 2)28% — 222 — 10) 8% + I'*(I" + 8)
—2((I'?—4) 8 — T'*(I"™ + 2)) 82 A
—I2(88* - 2(I'*—10)82 + ') X2 b (85)
+2((I" — 4) 8% — I'}(I"* + 2)) 2 1
—(1"2—2)284){4 , y

8. Die kubische Gleichung

Als letzte Bedingung zur Bestimmung der Losung ergab sich die Gleichung Ab-
schnitt 7 (5,). Sie liefert den Zusammenhang zwischen S und z, respektive zwischen
2 und A

Da aber nach Abschnitt 7 (7) nur der Faktor 4, von 4 beide Variabeln enthalt, ist
schliesslich die kubische Gleichung Abschnitt 7 (8,) ausschlaggebend.

4,=0 7 (Lo)

Durch diese Gleichung wird nun also X' als Funktion von A bestimmt.
Wir erweitern (1,) gemiss '

4,=2%-335(1 +)\)2_Ao (1,)
und setzen

2:38(1+ 1) 2=Q. (1)



662 Willy Scherrer H.P. A.
Die Gleichung (1,) geht damit iiber in

4,= &
+33I'%(1 — A?) Q, 22 (20)
—22.322(1 + A) (1 — A% Q, 2 °
+22:33861(1+ A2 (1 —-A)Q;=0
Mit , .
Q=w—8I*1-M1)Q, (2,)
geht also (2,) tiber in die Normalform der kubischen Gleichung:
Alzw3+pw+q=0, (30)
wobei gilt
82I'*(1 — A) Q?
=-3I"’(1+A)?(1—-2A . 3
p (1+ N2 ’(+22-3oz ) (3,
& (1 — 2?03
g=28I%(1+ A (1 -A)| +2-321%1-X0,0, |. (32)

+2:3°0,

Fiir die Diskriminante

AV A
o4

ergibt sich

D) =22-33 (1 + )%(1L — )2 D(A) (40)
mit

D) =& I'*(1 - )2Q}(8Q10s — 03)

+2I7%(1 — X) Q,(96%Q, Q5 — 803) (41)
+962(2

Dieser Faktor entscheidet nach (4,) iiber das Vorzeichen der Diskriminante. Wir
notieren daher seine fiir die Diskussion der Losung ausschlaggebenden Einzelwerte:

D(0) = —I?(I'2 — 2)2 (I'? — 4) 812 3\
— (22078 + 157 + 22017 + 115212 — 144)§1°
+ I'(661" — 599 — 1760I'2 — 4167) 88
— I'2(1041" — 6371 + 6084I™ + 3240) &¢
+ 30291 — 3711 — 756) &*
— I'*(10I™ + 504" — 81) 82
— 1618 y

—
-
—_—
['=N
N
e
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D(1) = 263282, (43)
sowie das hochste Glied seiner Entwicklung nach fallenden Potenzen von A:
DN =T4@I*(I'>—1)8* + (I —2)3) §12 1 4 ... (4,)

Aus den Relationen (4,)—(4,) ergeben sich nun leicht nachstehende Folgerungen:

Fi:Ist I'> 2 und 8 genigend gross, so existiert genau eine positive Zahl A, < 1 derart,
dass D(X) tm Intervall '

0<A< A (54)
negativ ist und fiir A, verschwindet. |

F,: Ist 0 < I' < 1 und § gentigend gross, so existiert genau eine Zahl X, > 1 derart, dass
D(A) fiir A, verschwindet und im Bereich

A< A (52)
negativ 1st.

In den Bereichen (5,) und (5,) besitzt also die Gleichung (3,) je drei reelle Lésungen
w(A), die in den Stellen A, resp. A, zu zweit oder dritt zusammenfallen. Um aber auf eine
stationdre Losung schliessen zu kénnen, muss man dreifache Nullstellen vermeiden.

Dies bietet keine Schwierigkeit, denn bei einer dreifachen Nullstelle fiir ein posi-
tives A # 1 miissen die grossen Klammern in (3;) und+(3,) simultan verschwinden.
Diesen Bedingungen geniigen aber nur endlich viele Paare (I',8), die man also leicht
umgehen kann.

Entsprechend dem Riickgang von w(A) auf S(z) gemiss den Gleichungen (2,),
(1) und Abschnitt 7 (6,) gilt alles, was iiber w(A) gesagt worden ist, auch fiir S(z).

Dabei ist aber wohl zu beachten, dass z urspriinglich nach Abschnitt 5 (2;) durch

L e 2.1 )
VA, + V4,
definiert und erst nachtraglich geméss Abschnitt 7 (1,) durch
2=V (61)
ersetzt worden, ist, weil S(2) eine gerade Funktion von z ist:
S(—2) = 5(2). (6)

Wir konnen jetzt leicht zeigen, dass im Falle (5,) eine stationire Losung fiir S(z) vorliegt.
Wir setzen

2 = |\/-A—1| - (7o)
Dann hat S(2) im Innern des Intervalls
-2, <2<z

drei reelle Zweige S;(2), S,(2), Si(z), von denen keiner einen andern trifft. In z, aber
liegt eine Doppelwurzel vor, etwa gemiiss

S1(21)'# Sy(21) = S3(z1)
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was sich wegen (6,) symmetrisch auf

S1(=21) # S2(—21) = S3(—2)

ibertriagt.

Die beiden Zweige S, (z) und S;(z) konnen die Intervallgrenzen nicht iiberschreiten,
da sie in konjugiert komplexe Werte iibergehen wiirden, im Gegensatz zum Zweig
S,(2), der nach beiden Seiten reell fortgesetzt werden kann.

Die Zweige S, (z) und S;(z) bilden also zusammen eine stationire Losung, qualitatif
genau entsprechend dem klassischen Muster. Es ergibt sich somit folgende Aussage:

Sy Ist I' > 2 und 8 geniigend gross, so existiert eine stationdre Losung sicher dann, wenn
die Diskriminante D()) keine dreifache Nullstelle (X) # 1 besitzt.

Eine analoge Aussage ergibt sich im Falle (5,) mit

22=| VAzl >]., (80)
wobei nun aber der Parameter z den gesamten Aussenbereich des Intervalls

—2, <2< 2 (84)

mit Zeichenwechsel im Unendlichen durchliuft.

Ss: Ist 0 < I' < 1 und & gentigend gross, so existiert eine stationdre Losung sicher dann,
wenn die Diskriminante D (M) keine dreifache Nullstelle (A) # 1 besitzt.

Nach (6,) haben bei S, die trigen Massen gleiche, bei S5 dagegen verschiedene
Vorzeichen.

Auch im Intervall 1 < I' < 2 existieren stationire Losunge, doch geben sie keine
Handhabe zu einer einfachen Aussage. Ich begniige mich daher mit folgendem Hinweis:

Fir I'=2 — y und 0 < y € 1 gibt es stationire Losungen, falls 8 nicht zu gross ist,
wie man aus (4,) und (4;) schliessen kann. Sie entsprechen vermutlich denjenigen
Lésungen, die im klassischen Rahmen fiir Elektron und Positron existieren.

9. Schlussbemerkungen

A. Gestiitzt auf die Metrik der speziellen Relativititstheorie kann man beweisen,
dass jedes einfache Elementarteilchen in jedem Moment sowohl einen bestimmten
Ort, als auch eine bestimmte Geschwindigkeit besitzt [2]. Die hier beschriebene Theorie
stellt daher eine notwendige Weiterentwicklung der speziellen Relativitatstheorie dar.

Ihr erstes wichtiges Ergebnis ist der Nachweis fiir die Existenz einer Fiille von
stationdren Lésungen und deren Aufteilung in 3 Klassen entsprechend der Totalenergie:

1) 2<I'<w
2) 1<I'<?2
3) 0<I'<1,

in Worten also starker, mittlerer und schwacher Wechselwirkung.

Die Theorie ist unabhingig von der Quantentheorie und die grosse, aber vorder-
hand noch im Dunkeln liegende Frage ist, ob und wie weit die Theorie den bewédhrten
Ergebnissen der Quantentheorie gerecht zu werden vermag.
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B. Die Relativititstheorie hat durch ihre indefinite Metrik, insbesondere ihre
Nullgeraden, den Begriff der Nahewirkung teilweise illusorisch gemacht. Um brauch-
bare riumliche Distanzen zu gewinnen, war sie gezwungen, den starren Kérper als
Grundgebilde zu verwenden und damit der begrifflichen Analyse zu entziehen. Gerade
an dieser Stelle greift Abschnitt 2 ein mit der Definition (5,) fiir die riumliche Distanz
zweier Primirteilchen, die aber erst dank der Nullstrecke (3,) ihre unentbehrliche
Eindeutigkeit gemiss (5,) erhilt.

Die weiteren Ausfithrungen ergaben schliesslich in Abschnitt 5 die Energie- und
Impulsgleichungen (I), (II) und (V), aus denen folgt, dass die Bewegung der beiden
Teilchen innerhalb einer Raumebene verlauft, die sich in Ruhe befindet. Damit ist ein
Ruhsystem fiir das Teilchenpaar definiert, das die Rolle eines starren Korpers iiber-
nimmt. Wichtig sind daher noch die Sitze S, und S5 von Abschnitt 8, laut denen es
Systeme gibt, die dauernd beieinander bleiben.

Unser Ruhsystem ist (0,1,7), so dass also die y-Achse konjugiert ist zur {-Achse und
im Bild zugleich orthogonal zu derselben.

Um nicht zu viele Linien zu bekommen, habe ich iiberdies 9" auf die ¢{-Achse
gelegt, so dass also im Moment ¢ gilt

D=0 & VP =(,0).

Weiter wurde konstruiert

VUo|W wund U,U konjugiert zu ', also ||

VoU|B und VV, konjugiert zu B’, also | B’

Schliesslich gilt die Figur fiir € = 1 (und 1 = 0) und wir haben daher

YA=3x, AU=er.

YB=—x; BV = —er.

Aus der Figur kann man nun ablesen, dass die Gleichungen (5,)-(6) erfiillt sind

fire=1und y=0.
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