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Helvetica Physica Acta
Vol. 47, 1974. Birkhäuser Verlag Basel

Das Zweikörperproblem der Elektrodynamik

by Willy Scherrer
Bern, Justingerweg 18

(25. IV. 74)

Zusammenfassung. Die klassische, im Newton'schen Rahmen definierte Wechselwirkung
zwischen Elektron und Positron wird direkt in die spezielle Relativitätstheorie übertragen.

Als entscheidend bei diesem Vorhaben erweist sich das Problem der korrespondierenden Phasen :
Die klassische Gleichzeitigkeit muss durch die relativistische Signalverbundenheit ersetzt werden.

Anschliessend wird ein Wirkungsprinzip in Gestalt eines invarianten Linienintegrals eingeführt,
das neben den bekannten kinetischen Gliedern ein relativistisches Coulombpotential enthält.

Die resultierenden Bewegungsgleichungen sind im Prinzip vollständig berechenbar.
Wichtigstes Ergebnis ist, abgesehen von einer unwesentlichen Einschränkung, ein Beweis für folgende
Aussage :

Es existiert eine Fülle von stationären Lösungen mit grosser, resp. kleiner Totalenergie, falls nur
der totale Drehimpuls genügend gross ist.

Diese Aussage ist nur eine Folge der Relativitätstheorie und daher unabhängig von der
Quantentheorie. Offen bleibt also die Frage, ob eine Quantisierung nötig, respektive möglich ist.

1. Einleitung

In einer früheren Arbeit [1] habe ich die Leitgedanken zu einer relativistischen
Theorie der Wechselwirkung von geladenen Teilchen entwickelt. Insbesondere wurde,
gestützt auf ein Wirkungsprinzip, die Theorie für zwei Teilchen von verschiedener
Masse durchgeführt bis zur Aufstellung der Gleichungen für Energie, Translationsimpuls

und Drehimpuls.
Kurz ausgedrückt ist die Theorie die direkte Uebertragung der klassischen, im

Newton'schen Rahmen definierten Elektrodynamik in die Relativitätstheorie. Im
klassischen Rahmen sind die für die Wechselwirkung zwischen zwei Teilchen einander
korrespondierenden Phasen durch Gleichzeitigkeit definiert. Diese Definition ist in der
Relativitätstheorie unbrauchbar, weil hier die Gleichzeitigkeit vom Bewegungszustand
des Beobachters abhängt.

Der Grundgedanke der Theorie ist, die korrespondierenden Phasen durch
Signalverbundenheit zu definieren. Was damit gemeint ist, soll anhand von zwei punktartigen
Massen mx und m2 kurz erläutert werden.

Eine Phase der Masse mx ist definiert durch einen Punkt ihrer Weltlinie, also einen
Weltpunkt Px. Entsprechend sei P2 eine Phase von m2. Korrespondierende Phasen
werden nun am einfachsten wie folgt definiert :

Der Zukunftskegel aus dem Zentrum Px trifft die Weltlinie von m2 in höchstens

einem Punkt P2, den wir nun als 'die Px korrespondierende Phase' bezeichnen.
Der Vergangenheitskegel aus dem Zentrum P2 trifft die Weltlinie von mx

in dem einzigen Punkt Px, der sorhit 'die P2 korrespondierende Phase' darstellt.
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Es handelt sich also um eine eindeutige Korrespondenz. Dieselbe setzt sich bei
kontinuierlicher Durchlaufung der Weltlinien fort, es sei denn, dass ein Teilchen
entweder durch Strahlung oder im Unendlichen verschwindet.

Gemäss der gegebenen Beschreibung wirkt das Teilchen mx in die Zukunft und
soll daher 'progressiv' genannt werden (^»-Teilchen).

Umgekehrt wirkt m2 in die Vergangenheit und heisse dementsprechend 'regressiv'
(^-Teilchen).

Die beiden Teilchenarten müssen streng auseinandergehalten werden, weil andernfalls

die eindeutige Umkehrbarkeit der Korrespondenz verloren ginge.
Die definierte Signalverbundenheit ist invariant gegenüber Lorentz-transforma-

tion, weil die Nullstrecke Px P2 diese Eigenschaft besitzt.
Die Erfahrung hat gezeigt, dass Elektron und Positron die einzigen Elementarteilchen

sind, die nicht weiter zerlegt, sondern nur noch zerstrahlt werden können. Einzig
diese beiden Teilchen kommen daher vielleicht als letzte Bausteine der Materie in
Betracht.

Um dieser Frage näher zu kommen, beschränken wir die weiteren Untersuchungen

auf diese beiden 'Primärteilchen'. Nach dem Vorausgehenden zerfallen sie in
zwei Klassen :

Die Klasse der />-Teilchen (progressiv) und die Klasse der ^-Teilchen (regressiv).

Um die Ausdrucksweise zu vereinfachen, treffen wir weiter folgende Definition :

1) Zwei Primärteilchen heissen 'kontragressiv wenn sie in entgegengesetzten
Zeitrichtungen wirken (ein ^-Teilchen und ein /-Teilchen).

2) Zwei Primärteilchen heissen 'kogressiv wenn sie in der gleichen Zeitrichtung
wirken (2^>-Teilchen oder 2^-Teilchen).

Offenbar ist die ganze Begriffsbildung darauf angelegt, um für kontragressive
Teilchen eine Fernwechselwirkung definieren zu können.

Für eine Fern-Wechselwirkung kogressiver Teilchen besteht meines Wissens
kein befriedigender Ansatz. Ich habe daher in [1] nur einen direkten Zusammenstoss
in's Auge gefasst gemäss folgendem Postulat, das ich ausdrücklich als provisorisch
bezeichnet habe :

Stossen zwei kogressive Primärteilchen zusammen, so ändern sich ihre
Vierergeschwindigkeiten unter Erhaltung von Energie und Impuls.

Die hier gegebene Beschreibung von Elektron und Positron weicht wesentlich
ab von der im Gebrauch stehenden. Ob sich diese neue Beschreibung bewähren wird,
kann natürlich erst die weitere Ausgestaltung des vorgeschlagenen Modell's zeigen.

In [1] wurde ein Wirkungsprinzip für zwei verschiedene Massen gewählt, um den
Anschluss an die Sommerfeldlösung zu gewinnen. Lässt man eine dieser beiden Massen
nach œ streben, so ergibt ein Grenzübergang ein Wirkungsprinzip, das diesen Anschluss
an das Bewährte liefert.

Die Theorie ist damit soweit gerechtfertigt, dass ein Angriff auf das allgemeine
Zweikörperproblem für gleiche Massen verantwortet werden kann. Dieser wird im
nächsten Abschnitt eingeleitet.

2. Vorbereitung

Wir beschränken uns jetzt also auf zwei Teilchen mx und m2 von der Masse eines

Elektrons, wählen diese Masse als Einheit und setzen überdies die Lichtgeschwindig-
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keit gleich 1 :

mx m2 m 1

c=l
Für den klassischen Elektronenradius erhalten wir also den Ausdruck

a e2 (1J

Weiter legen wir ein pseudoorthogonales Koordinatensystem zugrunde und
umgehen die Indexrechnung, indem wir die Weltvektoren in ihrer Zerspaltung durch
Vektorsymbole charakterisieren:

93 (v;v) \
y

Die Grössen u and v stellen also die Zeitkoordinaten von mx und m2 dar, u und n die
Raumvektoren dazu.

Die zu den kontragredienten Vektoren (2) gehörigen kogredienten sind also gegeben

durch

Ü=(u;-u),)
»=K-D), (2)

und die pseudoeuklidische Bilinearform erscheint als skalares Produkt

U® uv-un=ÜW, (30)

dessen Rechenregeln leicht zu überblicken sind.
Der von m2 zum korrespondierenden mx führende Nullvektor ist gegeben durch

U-^ß=(u-v;u-v) (3J

und erfüllt die Identität

(U - 93) (Ü - 33) (ü - v)2 - (u - o)2 0, (32)

welche die Signalverbundenheit zum Ausdruck bringt.
Als Systemparameter wählen wir eine Variable s, die auf eine Länge normiert

werden kann, und bilden dann die dimensionslosen Vierergeschwindigkeiten

dU d^II'=— ; 93'= (4)
ds ds

Weiter definieren wir die fundamentale Länge

Ä i(U' + 93')(Ü-33) (bj

Wegen den aus (bj und (32) folgenden Relationen

£ U'(Ü-2l) 93'(Ü-33) (52)

stellt R die Distanz von m2 nach mx sowohl im Ruhsystem von mx als auch im
Ruhsystem von m2 dar, gemessen vermittels der später zu normierenden Länge s (Abschnitt
3, (22) und (23).
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Man beachte :

Äo (U-S)(fi-8) (32)

und R sind immer zwei invariante Längen. Aber nur im Falle (32), also R0 0, tritt R
dank (52) als einzige Distanz zwischen m2 und % in Erscheinung.

3. Ein Wirkungsprinzip
Wir wählen als Lagrangefunktion

L -VTx-V~L2-cp (10)

mit

LX U'W; L2 93'9T (1,)

und dem Potential

<p _a(Vri + VL2)2

AR

und fordern das Verschwinden der ersten Varianten

'2
8 f Lds 0 (20

des Linienintegrals

W=ÏLds (2J

für irgend ein Segment der Systembahn.
Die beiden ersten Terme von (10) sind wegen (lx) homogen und vom ersten Grad

in bezug auf die Komponenten der Geschwindigkeiten. Nach der Definition von R
gemäss Abschnitt 2 (5^ gilt dasselbe auch für das Potential (12).

Das Integral (2X) ist daher invariant gegenüber Parametertransformation und
kann somit durch die Bedingung

L 2 (22)

direkt als Länge respektive Zeit

W 2Jds, (23)

die Eigenzeit des Systems, interpretiert werden.
Nun noch eine Bemerkung zur Wahl von (12). Um die erwähnten

Invarianzforderungen zu erfüllen, steht natürlich eine Auswahl zur Verfügung, nämlich die
lineare Kombination

Z* axL1 + a2L2 + a3VrxVT2 + aAU'W (3„)

für den Zähler, falls man am Coulombpotential festhalten will, wobei die a, konstante
Längen sind.
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Der Spezialfall

Z* AaW 93' (3,)

liefert das Potential von [1], Abschnitt 3 (63), falls man sich auf Elektronenmassen
beschränkt.

Der Spezialfall

Z* 2a(Lx + LJ (32)

liefert genau die gleichen direkten Kollisionen wie (3X). In beiden Fällen aber stehen der
allgemeinen Lösung grosse Schwierigkeiten entgegen.

Die Wahl von (12) ergab sich aus der Vermutung, dass die genaue Wiederholung
der Wurzelsumme von (10) im Potential (12) die Lösungschancen verbessere.

Tatsächlich ist das so spezialisierte Problem im Prinzip vollständig lösbar.
Allerdings ist zu vermuten, dass seine erschöpfende Auswertung grosse Rechenarbeiten

erfordern wird.
Ich muss mich daher damit begnügen, die wesentlichen Züge des Lösungsverfahrens

zu schildern.
Wir beginnen mit einer Vektortransformation :

9) 4(11 + 93); S i(U-33), (AJ

U 9) + S; 93 9)- X, (42)

welche die Weltvektoren der beiden Teilchen ersetzt durch diejenigen des Schwerpunkts

und des halben Nullvektors. Die Letzteren werden anschliessend zerspalten
gemäss

(«i)

(52)

(53)

9) (*;«),

X= (er;x),

r=\VP\; e2 l.
Der Vergleich mit den Zerspaltungen Abschnitt 2 (2) ergibt

u t + er; u t) + i
v t— er; v X) — x

(6)

Durch die Relationen (5) wird also die Korrespondenzbedingung Abschnitt 2
(32) erfüllt und wir haben nur noch eine unabhängige Zeitkoordinate t. Weiter folgt
aus (6) :

Für e 1 ist das Teilchen mJU) regressiv, das andere progressiv; für e — 1

gerade umgekehrt. Es gilt also der Satz

Sx : Beim VorZeichenwechsel von e vertauschen die beiden Teilchen ihre Rollen
(Zeitrichtungen).

Führen wir jetzt die neuen Variabein gemäss (6) ein in Lx, L2 und R, so folgen

Li t'2 - n'2 + 2(et'r' - n'x') - (je'2 - r'2), (7J

L2 t'2 - X)'2 - 2(et' / - n' x') - (x'2 - r'2), (72)

R 2WZ 2(et'r-T>'x). (73)
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Bf

Figur 1

Erläuterung in Abschnitt 9, unter B.

Da nach diesen Relationen die Lagrangefunktion explizit unabhängig ist von t und
n, erhalten die aus (20) fliessenden Differentialgleichungen folgende Gestalt:

dL\'
HF

o,

dLY

dL\ dL

dx' dx
0.

(8o)

(8i)

(8a)

Dabei mache ich von einer abgekürzten Schreibweise für einen Gradienten Gebrauch
nach den Mustern

dL (dL dL dL \
dx' \ dx'x

'
dx'2

' dx'3 ' J
'

dL (dL dL dL

dx \dx. dx2 dx3/

Aus (80) und (8J ergeben sich unmittelbar folgende Zwischenintegrale :

dL

dL
ä?=t'

wo nun

e=(c0;c)

(9)

(10o)

(10,)

(Ho)
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den konstanten Energieimpulsvektor des Systems darstellt. Weiter schliessen wir auf
das Bestehen der Ungleichung

GG c2 - c2 > 0, (Ui)
denn andernfalls hätten wir es mit einem Licht- oder einem Ueberlichtsystem zu tun.

Dank der Ungleichung (llj können wir also unser primäres Bezugssystem auf
Ruhe transformieren, d.h. die Zwischenintegrale von vorneherein in der Gestalt

dL- c0, (12o)

S-0. (12i)

annehmen.
Wir befinden uns damit im Ruhsystem des Teilchensystems, das der Beobachter

natürlich nur dann gebrauchen kann, wenn er die Geschwindigkeit

» - (13)
Co

des Teilchensystems vernachlässigen darf.

4. Die Zwischenintegrale
Wir gehen jetzt an die Auswertung der Zwischenintegrale Abschnitt 2 (120), (12!),

schreiben aber in Aenderung des Vorzeichens der Energie

A± r. (D
dt'

£-0. '

(2)
di)'

Die Berechnung der linken Seiten ergibt

— F0t' + G0er'+Jer=r, (I0)
" dL
~~dl

ri T

— Fox)' + Gox' + Jx 0, (Ui)
dn'

wobei als Abkürzungen gebraucht werden

^-'^^)[vt,-a\
a(VTx + VTj2

J-—W2—• (32)
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Weiter benötigen wir die aus Abschnitt 3 (53) herleitbaren Relationen

dr x

dx r
dr' x
5-7 -. 4i)
dx r
dr' (xY

Mit ihrer Hilfe ergeben sich :

dL
— =GoX)' + F0x'-Kx, (IIIo)
ox

J^-Kx'-Mot, (IV0)
ox

mit den weiteren Abkürzungen

G0€t' + F0A
K - —, (bj

r

Jet'-Kr'
M0 - (52)

r
Schliesslich empfiehlt es sich, die zu L gehörige Hamiltonfunktion herzuleiten.

Nach Leonhard Eulers partieller Differentialgleichung für homogene Funktionen
gilt für L die Identität

dL dL dL

oder

dL Xf'dL x'dL L
~'d7 7d~ry+J'dT''7

womit die linke Seite von (I0) als Hamiltonfunktion erscheint.
Damit erhalten wir einen Anlass, die Systemeigenzeit s durch die Koordinatenzeit

t zu ersetzen gemäss

(70)

Die mit der inhomogenen Wirkungsfunktion A verkoppelten Grössen sind dann
zu definieren durch

JLds^j Adt

also

L Af

Lx Axt'2

Ln=Ant'
0=Pt'

R =2Nt'

(7i)
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Bezeichnen wir die Ableitung t durch einen Punkt, so erhalten wir

A -VÄj - VÄ~2 - p
mit

Ax Ü2 - Ù2 "N

A, =v2-b2

653

(So)

p=-
a(VÄi + VÄJ2

SN

(8i)

N er — i)x

Explizit insbesondere

ü l + er; ù n + i
i)=l — er; b i) — x

und

Ax 1 - i)2 + 2(er - ni) - (i2 - r2)

A2=l-i)2- 2(er - bi) -r2)

(82)

(83)

Unter Beachtung von (6) können also die Gleichungen (I0)-(IV0) übergeführt werden

H=F + Ger + Jer r,
dA
-=r Fi) + Gx + Jx 0,
dn

dA
r— Gx) + Fx-Kx,
ox

dA
— Jx) - Kx - Mx,
dx

mit den Abkürzungen

F
/ a(VJx + VÄJ\
\ & 1

t 1 1

\VÄ\
'

VÄ~2

c
1 a(VÄx + VÄ2)\

\ 4A j \VÄi VT2

a(VÄ~i + VÄJ2
8N2

Ge + Fr
K

r

Je-KrM-J

(I)

(II)

(III)

(IV)

(%)

(9i)

(9i)

(93)

(94)
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während (6) in der Gestalt

dA dA
H X) — + x—-A

dx) dx

erscheint.
An die Stelle der Gleichung Abschnitt 3 (82) tritt nun

M\ dA
_dl)~ äT=0

(10)

(ii)

Wir können jetzt ein drittes Zwischenintegral, den Drehimpulssatz herleiten.
Aus (II)-(IV) folgt unmittelbar

'. dA dA' dA'
n> — + i,— + X,—

*9. dx dx
(120)

". dA dA
x, —

9*.
+ x,—dx

Wegen der rechten Seite von (II) folgt daraus

:0

und in Verbindung mit (11) schliesst man auf

dA

woraus sich das Integral

dA

(12i)

(122

x,
dx

8at; (e2 l) (Vi)

ergibt. Wegen (III) und (II) erhält man daraus schliesslich die explizite Drehimpulsgleichung

F2-G2
[x,x] Sac. (Va

Darin ist nun 8 offenbar die wegen Abschnitt 2 (10) dimensionslose Drehimpulszahl.
Unsere Aufgabe ist damit zurückgeführt auf die Integration der drei Zwischenintegrale

(I), (II) und (V2).
Zum Schluss ziehen wir noch eine Folgerung aus der Energiegleichung (I). Offenbar

spielt der Term J er in dieser Gleichung die Rolle der potentiellen Energie und es
sich der Satz

S2 : Wechselt e sein Vorzeichen, so auch die potentielle Energie.
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In Verbindung mit dem Satz Sx von Abschnitt 3 folgt daher weiter

S3 : Vertauschen die beiden Teilchen ihre Rollen, so wechselt die potentielle Energie ihr
Vorzeichen.

Mit anderen Worten : Im Rahmen dieser Theorie sind Ladungen nicht Qualitäten
von Quellen, sondern zeiträumliche Eigenschaften der Wechselwirkung.

5. Die Schlüsselvariabein

Aus dem Drehimpuls (V2) in Verbindung mit der Translationsimpulsgleichung
(II) von Abschnitt 4 kann man herleiten, dass die räumliche Bewegung des Systems in
einer Ebene senkrecht zur Achse e stattfindet.

Es genügt daher der Ansatz

x (xx,x2,0); r)=(yuy2,0), (1)

und die Zwischenintegrale liefern miteinander 4 gewöhnliche Differentialgleichungen 1.

Ordnung für die 4 Koordinaten in (1) als Funktionen der Zeit.
In Analogie zum klassischen Fall wird man also anstreben, die Drehwinkel der

Vektoren x und n zu eliminieren, um eine Gleichung für 2 Schlüsselvariabeln zu
gewinnen. Als solche eignen sich aber nicht die Längen |i| und |n|, sondern die trägen
Massen der beiden Teilchen: VAJ'1 und (VAJ'1, oder irgend ein denselben eineindeutig

zugeordnetes Funktionenpaar.
Wir definieren

S'7T, + VT' ,2J

r=v=rvàr (2i)

und

z=T_=VÄ2-VÄx
s VÄl + VÄj

Am günstigsten für die Berechnung ist das Paar (S,z), weil sich für dasselbe eine
im Prinzip streng lösbare algebraische Gleichung ergibt.

Aus (2x)-(23) folgen

V~ÄX ; V~Ä2 (3)
S(l+z)' 2 S(l-z) W
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Führt man diese Werte gemäss Abschnitt 4 (90)-(92) ein in die Zwischenintegrale
(I), (II) und (V2), so erhält man folgende Zusammenstellung:

(I)

(II)

H
dA

¥
dA

X'dï

F + Ger+ Jer r,

Fx) + Gx+Ti 0,

(1 - z2) F[x,x] Sae, (V2

mit

F S-
(1 - z2) N

G zF

J
2a

S2(l-z2)2N2

(A)

Schliesslich noch eine Vorbereitung für spätere Eliminationen. Aus (3) ergeben sich

4(1 + z2)
$(Ai + AJ

i(Ai-AJ=-

S2(l-z2)2'
Az

S2(l- ~2\2 '

und in Verbindung mit Abschnitt 4 (83) folgen die Gleichungen

4(1-Hz2)
1 - n2 - (i2 - r2)

V ;

S2(l-z2)2

4z
er — X)X —

S2(l-z2

(5i)

(52)

(6i)

(62)

Aus der Zusammenstellung der Zwischenintegrale ersieht man, dass der potentiellen

Energie Jer ein potentieller Impuls zur Seite steht. Derselbe kompensiert die
Summe aus kinetischem Schwerpunktsimpuls Fn und kinetischem Radialimpuls Gx

zum totalen Translationsimpuls Null.
Durch diese Gleichungen ist also - wie schon einmal erwähnt wurde - das

Ruhsystem des Teilchensystems ausgezeichnet. Von diesem System verschieden ist im
Allgemeinen das Ruhsystem des Beobachters mit dem konstanten Energieimpulsvektor

G=(ro;v0e),

gemäss

rz — V2 .,2l - J-
o - Yo

(Io)
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6. Polarkoordinaten

Wir setzen

e= (0,0,1) 1

n s(cosY,siny,0) J (1)

3£ r(cos cp, sin cp, 0)

und gebrauchen die Abkürzungen

&=X-9 \
cpx scos& -s^sin© \ (2)

cp2 s sin & + sx cos 0

Dann liefert die Berechnung

xix rcpx

N r(e- cpj

i)2 s2 + s2x2 cp\ + cp2

ni= &xi + cp2rcp (3J
x2 r2 + r2 cp2

[x, x] r2 pt (32)

Aus Abschnitt 5 (II) folgt

F(scosy — s^siny) + G(rcoscp — rcpsincp) + Jr cosm 0 (IIt)

F(s sin y + s^cosy) + G(r sin cp + rcp cos cp) + Jr sin cp 0 (II2)

und daraus vermittels linearer Kombination

F<PX + Gr+Jr 0 (H'i)

F<P2 + Gr<p 0 (H2)

Aus (30) entnehmen wir

N
&i e (30)

r

Dies ein in e(IIÎ) liefert

ePN /tt ,,sF + Ger+Jer (IIÏ)
r

Dann notieren wir Abschnitt 5 (I) :

F + Ger + Jer r. (I)
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Der Vergleich liefert

eFN

eine Schlüsselgleichung, weil sie die Elimination von r einleitet.
Aus (II2) und Abschnitt 5 (4) folgt

02 —zrcp

Jetzt r<j> aus (32), Abschnitt 5 (V), (II?) :

eT8a
rcpr (l-z2)F2A'

Dies ein in (II2) :

eP8az
02 -

(l-z2)F2N'

Weiter aus (3'J und (117) :

0i e[l-C

0\ + 0\ + r2p2 l-
(e - cpj r - <P2 rp -

S2(l-z2)2'

4z

S2(l-z2)2-

In diese Gleichungen eingesetzt die obigen Werte für 0X, &2 und rp:

r\2 82r2a2(l+z2) 4(1+z2)

~Fj ~ +
(1 - z2)2 F*N2 ~ ~

S2(l - z2)2
'

eT. 82P2a2z
_

Az

T* +
(1 - z2)2F4N2

~ ~
S2(l - z2)2

Weiter (I) mit G zF und (117) :

JFN
F + zFer + r

(HI)

(li2

(V)

(113

Andererseits Einführung von (3j) in die Gleichungen Abschnitt 5 (6j), (62) :

4(1 + z2)

(A0)

(4i)

(42)

©

(42)

(I')
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Hierauf (V) - zF2/r (42) mit / aus Abschnitt 5 (4) :

_ _ 82Ta2z2 2aF Az2 F2 /S)SP-I —A 7TT + -

(l-z2)F*A2 TS2(l-z2)2A TS2(l-z2)2 ^
Schliesslich liefert Abschnitt 5 (4) noch

F S--^-— ©(l-z2)A W

Die Elimination von F und N aus den Gleichungen (57) (ÎJ) und (ö) ergibt nun also
die gesuchte Relation zwischen den 'Schlüsselvariabeln' S und z.

7. Elimination

Die Gleichungen Abschnitt 6 (4?) (5|) und (b) enthalten z nur im Quadrat. Wir
setzen daher

(l-A)A

(lo)

S-F, (1)

und notieren nun die Gleichungen leicht umgeformt :

a

r(r-2F) 82r2a2(l+X)
^

4(1+A)
F2 (1-X)2F*N2 S2(l-A)2'

r(F-r) 82r2a2X 2a 4A

F2 (1 - A)2 F*N2
+

S2(l - X)2 FN ~
S2(l -X)2' °'

Die Operationen F(X(20) + (1 + X) (30)) und F2((20) + 2(30)) ergeben:

P2 2a(l + X)
P(l+X) + \ ' =0, (20

p S2(1-X)2N

82P2a2 AaF AF2
_p2 i l (3'}

(1-A)F2A2 S2(1-A)2A 52(1-A)

Jetzt Elimination von N aus (2q) und (30) vermittels (1) und anschliessende
Wegschaffung der Nenner:

2(1 + A) f2 - (r(i - xys + 2(1 + x))sf + r2(i -X)s2 o, (20

4F3 + T2(l - A) (S2(l - A) - 1)SF2- 2§2T2(1 - A)2S2F + S2T2(1 - A)2S3 0.

(3')

Weiter Elimination von F aus (2') und (3') : Aus (2') entnimmt man

2(1 + A) F2 ((T(l - A)2S + 2(1 +X))F- T2(l - A) S) S, (2")
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und reduziert damit (3') auf ein in F quadratisches Polynom. Setzt man überdies

F QS,

so gehen (2') und (3') schliesslich über in

AoQ2 + AxQ + A2 0

B0Q2 + BxQ + B2 0

mit

A0 2(l+X)
^iS-(r(l-A)2S + 2(l+A))
a2 r2(i - X)

und

B0 -AAX

BX -AJ(82(1-X)-1)AX + 282(1-X)A0 + A)

b2 -(i - x)Aj(r2 -2)82-r2- (r2 + 2) s2 A)

Mit den Abkürzungen

D.-P>0
AX,A2

BX,B2

A2,A0

B2,Pq
D2

A0,AX

B0,BX

ergeben sich daher für Q die Relationen

D0 Dx

Q=pjr'D2

und als Folge

A D0D2-D2x=0,

d.h. die gesuchte Gleichung zwischen den 'Schlüsselvariabeln' S und z.
Für das Weitere empfiehlt sich statt S die Variable

E -Ax,

explizit also

i:sr(l-A)2S + 2(l + A)

Die Berechnung ergibt

A=-2r2(l-X)2A0,

(4o)

(2)

(3)

(4i)

(42)

(43)

(5o)

(61

(60)

(61)

(7)
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mit

J0 2S2(l+A)i;3
+ r2s2(i-A2)<?i2;2

-2r2(i-A2)ç2i:
+ r2(i-A2)&

wobei die Qt folgende Polynome in A bedeuten :

0i 8

-A
S2A

q2 (r2 + 2)8*- 2(r2 -3)82 + r2'
-((r2-2)82-(r2 + &))82x

-((r2 + 2)82-r2)82x2
+ (r2-2)S4A3

661

(8o)

(8i)

(82)

q3 (r2 + 2)2 s4 - 2r2(r2 - io) s2 + r2(r2 + 8)

- 2((T2 -A)82- r2(r2 + 2)) 82 X

- r2(8S4 - 2(r2 - io) s2 + r2) x2

+ 2((r2-A)82- r2(r2 + 2y 82 x3

-(r2-2)28*X*

(8S)

8. Die kubische Gleichung

Als letzte Bedingung zur Bestimmung der Lösung ergab sich die Gleichung
Abschnitt 7 (bj. Sie liefert den Zusammenhang zwischen S und z, respektive zwischen
Z"undA.

Da aber nach Abschnitt 7 (7) nur der Faktor A0 von A beide Variabein enthält, ist
schliesslich die kubische Gleichung Abschnitt 7 (80) ausschlaggebend.

Ao 0

Durch diese Gleichung wird nun also Z als Funktion von A bestimmt.
Wir erweitern (10) gemäss

Ji 22-338(l-|-A)2J0

und setzen

2-38(1+ X)E=Q.

(Io)

(li)

(li)
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Die Gleichung (10) geht damit über in

Ax= Q3

+ 38r2(l-X2)QiQ2
-22-32r2(l+X)(l-X2)Q2Q
+ 22-338r2(l+X)2(l-X2)Q3 0

Mit
Q w-8r2(l-X2)Qx

geht also (20) über in die Normalform der kubischen Gleichung :

Ai w3 + pw + q 0,

wobei gilt

>82r2(l-X)Q2\

Willy Scherrer H. P. A.

(2o)

^> -3r2(l + A)2(l-A)
+22-3(?2

82r*(l-X)2Q3x
q 28r2(l + X)3(l-X)i+2-32r2(l-X)QxQ2

\t2-33Q3

Für die Diskriminante

Z)Slï)+\2
ergibt sich

D(X) 22-33T4(l + A)6(l - A)2D(A)

mit

D(A) S2r4(l-A)2Ç2(S2Çl(23-Ç2)

+ 2r2(l-A)Ç2(982Ç1(?3-8Ç|)
+ V82Q23

(2i)

(3o)

(3i)

(32)

(33)

(40)

(4i)

Dieser Faktor entscheidet nach (40) über das Vorzeichen der Diskriminante. Wir
notieren daher seine für die Diskussion der Lösung ausschlaggebenden Einzelwerte:

5(o) -r2(r2-2)2(r2-4)s12 A

- (22r8 -i- i57r6 + 22or4 + ii52r2 -144) s10

+ T2(66r6 - 599r4 - 1760r2 - 4167) 88

- r2(ioAr6 - 637r4+6084r2 + 3240) s6 \, (42)

+ 3r4(29r4 - 37ir2 - 756) s4

- r4(ior4 + 504r2 - si) s2

- i6rs j
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D(1) 2632T482, (43)

sowie das höchste Glied seiner Entwicklung nach fallenden Potenzen von A :

25(A)=r4 (2r2(r2 -1) s2 + (r2 -2)2)8i2xii + (aj
Aus den Relationen (40)-(44) ergeben sich nun leicht nachstehende Folgerungen :

Fx : Ist r> 2 und 8 genügend gross, so existiert genau eine positive Zahl Xx < 1 derart,
dass D(X) im Intervall

0 < A < Aj (bj
negativ ist und für Xx verschwindet.

F2: Ist 0 < T < 1 und 8 genügend gross, so existiert genau eine Zahl A2 > 1 derart, dass

D(X) für X2 verschwindet und im Bereich

A2 < A (52)

negativ ist.

In den Bereichen (bj und (52) besitzt also die Gleichung (30) je drei reelle Lösungen
w(X), die in den Stellen Xu resp. A2 zu zweit oder dritt zusammenfallen. Um aber auf eine
stationäre Lösung schliessen zu können, muss man dreifache Nullstellen vermeiden.

Dies bietet keine Schwierigkeit, denn bei einer dreifachen Nullstelle für ein
positives A A 1 müssen die grossen Klammern in (3J und -(32) simultan verschwinden.
Diesen Bedingungen genügen aber nur endlich viele Paare (.T, S), die man also leicht
umgehen kann.

Entsprechend dem Rückgang von w(X) auf S(z) gemäss den Gleichungen (2,),
(12) und Abschnitt 7 (6J gilt alles, was über w(X) gesagt worden ist, auch für S(z).

Dabei ist aber wohl zu beachten, dass z ursprünglich nach Abschnitt 5 (23) durch

VÄ2-VÄX
z —Tzz — (60)

VA2 + VAX

definiert und erst nachträglich gemäss Abschnitt 7 (10) durch

z VX (6J

ersetzt worden, ist, weil S(z) eine gerade Funktion von z ist:

S(-z)^S(z). (62)

Wir können jetzt leicht zeigen, dass im Falle (bj eine stationäre Lösung fürS(z) vorliegt.
Wir setzen

Zi=\VXJ (70)

Dann hat S(z) im Innern des Intervalls

—Zi < Z < Zi

drei reelle Zweige SJz), SJz), SJz), von denen keiner einen andern trifft. In zx aber
hegt eine Doppelwurzel vor, etwa gemäss

SJzJ¥= S2(zJ SJzJ
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was sich wegen (62) symmetrisch auf

SJ-zJ réS2(-zJ=S3(-zJ

überträgt.
Die beiden ZweigeS2(z) undS3(z) können die Intervallgrenzen nicht überschreiten,

da sie in konjugiert komplexe Werte übergehen würden, im Gegensatz zum Zweig
SJz), der nach beiden Seiten reell fortgesetzt werden kann.

Die Zweige SJz) und SJz) bilden also zusammen eine stationäre Lösung, qualitatif
genau entsprechend dem klassischen Muster. Es ergibt sich somit folgende Aussage:

S4 : Ist r>2 und 8 genügend gross, so existiert eine stationäre Lösung sicher dann, wenn
die Diskriminante D(X) keine dreifache Nullstelle (X) ^ 1 besitzt.

Eine analoge Aussage ergibt sich im Falle (52) mit

z2=\VX2\>l, (80)

wobei nun aber der Parameter z den gesamten Aussenbereich des Intervalls

—z2 < z < z2 (8J

mit Zeichenwechsel im Unendlichen durchläuft.

Ss: Ist 0 < T<1 und 8 genügend gross, so existiert eine stationäre Lösung sicher dann,
wenn die Diskriminante D(X) keine dreifache Nullstelle (X) ^ 1 besitzt.

Nach (60) haben bei S4 die trägen Massen gleiche, bei S5 dagegen verschiedene
Vorzeichen.

Auch im Intervall 1 < T < 2 existieren stationäre Lösunge, doch geben sie keine
Handhabe zu einer einfachen Aussage. Ich begnüge mich daher mit folgendem Hinweis :

Für r 2 — y und 0 < y 4.1 gibt es stationäre Lösungen, falls 8 nicht zu gross ist,
wie man aus (42) und (43) schliessen kann. Sie entsprechen vermutlich denjenigen
Lösungen, die im klassischen Rahmen für Elektron und Positron existieren.

9. Schlussbemerkungen

A. Gestützt auf die Metrik der speziellen Relativitätstheorie kann man beweisen,
dass jedes einfache Elementarteilchen in jedem Moment sowohl einen bestimmten
Ort, als auch eine bestimmte Geschwindigkeit besitzt [2]. Die hier beschriebene Theorie
stellt daher eine notwendige Weiterentwicklung der speziellen Relativitätstheorie dar.

Ihr erstes wichtiges Ergebnis ist der Nachweis für die Existenz einer Fülle von
stationären Lösungen und deren Aufteilung in 3 Klassen entsprechend der Totalenergie :

1) 2<r<oo
2) 1<T<2
3) o<r<i,

in Worten also starker, mittlerer und schwacher Wechselwirkung.
Die Theorie ist unabhängig von der Quantentheorie und die grosse, aber vorderhand

noch im Dunkeln liegende Frage ist, ob und wie weit die Theorie den bewährten
Ergebnissen der Quantentheorie gerecht zu werden vermag.
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B. Die Relativitätstheorie hat durch ihre indefinite Metrik, insbesondere ihre
Nullgeraden, den Begriff der Nahewirkung teilweise illusorisch gemacht. Um brauchbare

räumliche Distanzen zu gewinnen, war sie gezwungen, den starren Körper als

Grundgebilde zu verwenden und damit der begrifflichen Analyse zu entziehen. Gerade
an dieser Stelle greift Abschnitt 2 ein mit der Definition (bj für die räumliche Distanz
zweier Primärteilchen, die aber erst dank der Nullstrecke (32) ihre unentbehrliche
Eindeutigkeit gemäss (52) erhält.

Die weiteren Ausführungen ergaben schliesslich in Abschnitt 5 die Energie- und
Impulsgleichungen (I), (II) und (V), aus denen folgt, dass die Bewegung der beiden
Teilchen innerhalb einer Raumebene verläuft, die sich in Ruhe befindet. Damit ist ein
Ruhsystem für das Teilchenpaar definiert, das die Rolle eines starren Körpers
übernimmt. Wichtig sind daher noch die Sätze S4 und 55 von Abschnitt 8, laut denen es

Systeme gibt, die dauernd beieinander bleiben.
Unser Ruhsystem ist (0, n, t), so dass also die n-Achse konjugiert ist zur t-Achse und

im Bild zugleich orthogonal zu derselben.
Um nicht zu viele Linien zu bekommen, habe ich überdies 9)' auf die t-Achse

gelegt, so dass also im Moment t gilt

9) (*;0) & W (t',0).

Weiter wurde konstruiert

VU0\\W und U0 U konjugiert zu U', also ||G'

V0U\\W und VV0 konjugiert zu 93', also ||93'.

Schliesslich gilt die Figur für e 1 (und n 0) und wir haben daher

YÄ x; ÄU er.

YB -x; BV -er.

Aus der Figur kann man nun ablesen, dass die Gleichungen (5x)-(&) erfüllt sind
für e 1 und n 0.
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