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The Maximal ‘Kinematical’ Invariance Group for an
Arbitrary Potential

by Charles P. Boyer

C.I.M.A.S., Universidad Nacional Auténoma de México
(9. V. 74)

Abstract. We consider the problem of finding all local symmetries of the time-dependent
Schrédinger equation in # spatial dimensions with an arbitrary time-independent potential. This
problem isreduced to the solution of a set of first-order partial differential equations for the potential.
The general solution and a complete list of such potentials and their symmetry groups are then
given for the cases n =1, 2, 3. We give also in these cases the explicit forms for the infinitesimal
generators and a discussion of the corresponding group representations.

Introduction

In a recent work Niederer [1] has shown that the group of ‘kinematical’ space-time
transformations (i.e. in the sense of Lie) that leave invariant the Schrédinger equation
for a free particle is larger than just the Galilei group [2]; it is a group which contains,
in addition to the Galilei transformations, dilations and conformal transformations.
Indeed this group was used recently [3] to build a non-relativistic conformal invariant
field theory, and was shown [4] for space dimension two to be an important subgroup
of the relativistic conformal group.

Moreover, in further works Niederer [5, 6] has demonstrated that the invariance
groups for both the harmonic oscillator potential and the linear potential are isomorphic
to the free particle invariance group. In both cases the isometric mappings have been
given explicitly. At first glance, this seems surprising since one would expect the
harmonic oscillator to break translational symmetry and the linear potential to break
rotational symmetry. The situation becomes more transparent, however, after making
a unitary transformation from the Schrédinger to the Heisenberg picture.

In the present work we consider the problem of finding the maximal ‘kinematical’
local invariance group of space-time transformation for the non-relativistic time-
dependent Schrédinger equation with an arbitrary time-independent potential. In
Section I we determine the sets of first-order partial differential equations in # space
dimensions and one time dimension which must be satisfied in order that a non-trivial
(i.e. other than time translations) invariance exists. The general solutions are then
found for the cases #» =1, 2, 3 and a complete classification of all such potentials is
given for these cases. In Section II we give a discussion of the invariance algebra for
each of the potentials of the preceding section, writing down the explicit forms of the
generators. While our method is infinitesimal in nature, there is no problem integrating
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to the group. Indeed in Section I1I, where we discuss some of the relevant representa-
tions, it is shown that our infinitesimal representations are integrable to the group.
Furthermore, in this section the connection with certain spectrum generating
algebras [7] is seen. _

This work is an expanded and revised version of an earlier work with the same
title [8] where only the case #» = 1 was treated in detail. The classification of potentials
in the one-dimensional case was given previously by Anderson, Kumei and
Wulfman [9]. Also the invariance group for the closely related heat equation was
given earlier by Blumen and Cole [10].

After this work was essentially completed, the author received a preprint [11]
from Dr. U. Niederer where a similar treatment (although global rather than infinitesi-
mal in nature) was given and essentially all the potentials were found; a complete
classification of potentials, however, was not given.

I. Classification of Potentials Admitting Symmetries

Let i(x;,t) be a solution to the #n-dimension time-dependent Schrédinger
equation

(H—10,)¢(x;,8) =0 (1.1)
where the Hamiltonian H is given by

H:_%ax,xi+ V(xi) (12)
and

0
0, = ” and 0, , =07 +-: -+ 05,

We now want to consider the set of all local space-time transformations of the form
T(g) hlxit) =u(g, g7t (%)) (g™ (%1, 1)) (1.3)

where g7!-(x,,f) denotes the local action of the transformation g on the space-time
coordinates, % is for now an arbitrary function, and i is a suitably defined function of
%; and ¢. We are only interested in that subset of transformations of the form (1.3)
which leave invariant the space & of solutions of the Schrédinger equation (1.1}, i.e.

(H'— i) T(g) (x., 1) =O. (1.4)

It is not difficult to show that such a subset forms a group G.
To find the group G corresponding to the potential V, we consider the infinitesimal
generators L of T(g). It is easy to see that they take the form

L(x;,8) =i[a(x;,2) 0, + by(x;,£) O, + c(x, ). (1.5)

By defining the operator 4(x;,{) = H —19,, we see condition (1.4) says that T(g)
must lie in the null space of 4° Upon expanding 7(g) infinitesimally we can see that
iy must lie in the null space of [4, L] or as an operator equation

[A(x,t), L(x,t)] = i\(x, £) A(x, {) (1.6)
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where A(X,?) is for now an arbitrary function. It follows from the fact that L is a first-
order operator that A can contain no non-trivial operator terms. Upon inserting the
explicit expressions for 4 and L into (1.6) and equating the coefficients of the respective
derivatives we obtain a set of coupled partial differential equations whose x dependence
can be determined immediately, yielding the forms

a(x,?) = a(l) (1.7a)
by(x,f) = yar, +bjx + 808, by =0 (1.7b)
c(X, f) = —}dx? — b0 X + cot) V (1.7¢)
A(X, £) = d(t) (1.7d)

where the dot means derivative with respect to ¢. Then equating the non-derivative
terms in (1.6) we arrive at a first-order partial differential equation for V(x), viz.

(hax; + by %, + B9) Ve + 4V = —1dx? — D-x + aft) ’ (1.8)
where V, = dV[dx; and |

nil
o) = i %— . (1.9)

In order to find all solutions to (1.8) we notice that the general solution is the sum of
the general solution of the homogeneous part plus a particular solution of the full
inhomogeneous equation. We will see that the inhomogeneous part of the solutions
specifies the time-dependence of the coefficients a(z), b2(f), and c,(f). We can then
insert these explicit expressions into (1.8) and equate the coefficients of the various
powers of ¢ and obtain a set of homogeneous partial differential equations for VV which
can then be solved by the method of characteristics. However, in order to simplify
our procedure as much as possible, we will consider any two potentials to be equivalent
if they can be related by rotations or translations in the underlying #-dimensional
space, i.e. two potentials are equivalent if they liec on the same orbit under trans-
formations of the #-dimensional Euclidean group E(%).

Now, since the inhomogeneous part of (1.8) is at most quadratic in X, the general
solution must have the form

V(x) =V %X+ g%+ vo + T7(x) (110)

where ¥(x) is a general solution of the homogeneous equation and v, is a symmetric
7 X n matric, i.e. v;=v ;- Thus there exists a transformation in the #-dimensional
orthogonal group O(n) which diagonalizes v;;. Accordingly we perform this trans-
formation and rewrite (1.10) as

V(%) = 3?42 + g, %, + vo. (1.10")

Inserting (1.10") into (1.8) and equating coefficients of the powers of the components
x;, we obtain the set of equations

4+ (2w)*a=0 (nosum on i) (1.11a)

. 3a
b + w? b?=bijgj+? (no sum on 7) (1.11b)
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b j(wf — w?) =0 (nosum on s,j) : (1.11c)
n . .
C.0=Z&+1gib‘+1rvod. (l.lld)

Equation (1.11a) tells us that our problem subdivides into four different cases:

I) w%="'=w%=0
II) wi="=wi=w?>0
) wl=-=wi=—w?<0

IV) w?# w? forsomeiandj.

CaseI. w?=0forall+¢

This would only be possible if »,; were identically zero. Then integrating
(1.11a, b, d) we find

a(t) =a,t>* + a t + a, (1.12a)
b0 = 285 1 L(b,0,+ 220, ) 22 4 001 4 52 1.12b
i () = 5 LT3 ugj+"'2“'g £+ 037t + 05 (1.12b)

ay g2 a, g2 b(l)
Co(t):z 8 t4+7/ 4 t3+1/ g —2—+a21)0 t + iv0a1+2a2 t+CO (1.120)

where g2 = g,g,. We notice that the parameters a,, a,, a,, b{, b{?, ¢, and b;; define a
Lie algebra of dimension [#(n + 3)/2] + 4. We will examine the invariance algebra
more closely in the next section.

We now wish to determine all the solutions of the homogeneous part of equation
(1.8). Such solutions will naturally lead to constraints among the parameters of the
Lie algebra in such a way that for a given solution only a subalgebra will remain as
the invariance algebra. Some of these symmetries are of the usual geometric type and
are just what one expects intuitively; others are not so apparent. Since the potential
has no explicit time-dependence in our problem, a, does not occur in (1.8) and all
potentials admit time translation symmetry. Then inserting (1.12) into the homo-
geneous part of (1.8) and equating the coefficients of the various powers of ¢, we obtain
the set of differential equations.

4,8 V., =0 | (1.13a)
3a, -

bijgit+— & |Ve=0 (1.13b)

(ayx; + b‘i”)ﬁx‘+2azT7=0 (1.13c)

~

(381 %+ byyx, + 6V, + 2,V =0 (1.13d)
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where the tilde indicates solutions of the homogeneous part of (1.8). We further sub-
divide this case

I.A. a,#0

Immediately we see from (1.13a) that the gradient of V must be normal to the
direction of the vector g, specifying the linear potential g,x,. In addition, combining
(1.13a and b) it is also seen that the gradient of ¥ must be normal to the vector b;g;
which itself is normal to g,. Without loss of generality we chooseg; =0,7=1,...,n—1,
g» # 0 and study the cases of g, = 0 and g, # 0 separately.

I1.A4. g,=0, V. #0forall:

We can perform a translation of coordinates in (1.13c) such that ;=0 and
integrating the characteristics we obtain

Vi) = lp("_ "’_) ) (114)

’ H
X1 Xx1 %1

where the functions F and f are arbitrary functions of their arguments and £2 denotes
the (» — 1)-dimensional unit sphere parametrized as

%, =rsinf,_,...sin6,
%,=7sinf,_,...cosb,
x, =rcosf,_,. (1.15)

Thus our general solutions (1.14) are homogeneous functions of degree —2 and (1.13d)
reduces to

~

(b” xj + b(tz))th = O. (1.13d’)

With no further constraints on the potential ¥ we must have b;; = b, = 0. Further
solutions of (1.13d") yield only geometrical symmetries and to simplify the calculations
involving many angles we consider only the physically interesting cases n =2, 3. We
can now perform a rotation such that b, = b, =0 and then consistency with (1.14)
yields b; = 0. Upon integrating the characteristics for (1.13d") we find

& 1 k :
Vix) = 72‘f (fiﬂc bis xT) (1.16)

which reduces, for example, to

~ 1
V(x:) =;g(92) by3=0y3=0, b;;,#0
~ C ) .

4

where g(8,) = f(cos8,), and C is a constant.
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LA g, #0

Thus (1.13a) implies 17,," =0 and, performing a rotation in the ‘little’ group of g,
we can write, for n =3 (1.13Db), as

b3 Vs, =0 V, =0. (1.13b")
Then (1.13b%), together with (1.13d) and (1.14), yield

~ 1

Vix) = - F(%y/%) b3, b3 #0 (1.17a)
1

7 ¢ bz, b3, b3 #0 (1.17b)

xl = ’ ) .
x% - x% E29 23 Y3

~ C

V(xi) = ;5 b23) bZ’ bz: b3 #0 (1.17C)
1

where all &’s other than the ones mentioned vanish respectively for each case. For
n =2 only (1.17c) occurs with g,, b,, b; # 0.

I.B. a,=0,a,#0

First note that if all 4,;’s vanish we have a special case of the previous result;
hence we assume not all b;;’s vanish. Again we can make translations in (1.13d) such
that b{® = 0 and rewrite (1.13d) as

% Ve + Bz, Ve, +2V =0 (1.13d")
I.Bi. g, =0

Now for » = 3 we can perform rotations such that 8,5 = 83; =0 and we find the
solutions with 8,, =8

V(x,) =%F(61 —Blnz,6,). (1.18)

Furthermore, for consistency with (1.18) we must have b; = 0. For n = 2 we find (1.18)
without the 8, dependence.

I.Bii. g, #0

We can make a rotation in the ‘little’ group of g and choose b,3 = 0, then (1.13b)
becomes

BisV. +3V, =0. (1.13b")

However, (1.13b’) is consistent with (1.13d") only if 8,3, =0 and V, =0, in which
case we find

V(x,) = e 201/8f(8, — BIn[rsin 6,)) D, bR £ 0. (1.19)
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This case does not appear for #n = 2.

IC. aj=a,=0

These are all the usual geometrical symmetries.

ICa1. g,=0,V, #0foralls

Proceeding in the same way as previously we find for n =3

Vi) = V@2

~ A~

Vi(x) = V(%3 + 23, x3)

bij#0,1#]

For # =2 only (1.20a) occurs for 4, j =1, 2.

1.C.4i. g, #0

We find as expected for n =3

Vi) =V +43)

~ ~

Vix) = V(xy, %)

~ ~

V(x;) = V(%)

b§D, P £ 0

bia O, 6P #£0

bas, b, bD, BD, 5D 0

595

(1.20a)

(1.20D)

(1.21a)
(1.21b)

(1.21c)

while for # = 2 only (1.21c) remains with bV, b$?? £ 0. These results, as well as the other

cases with the symmetry algebras included, have been compiled in Table I.

Table 1

Potentials admitting symmetries for » = 3. The parameters g, w?, w? can be positive, negative or
zero, and V and f are arbitrary functions of their arguments. The cases » =1, 2 can be obtained

by straightforward restriction.

Potential

Symmetry

g%3 + w? %2

clxf + gxs + w? 1?2

of (2 + #7) + g%3 + w?7?[2
fl#a)x1) 4 + gx3 + w?9?[2
c/r? + (w?/2) 2

f(cos 8,) /72 + w?7?[2

(01, 85)[r* + w? 7?2

f(6, — Blnvr, 8,)/r*

e~291/F £(9, — BlIn[rsin 8,]) + gx,

@? (23 + 23) /2 + wi 32 + g3
w? (%3 + 23)[2 + gx3 + V(xy)
w %32 + gxs + V(x} + #3)

(wisl+ w3ad + w3rd)/2 4 gxs
(w3a3 + wix3) (24 gxs + V(x))

wiA3)2 + gxs + Vixy, x,)
Vir)

V(xt + 23, x3)

V(xy, %2, %3)

[0(3) @ si(2, R)] D w;
[0(2) @ si(2, R)] D w,
[0(2) @ sl(2, R)] D w,
si(2, R) P w,

0(3) @ si(2, R)

0(2) @ si(2, R)

si(2, R)

4 (2-dimensional solvable algebra)
g3 D wy

[0(2) @ 4] D ws

[0(2) D] D w,

[0(2) @ 4] D w,

ly Dws

i Dw,

t b w

o(3) @t

0(2) @1,

21
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CaselIl. wi=:=wi=&*>0

Since %% + « + - + %% is an O(n) invariant this case only occurs if v,;; = w?8;;. Then
solving the equations (1.11a, b, d) we find

a(t) = a,sin 2wt + a, cos 2wt + a, (1.22a)
0 43 P @ £i i bug; 1.22b
b(t) = bV sin wt + b{* cos wt — - (@, sin 2wt — a, cos 2wt) + 2 (1.22b)
nw igz . ;
co(t) = |+ — cos 2wt + — cos 2wt + 11 sIn2wt | @,
2 2w?
nw g* . .
+ | — —sin 2wt — — sin 2wt + 1v, cos 2wt |a,
2 2w?
—— cos wig; bV + —sin wig, b? + c,. (1.22c)
w w

Again, as in the previous case, we insert (1.22) back into (1.8) and look for all possible
solutions of the homogeneous part- of the equation. By equating coefficients of the
independent trigonometric functions we find

by (x,- g2 ) V., =0 (1.23a)
w
POV, =PV, =0 (1.23b)
8i\~ ~
(x, +_2)Vx,+2V=0 or a,=a,=0. (1.23c)
w

In this case we can always perform a translation of coordinates to choose g; = 0.

II.A. a,, a, not both zero

The solution to (1.23c) has already been given by equation (1.14). The additional
geometric constraints (1.23a and b) then yield for » =2, 3 the potentials listed in
(1.16) and (1.17).

II.B. a;=a,=0

The potentials are purely geometric and are given by (1.20) and (1.21) forz =2, 3
(see Table I).

CaseIIl. w?>="=w2=—@*<0

This is described precisely by Case II after substituting & for w and coshwt and
sinh wt for cos w? and sinwt, respectively.
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Case IV. w? # w? for some i # j

We immediately see from (1.11a) that 4 =0; furthermore from (1.11c) we see
that b;; =0 whenever w; # w;. Hence the maximal number of parameters occurs
when only one w, differs from the others in which case the symmetry algebra has
dimension %[(n + 1)/2] + 3 and when the frequencies are all different the dimension
1s 2n + 2.

For n = 3 we have the possibilities

V(x) = wixd + 3oial + dwixd + g% + v (1.24a)

with all w}’s different and b;; =0 or
V(%) = 30?(x} + 23) + dd#® + g% + vo (1.24b)

with b, # 0, and the symmetry algebra has dimension 8 and 9 respectively. In either
case any of the corresponding wi’s may be zero, positive, or negative and the corre-
sponding solutions to (1.11b) and (1.11d) are given by (1.12b or c¢) when w?=0,
B(t) = bV sin w, t + b{? cos w; ¢ (1.25)

fori=1, 2, 3 in (1.24a), 7 = 3 in (1.24b) and by (1.22) with a; =a,=0for+=1,21in
(1.24b) when w? # 0 and by the replacement of the circular trigonometric functions by
hyperbolic ones when w} < 0. One can then substitute the corresponding b;(f) and
¢o(t) into (1.9) and look for solutions to the homogeneous part. Now only when the
frequencies are commensurable can one justify treating the trigonometric functions
as independent ; nevertheless, one can reduce the constraint equations to exactly the
type of geometric symmetries discussed previously (see Table I).

II. The Invariance Algebra

It is the purpose of this section to analyse in more detail the nature of the sym-
metry algebras for the potentials listed in the previous section. The structure of the
generators differs from case to case so we will study each separately. It is also mentioned
that the generators are constructed to be hermitian with respect to the usual scalar
product of non-relativistic quantum mechanics

(o) = [ draptxt) a(x,). @1

CaseI. V(x,) =g,%,+ vo + V()

The full symmetry group is attained when the homogeneous solution V(x,)
vanishes identically. In this case the functions (1.12) together with (1.8) and (1.7)
yield the generators

Ay=10, | (2.2a)

. 38 : ig* . n
A, =1|2t0,+ xi——2—t2 ax,+3ztgixi—?t3+2wot+z (2.2b)
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A . g i, B 182 P
A, =120, + | ix, — - Ox, — §x +——2—gixi — ?t4+ 10 1% + Et (2.2c)
BY = (z 0,,— i, + ;- g, t?-) (2.2d)
B =1i(0,,+ 18:) (2.2¢)
E=1 | (2.2f)
2 .
Lj=1 [xj Ox, — % ax, + ) (&5 ax, — & axj) — (g% — & xJ)] (2.2g)

corresponding to the parameters aq, 4,, a,, b{, b%?, ¢, and b,,/2 respectively. The
generators (2.2) span a Lie algebra §, of dimension [#(n + 3)/2] + 4 as mentioned
previously. We can call this the centrally extended conformal Galilei algebra or,
following Niederer, the centrally extended Schrodinger algebra. The structure of s, is
best exhibited by constructing the combinations

Iy=3%(A4o+ A, —g; B — v, E) (2.3a)
I,=%(Ao—A,—g B — v, E) (2.3b)
I,=34, (2-3¢)

which is seen to be a representation of the algebra of the special linear group
SL2,R)=S,2,R) ~SU(1,1)>~1 ~S0,(2,1). The generators (2.2d, e and f) yield a
representation of the (2z 4+ 1)-dimensional Heisenberg-Weyl algebra w, with com-
mutation relations

(B, B =i8,,E (2.4

where E being a central generator commutes with everything. Now it can be seen
that w, is an invariant subalgebra of §, and that the L;; commute with the generators
(2.3) of the sI(2, R) subalgebra. Furthermore, the generators L;; span the Lie algebra
o(n), although, as mentioned by Niederer, they do not generate the usual rotation
group action unless g; = 0. Thus we will have the algebraic structure

5, ~[o(n) @ s2, R)] D w, (2.5)

where @ and P denotes direct and semidirect sum respectively and the invariant
subalgebra appears to the right. For completeness we write down the additional
non-vanishing commutation relations giving rise to the above structure

[Lijs L] =9(0u Ljn— 851 Lin— 8w Ly + 8, Lyy) (2.6a)

[Lij, BEP] =1(8n B{® — 8 BJ”) (2.6D)
; :

Ts, B = (L, B")==B® (I, BP] = By (2.60)

i |
U5, B¥) =L, B === B>  [I, B®|=_Bp. | (2.6)
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An important subalgebra of §, is the extended Galilei algebra g, obtained by replacing
the s/(2,R) algebra by the algebra of a one-parameter subgroup generated by
(Ao — g, B;), with the structure g, ~[o(n) @ ¢,] D w, where f; denotes the afore-
mentioned one-dimensional subalgebra which is not the generator of time translations
unless g; = 0. Notice the generator of time translations 4, does not in general commute
with the rotations L,;. This is to be expected since the g, term breaks rotational
invariance. What is, however, somewhat surprising is the appearance of the full o(»)
as a symmetry even when g, # 0.

As seen from the calculations in the previous section, any additional potential
V(x,) appearing as a solution of the homogeneous part of (1.9) does so only at the
expense of losing some of the symmetry. For example, a potential of the type (1.14)
can be a solution only when g; = 0 and then it only admits the s/(2, R) symmetry given
explicitly by (2.2a—c) with g, = 0. Further restrictions on the potential (1.14) allows
the addition of more symmetry of the usual geometric type, and these are indi-
cated by the non-vanishing parameters listed under each case of Section I.A. One
has only to associate the corresponding generator of (2.1) with these parameters.
Likewise for the purely geometric symmetries of Case I.C, the non-vanishing
parameters have been listed previously and of course, the generators A, and 4,
cannot occur (see table).

Case 1.B, however, presents somewhat of an exception. We find that the potential
(1.18) admits the two-dimensional solvable algebra, 4, given by (2.2a) and forn =2, 3

n
Ay =ik 2t8t+rar+§ael+2ivot+§ (2.7)
where we have used the spherical coordinates (1.15).
The relevant commutator is simply
[Aq, A,] = 2iA,. (2.8)
Furthermore, the potentials of the form (1.19) admit the additional geometric sym-
metries whose generators are given by (2.2d), (2.2¢) and (2.2f) with 7 = 3. Together

with (2.2a) and (2.7) they span a five-dimensional solvable algebra with structure
Jp ‘9 wq.

Case Il

In a similar way the full symmetry algebra for this case is obtained form (1.22)
where, from our equivalence, we can set g; = 0 as before. We obtain the generators

Ag=19, (2.9a)

A, =1]sin2wtd, + wcos2wtx-0x + tw? x, sin 2wl

nw
+ 5 cos 2wt + 1vg sin 2wt (2.9b)
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A, =1 cos2wt 0, — wsin2wix - 0g + tw? X2 cos 2wt

— nz_w sin 2wt + 17, cos 2wt (2.9¢)
B{" = i[sin wix, — 1w, cOS wi] (2.9d)
B = i[cos wt O, + twx,; sin wi] (2.9¢)
E=1 (2.91)
Ly =i, 00, — 20, 299)

It can be shown by a straightforward calculation that
I3=—1—(Ao—v0E) Il=—1—A1 .T2=-1—A2 (2.10)
2w 2w 2w

form an s/(2, R) subalgebra and with the substitution B{® — B{*/4/w we obtain the
same Lie algebra as discussed previously; i.e. the symmetry algebra of the harmonic
oscillator, free particle, and linear potential are isomorphic. This isomorphism has
been exhibited by Niederer [5, 6].

Furthermore, the addition of further potentials which are solutions of the homo-
geneous part of (1.8) has been discussed and the non-vanishing parameters listed. For
each case we have the corresponding symmetries and the isomorphism to the corre-

sponding subcase of I. Notice that in Case II there are no symmetries corresponding
to Case I.B.

Case II1

Again this case can be handled by the mere substitution w? — —w?;sin, cos — sinh,
cosh in Case II. Hence, the symmetry algebra for the repulsive harmonic oscillator is
1somorphic with the three listed previously. Again the addition of further potentials
follows exactly as Case II.

Case IV

As discussed in the previous section, the maximal symmetry algebra is attained
in this case when the absolute value of all frequencies but one are equal and the
dimension is [#(n + 1)/2] + 3. On the other hand when all the frequencies are different,
the dimension of the algebra is only 2% + 2. Clearly from (1.11c) we see there is a
direct correspondence between rotational symmetries which form proper subalgebras
of o(n) and equal frequencies. It is also mentioned that frequencies which are commen-
surable will also admit certain discrete symmetries; however, since our discussion is
limited to local symmetries, these are not treated here.

The symmetry algebra is given when w, # 0 by (2.9d—f) with w replaced by w, in
each B, and (2.9g) whenever w? = w2, and when w; =0 by (2.2d-f) and (2.2g) for all
1,7 such that w? = w3 =0. For » =3 the only two cases are given by (1.24a and b)
with symmetry algebras ¢, ) w; and [0(2) @ ¢,] D w, respectively.
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The addition of any further potentials (see table) yield geometric constraints as
discussed previously. Again it should also be clear that if w? < 0 the circular trigono-
metric functions are replaced by hyperbolic ones.

IT1. Representations

Induced representations of a global group isomorphic to S, have been discussed
previously [12] for the case # = 3, and in this case three invariants were found corre-
sponding to non-relativistic mass, spin, and the Casimir invariant for an internal
si(2, R) (different than that given by (2.3)). In our case the mass has been scaled out
and the spin does not appear, so we are dealing with degenerate representations. In
order to discuss these representations it is convenient to consider yet other isomorphic
realizations of the algebras of the previous section. These are obtained by everywhere
setting ¢ = 0 and making the replacement

i0, — H (3.1)

which holds on &. ,

That is, we are passing from the Schrédinger picture to the Heisenberg picture [13].
For example, from (2.9) we get the generators familiar from the radial harmonic
oscillator [7]

w2

to=—30; 5+ X (3.2a)
oy =5 (x-ax + g) (3.2b)
oAy =—10, . L (3.2¢)
i g
BD = wr, (3.2d)
BP =10, | (3.2¢)
E=1 (3.2f)
Lij=1(x;0,,—%,0,). (3.2g)

Notice we can obtain (2.9) from (3.2) by applying?!) e*A4<0o and replacing &/, = H
by 10,. We can use this procedure for each of the algebras discussed in the previous
section to obtain generators which differ from (3.2) only by a change of basis.

We can now define #; as given by (2.10) with the A’s being replaced by the &/’s
given above. A straightforward calculation then gives the Casimir operator for the
sl(2, R) subalgebra as

n(n — 4)

C=S3-F1-Ij=4F,; &L+ (3-3)

1) This is a unitary transformation from L2(R,) onto itself since, as will be seen shortly, 4, is
self-adjoint on a suitably defined domain which is dense in L?{R,).
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so we find that C — {%,; &;; = n(n — 4)/16 is an invariant. Moreover, an orthonormal
basis in L?(R,) is given by

e (x) = Nyp e~ 2 (Var) 2 LFO-22(wr?) Y (Q) (3.4)

where we have used the spherical coordinates (1.15) and the Y (£2) are the #-dimen-
sional spherical harmonics [14] with labels L=(,_,,...,};), 1=1[,_, satisfying
bh=—,, .. lz, I, =0,...,0,.,7=2,...,n—3,and Ly(r?*) are Laguerre polynomials.
Furthermore since

3L L idwe () =1+ n — 2) i,y (%) (3.5a)

we find
c Y I | P Bk —1 3.5b
‘tl'NL(xi)_Z +§ +'§_ )‘/’NL= (R — 1)y (3.5b)

which can be forrnally identified with Bargmann’s [15] discrete series Df with
k= (I + n/2)/2 which is single valued on the SL(2, R) manifold for #» even and double
valued for #» odd [16].

By a straightforward calculation one can compute the Nelson [17] operator for
the representation (3.2)

N=Js2+ 9314+ 52+ %(Q(IZ)’ + L@(ln? 44 B2
+ B+ 3L, L =255(F5+ ). (3.6)

Now the operator £, is known [18] to be self-adjoint on the domain £ of functions
fe L*R,) such that i) 9,fe L*(R,) for each component, ii) [x2|f(x)|?2d"x < oo,
1) 9y, f exists and 5 fe L*(R,), where here 0; means derivative in the generalized
sense, since the members of & are not necessarily continuous. It is easy to see that the
linear span of functions (3.4), denoted by @y, is a dense subspace of 2 which is invariant
under all of the operators (3.2). Thus it follows that N is a self-adjoint operator in
L%*(R,) which is essentially self-adjoint when restricted to 2. Hence, by a theorem
of Nelson [17], there is a unique unitary representation of a connected and simply
connected Lie group G, having infinitesimal generators (3.2). Furthermore, the
representation of G, is irreducible on L?(R,) since it can easily be seen that the algebra
(3.2) is irreducible on 9.

Now each of the four different potentials V =0, x,;, (+w?x?)/2 correspond to
choosing [19] the Hamiltonian H as an appropriate linear combination of the generators
(3.2). Thus we can reconstruct the algebra and group representations in the Schrédinger
picture by applying the unitary map ei* A4 # in each case, and the four cases are thus
unitarily equivalent. The explicit mappings have been given by Niederer [5, 6].

Next we consider the case of an additional potential of the form (1.14) which has
as its invariance algebra in the Schrédinger picture only the s/(2, R) subalgebra given,
for example, by (2.10). In this case the Hamiltonian is given by

H =_%ax;x,+ ‘(f""z‘xz +f(9)

S - (3.7)
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Transforming formally to the Heisenberg picture we obtain equations (3.2a—c) with
the f(£2)/x? term added to (3.2a) and (3.2¢).
We can now separate out the radial and angular parts, finding

Aym—3a, e 1 Py (3.84)
0=— rT T O+ — 7"+ —; -03
° 2r 2 272
, n
oA =1w (r 0, + 5) (3.8b)
n—1 w? o

o, =—10,, 0, —— 1+ — 3.8¢

8= 2 2 Tap (3.8

where «/2 is an eigenvalue of the operator —4(£2) + f(£2), 4(£2) being the Laplace
Beltrami operator on the (# — 1)-dimensional sphere. Now following the same pro-
cedure as before, the representation (3.8) can be integrated to a unique representation
of the universal covering group of SL(2, R) provided o > —(n — 2)?/4. A computation
of the Casimir operator for the algebra (3.8) yields the c-number

C,=—3/16 +[a+ (n — 1) (n — 3)/4]/4. (3.9)

This describes the multivalued analytic representations [16] of SL(2, R). Notice from
the lower bound on « we obtain C" > —1/4 which corresponds precisely to the series
D}, k> 1/2. Again the representation of the algebra (3.8) and hence of the group can
be shown to be irreducible on L?(0, «).

Similar treatments can be given for the other invariance algebras listed in
Section II. Of particular interest is the (2z + 2)-dimensional solvable algebra from
the anisotropic harmonic oscillator (Case IV). The UIR’s of this algebra and corre-
sponding group for the case # =1 have been given previously by Miller [20]. In the
n-dimensional case we have the generators

2

o=}y o + %x? (3.10a)
#,=w;%; (nosum on z) (3.10b)
B =10, (3.10c)
E=1. (3.10d)

Now we have a dense set in L?(R,) on which &/, is diagonal given by the Hermite
polynomials [14]

i, (52) = H Cw, exp (—‘i’z—x) Hy, (Vo %) (3.11)

where Cy are left unspecified.

Again &/, is self-adjoint on 2 as before and we can integrate to a unique unitary
representation of the group. Moreover, this representation is irreducible, as can be
seen by applying (3.10b and c) to the basis vectors (3.11). The UIR labels are just
given by the frequencies (w,, ..., w,).
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Conclusion

We have given a complete classification of all time-independent potentials for the
non-relativistic time-dependent Schrédinger equation with spatial dimensional
n=1, 2, 3 which admit non-trivial local symmetry groups. In addition, we have
determined all of the symmetries and discussed the representations of the more
interesting cases.

The directions for future research are many. It would be interesting to consider
the same problem for time-dependent potentials, an example of which has already
been given [11]. Furthermore, the addition of a vector potential by the usual minimal
coupling scheme gives rise to more complicated equations which can be simplified by
the use of gauge invariance. An example of a constant magnetic field exhibiting such
symmetries has recently been given by Boon and Seligman [21]. A complete classifi-
cation in this case would be desirable.

There is currently work in progress in collaboration with Kalnins and Miller on
the problem of separation of variables for the two-space dimensional case and the
connection with second-order symmetry operators. Such a connection has already
been established [22] for the time-independent Schrédinger equation in two dimensions.
The connection between the separation of variables and the four potentials admitting
the maximal invariance algebra in the one-space dimensional case has already been
established by Kalnins and Miller [19] as mentioned previously.

Finally, as mentioned in the Introduction, the case # = 2 has a direct bearing on
the study of conformal invariance in relativistic mechanics when viewed from the
infinite momentum reference frame [4].
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