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Strong Asymptotic Completeness of Wave Operators for
Highly Singular Potentials

by W. O. Amrein and V. Georgescu!)

Department of Theoretical Physics, University of Geneva, Geneva, Switzerland

(27. V. 74)

Abstract. We prove the existence and strong asymptotic completeness of the wave operators
for rotation invariant Schrédinger Hamiltonians with highly singular (repulsive or attractive)
potentials.

I. Introduction

This paper is a complement to our recent investigation [1] of the relation between
two different definitions of bound states and scattering states for quantum-mechanical
N-particle systems. One of these definitions is in terms of spectral subspaces determined
by the Hamiltonian of the system: bound states are identified with linear combinations
of eigenvectors, and scattering states with vectors belonging to the subspace of con-
tinuity of H. The second and physically more transparent definition defines bound
states as states in which all particles stay close together at all times and scattering
states as states in which the particles separate into at least two clusters moving away
from each other as £ — +o. For precise mathematical definitions and additional
motivation the reader is referred to [1].

It was shown in [1] that for practically all Hamiltonians of physical interest the
two definitions are equivalent, and it was pointed out at the end of Section III that
this result was not necessarily to be expected for Schrédinger Hamiltonians with
locally highly singular attractive potentials. In order to find out whether the two
definitions might still be equivalent for such potentials, we investigated the rather
simple case of a single particle moving under the influence of a spherically symmetric
such potential, e.g. V() = ar® with <0, 8> 1. If > 2, H= P2+ V defined on
D) = C3(R3/{0}) is not essentially selfadjoint. We stated in [1] without proof that
the two definitions of bound states and scattering states were equivalent also for such
potentials if H was any spherically symmetric selfadjoint extension of A. In the
present paper we shall give a proof of this result.

The proof is based on Proposition 3 of [1], i.e. one has to verify the existence and
asymptotic completeness of the wave operators 2, = slimexp (iHf)exp(—iHy#) as

1) Partially supported by the Swiss National Science Foundation.
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¢t — +oo. (An alternative proof is given in the Appendix, cf. Lemma 4.) Asymptotic
completeness here means that the range of £, is the entire absolutely continuous
subspace of H and that H has no singularly continuous spectrum. Since H and H, are
both invariant under the rotation group, it suffices to establish existence and asymp-
totic completeness of the restriction of £2, to each partial wave subspace #;,,. H# 1, 1S
isomorphic to L?(R*), and the restriction of H to 4, is unitarily equivalent to the
ordinary differential operator —d?/dr?* + V(r) + I(I + 1)#~2? in L?(R*) characterized by
a boundary condition at the origin ([2], Chapter 11.1.1). Our proof is based on an
investigation of the spectral properties of this differential operator. We should also
mention here that the first part of the asymptotic completeness property (i.e.
Q, QiH = #,.(H)) has recently also been proved by a different method for a similar
class of potentials by Pearson [3].

Although highly singular attractive potentials are not much used by physicists
since H is not bounded below, they give rise to some delicate mathematical problems.
We think that from the mathematical point of view it would be interesting to find
methods applicable also to non-spherically symmetric potentials. We expect that in
various cases, and also for certain spherically symmetric potentials which are rapidly
oscillating near » = 0, some of the conclusions of the present paper will fail to hold. In
particular it can be seen from our proofs that asymptotic completeness will not hold
if the spectrum of some selfadjoint extension of the symmetric operator —d?/dr* + V(7)
in L?*(0,1) contains an absolutely continuous part (in that case the absolutely con-
tinuous spectrum of the S-wave Hamiltonian contains either a negative part or a part
having spectral multiplicity two and hence cannot be unitarily equivalent to the free
S-wave Hamiltonian which contains no such parts. For an example cf. Pearson [4]).

We conclude this introduction with the statement of our theorems, the proofs of
which will then be indicated in Sections IT and III. The first three deal with spectral
properties of the Hamiltonian, the last one with scattering theory (cf. also Theorem 5
in the Appendix). Definitions can be found in Section II.

Theorem 1: Let U:(0, ) — R belong to L([a, «)) for each a > 0. Let H be one
of the selfadjoint operators defined by the differential expressions = —d?/dr?> + U(r) in

L2(0, ), {E(A)} its spectral family. Then

a) The restriction of H to E((0, o)) L?(0, ) has an absolutely continuous spectrum
(in particular the positive singular spectrum if H is void).

b) The negative absolutely continuous spectrum of H coincides with the negative
absolutely continuous spectrum of any one of the selfadjoint extensions of
—d?[dr* + U(r) in L?(0, 1).

Remarks: 1) We use the definitions of Kato ([5], Chapter X.1.2) for the various
parts of the spectrum of a selfadjoint operator.

i1) In the proof of Theorem 1 we shall give even more specific information about
the absolutely continuous spectrum of H and its multiplicity.

111) Suppose U is such that the wave operators £2, = slimexp (¢Ht)exp (—iH, of)
as ¢t — t+oo exist (H, , is the selfadjoint extension of —d?/dr* defined by f(0) = 0). This
is the case, for instance, if #?|U(r)|* € LY(R, ») for some R < w0, cf. Kupsch and
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Sandhas [6]. In general these wave operators will not be asymptotically complete, and
the ranges of £2, may be strictly smaller than the absolutely continuous subspace
H oo(H). Insuch a situation the states which belong to #,.(H) and which are orthogonal
to the range of £2, will be absorbed at the origin as ¢ — +o0 ; more precisely: if fis such
a state, then for every R > 0
im (I — Fr)exp (—iH0) f| =

and similarly for £_ and ¢ — —o. (Fp is the orthogonal projection onto the subspace
of states localized in (0, R), cf. [1].) It is interesting to remark that the vectors in the
absolutely continuous subspace of the negative part of H are bound states in the sense
of the definition of [1] (cf. the addendum for an indication of the proof). This aspect of
the completeness problem will be developed in more detail by Pearson [7]. Our aim
here is different in that we shall add a condition on the behaviour of U near » =0
which will guarantee that there is no absorption at the origin.

Theorem 2: Let U:(0,©) — R belong to L([a, ©)) for each a > 0. Suppose that
the essential spectrum of one of the selfadjoint operators H? defined by the differential
expression —d?/dr®> 4+ U(r) in L%(0,1) is empty. Let H be as in Theorem 1. Then

a) The spectrum of H is simple.

b) The essential spectrum of H is [0, ).

€) H has no singularly continuous spectrum.

d) H has no positive eigenvalues.

e) The restriction of H to E((0, )) L2(0, ) is unitarily equivalent to the operator

of multiplication by the independent variable in L2(0, ).

Theorem 3: Let U and H be as in Theorem 1. In order for H to have the properties
a)—e) of Theorem 2 it is sufficient that one of the following conditions be verified:

1) U=U,; + U, where U, is an increasing and continuous function of 7 in (0,1) and
U,e LY0,1).

2) U=U,+ U, where
() U, eC?0,1], Uir) <M< forallr € (0,1]

and

fd P (M — Uy ()2 < o

J*

5 Ui
(M - Umw24(M—mmwz

dr(M — U, (1) "2|U(r)| < o.

C3
OL_.“_.
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4) liminfr2U(r) > —1/4.

r—=0

5) lim[U(r) + (2r)~% + (2rlog7)~%] = .
r-0
Theorem 4: Let I be a non-negative integer, suppose ¥V:(0,) — R belongs to
LY([a, ©)) for each a > 0 and verifies one of the following assumptions:

1) V(r) + (I + 1) 2 satisfies 1) of Theorem 3,
ii) V satisfies 2) of Theorem 3 and

0 [aM-Um)rice,

iil) ¥ satisfies one of the conditions 3)-5) of Theorem 3.

Let H, be one of the selfadjoint operators defined by the differential expression
—d?|dr* + V(r) + I(l+ 1)r~2 in L?(0, ). Then H, has the properties a)—e) of Theorem 2.
Furthermore the wave operators £2,, =s limexp (¢H,#) exp (—iH, if) as ¢ — +oo exist
and

Qli 'Qt*r?f = xac(Hl)-

Remarks: 1) H, , is the restriction to s#,, of the selfadjoint operator H, = p?
acting in L?(R3). .

ii) If V has a repulsive singularity at the origin, condition 3) is verified and
hence the wave operators are complete. If ¥ has an attractive singularity of the form
V(r) = ar# with« < 0and B > 2, 2) and (y) are verified with U,(r) = V(#), U, = M =0.
Alternatively V(r) + I(I + 1)7~2 verifies 1) with U, =0. For 8 <2 one may apply 1)
or 4) depending on the value of /.

iii) Theorems 1-3 can also be proved for long-range potentials under the assump-
tion that U = Ug + U, where U is asin Theorems 1-3 and U, belongs to L} ([0, «)),
is of bounded variation near infinity and converges to zero as r — « [8], [13]. (In our
proofs we use only the fact that the spectral function of a certain selfadjoint extension
of —d?[dr* + U(r) in L?(1, ») is sufficiently regular, and this has been established in [8]
also for long-range potentials.) ‘

II. Proof of Theorem 1

We follow the method of Kac [9] and use the terminology of [9] and [10]. The
interval (0, ) is divided into (0,1] U (1, «), and one obtains the spectral properties
of selfadjoint extensions of L, = —d?/dx*> + U(x) in L?(0, ) from spectral properties
of selfadjoint extensions corresponding to the two subspaces.

For ze C, one introduces the solutions #,(-,2) and #,(-,2z) of the differential
equation /(f) = zf on (0, «) defined by the initial conditions

u,(1,2) =1, u;(],z) =0, u,(1,2) =0, uz’(l,z) =-1.

Under our assumption on U, [ is in the limit-point case at infinity ([10], Theorem
23.3). If Imz#0, there exists precisely one linear combination y,(x,2) = u,(x,2)
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+ w,(2)%,(%,2) such that y,(-,2) € L3(1, ). At 0, / can be either in the limit-point or
in the limit-circle case. In the former case L, is selfadjoint and H = L,; in the latter
case H is characterized by a boundary condition at 0 of the form

fe DH) < fe D(L¥ and W(f,wl=0

where w is a real function in D(L}) and W denotes the Wronskian ([9], Section 6 or
[11], Appendix IL.5). In the first case there exists precisely one linear combination
xi(%,2) = u,(%,2) — wy(2) #,(x,2) belonging to L2%(0,1); in the second case w(z) is
determined by the condition that

Wiuy(-,2) — wy(2) uy(,2),w] = 0.

We also introduce the selfadjoint operator H, in L?(1,») determined by
—d?|dx* + U(x) and the boundary condition f’(1) = 0 and the selfadjoint operator H,
in L%(0,1) defined by the boundary condition f’(1) =0 and, if 0 is in the limit-circle
case, W[ f,w] = 0. We first study the spectral function 7, of H, which is given by ([11],
Appendix I1.7)

1
7(f) = im — | dsIm (s + ie). @)
o
0

For k € {z|Imz > 0, z # 0}, we define the Jost solution f(-,%) of I(f) = k*f by the
boundary condition

lim exp (—tkx) f(x, k) = 1.

X—*o0

If Imz > 0, y,(-,2) must be proportional to f(-,z'/2) (we choose the determination of
the square root such that Im z!/2 > 0), i.e. there exists ¢(z) #0 such that

c(2) f(,2"%) = uy(,2) + wi(2) uy (-, 2). (2)
Since

W(ny(+,2), #e(+,2) = (1, 2) w{(1,2) — uy(1, 2) u3(1,2) = 1
(2) implies that

W(f(-,2'2),u,(",2))
W(f(.’z”z)Jul(.’z))

(notice that the denominator is different from zero, since otherwise %, (-, z) would
belong to L?(1,), which is impossible since H, cannot have a non-real eigenvalue).

Since U € L'(1,), f(», k) and d/dxf(x, k) are uniformly continuous functions of %
on any compact set not containing the point %2 = 0 in the closed upper half plane (this
can be seen for instance from the considerations of [2], Chapter 12.1.1).

w,.(Z) ==
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Let A be a compact interval in (0,). It follows that the limit
Hm W(f(-, VA+ 7€), ty(, A + i)

e—++0

= lim [f(L, VA +i€) wf(1, A + i) — f'(1, VA + i€) (1, A + i€)]

=fLA2) (1, A) = f/(1, A2 s (1, 2) = W(f(+, AY2), (-, X))

exists uniformly in A € 4 and is continuous on A.
Since f(x, +A'/2) = f(x, FAY2)* and u,(-, A) is real, one has

W(f (-, 222, (-, X)) = W (-, FAY2), (-, ) *. (3)
Also
S, £AY2) = W (f (-, £AY2), 45+, X)) w1 (%, A) + W(f(-, £AY2),1(+, A)) 45(x, A).

By combining the last two equations one gets
—2AV2 = W(f(-, +AY2), f (-, =AY2))
==20Im[W(f(-,+AY2), (-, ) W(f(-, =A%), u5(+, )]
=+2 Im[W(f(-,+A12), u,(-, ) W(f(-, =AY2), 2,(+, A))]. (4)
It follows that for A € A, W(f(-, +AY2), w,(+, A)) #0. Hence

W(f(-, A2, u,(-, A
M e 1) = I el A B == Wg’i )u/Z; : E A;;

(5)

exists uniformly in A € 4, in particular it is continuous. A short calculation, using
also (4), gives for A e 4

Im e, (A + i0) = N2[|W(f (-, A2), wy(+, D)[]"2 # 0. (6)

In view of (1), this shows that on (0,«) 7, is absolutely continuous and has a
strictly positive and continuous derivative,

By writing the resolvent kernel of H in terms of y, and ¥, ([12], p. 1329) and using
[10], Section 21.4b, one may calculate the spectral matrix {o;;} of H. In particular [9]

o(t) = 041(8) + 0,,(8) = l—i»To l dsIm[Q,, + £2,,] (s + i¢€) (7
with

£211(2) = @y(2) @,(2) [,(2) + e, (2)]7 (8)

£2,5(2) = —[wy(2) + w,(2)]7. 9)

To prove a), it is sufficient to show that o is absolutely continuous on (0, ) (cf.[9],
Section 1).
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One obtains from (8) and (9)

Im (2, + £25,) = |o; + &, |2[(1 + |w,|?) Imw, + (1 + |w]?) Im w,]. (10)

The finite limit of w;(A + 7€) as € — +0 exists except possibly on a set N of points
A € R of Lebesgue measure zero ([9], Section 2). By combining this with the properties
of w,(A+170), it follows that for A e (0,)/N the following limit exists, is finite and
strictly positive:

lim Im (£2,, + 2,,) (A + 7€) = Im (Q,; + 2,,) (A + 70)

e=+0

_Q + [e0,(A + 80) ) Im eoy(A + d0) + (1 + |y (A + i0)[2) Im o, (A + o)
|y (A + 70) + w,(A + 70)|?

(11)
By using Imw,(A + 7€) > 0, Imw,(A + 7€) > 0, one deduces the following inequalities
(we omit the argument A + 7€)
Imw,|w, + w,|™2 < (Imw,)™?! (12)
1+ ||| w; + w, |72 <1 + (Imw,)"2 + (Re w)?|w; + w,|™2 (13)

By using the inequality y2[(y + 6)2+¢2]"* < 1 + (b/c)? and identifying y = Rew,,
b= Rew,, c = Imw,, the last term of (13) can be estimated as follows:

(Rew))?|w; + w,|2 < 1 + (Rew,/Im w,)2. (14)
By inserting (12)—(14) into (10), we get

1+ |w, (A +€)|?

0.<Im @y + ) (449 € 2ImaA+id) +2 s

Let A=[A;,A,] < (0,) be a closed finite interval. Since w, is uniformly con-
tinuous and Imw,(z) >0on S = {z|z=A+17¢, A€ A, 0 < € < €, ¢, > 0}, there exists C
such that 0 < Im (2,; + £,,) (z) < C for all z in the interior of S. It then follows from
the Lebesgue dominated convergence theorem that

A

1
o) = o(A) + lim — | duIm (R0 + 2z) (4 +1¢)
&> e
4
1 A
= a(A) + - J dpIm (@ + 255) (p + d0).
A1
This shows that ¢ is absolutely continuous on (0, ) and that its Radon-Nikodym
derivative is almost everywhere on (0, ) equal to

o () =~ Tm (@u1 + D) (A+70). (15)
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If A is as above, one can also see that o’(A) > m > 0 for almost every A € /. Indeed,
since w, is continuous, there exists 1 < K < o such that forallA e A4: |w,(A + 70)| < K.
It follows that

(1 + |wy|?) |0, + ,|72 = (1 + |y|?) (K2 + |,|?)~ > K2

From (6) one obtains also that Imw,(A + 70) > my > 0 for all Ae 4, and the desired
result o’(A) > m > 0 a.e. follows by inserting the above inequalities into (11). These
properties of o’(A) are collected in Remark i) at the end of this proof.

We next treat the negative part of the spectrum of H. The proof of b) is based on
the following lemma:

Lemma 1: Let A <0. Under the conditions of Theorem 1, the following two
statements are equivalent:

1)  w;(A+ 7€) converges to a finite limit with strictly positive imaginary part as
€ —> 40,

2) (241 + £2,5) (A + 7€) converges to a finite limit with strictly positive imaginary
part as € — +0.

To proceed with the proof, we need a precise definition of the support Q,, of the
absolutely continuous part of a selfadjoint differential operator. We use the definition
of Kac [9] which is essentially the same as that given in [14]-[16]. We define Q,,(H)
to be the set of points A € R for which condition 2) of Lemma 1 is verified. Similarly
one introduces Q,,(H,) and Q,,(H,) by replacing in condition 2) Q,, + 2,, by w,
resp w,.

Lemma 1 states that for A < 0 we have

Ae Q. (H,) <> AeQ, (H).

The negative part of the absolutely continuous spectrum of H (resp. H,) as defined in [5],
Chapter X.1.2, coincides with the closure of the set Q,,(H) N (—x,0) (resp. Q,.(H,) N
(—e,0)). (This can easily be seen from the considerations of [14] and [16].) Hence
DacH) N (=0,0) = >, (H,) N (—»,0). Part b) of Theorem 1 now follows from the
fact that the absolutely continuous spectrum of any selfadjoint extension of
—d?[dr* + U(r) in L?(0,1) is the same as that of H, (the resolvents at z =1 of two
selfadjoint extensions differ by an operator of rank two or less, cf. [10], Remark 19.1;
the result then follows from [5], Theorem X.4.12). |

Proof of Lemma 1: Since >, (H,) =[0, «) ([10], Theorem 24.5), w, is meromorphic
in Rez < 0. The poles of w, in Rez < 0 are simple and form a sequence —o < p; < p,
< +++ <0 which may accumulate at most at z = 0. Near y, one has

wy(py + 7€) = 1B €1 + 0(e) with B = 7.({m}) > 0. (16)
Let
A(2) = 244(2) + 225(2) = (04(2) @y(2) — 1) (y(2) + 0, (2) 7. (17)
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a) Suppose 1) is verified. If A# p, for all %, limw,(A + 7€) = w,(A) as e > +0 is
real. By hypothesis the denominator of (17) has a strictly positive imaginary part for
z= A+ 10. Hence lim (£2,, + £2,,) (A + 7€) as € — 40 exists and is finite. From (11) one
sees that its imaginary part is strictly positive.

If A = w,, one has from (16) and (17) that

Hm (Qy1 + 242) (A + i€) = wy(A + 50).

e—>+0
Hence 1) implies 2).
b) Suppose 2) is verified. (17) implies
wn(2) =[A() w,(2) + 1 [w,(2) — A(2)] ™. (18)

If X # p, for all &, limw,(A + 7€) as € — +0 exists and is finite, since w,(A) is real and
ImA (A + 7o) > 0. Also

Imw,(A+70) =ImA(A + 70) [1 + w,(A)?]|w,(A) — A(A + 10)|72 > 0.
IfA=p,:

Hm w, A+ 1€) = AQ + i0) = (2, + 2,5) (A + 90).

¢-+0
Hence 2) implies 1). [ |

Remarks : i) We have proved in particular the following result: Let /1 be a compact
set in (0, ). There exist two constants » and M depending on /A such that

O<m<d() <M< o fora.e. Ae A.

ii) Suppose that the essential spectrum of H, is contained in [0, ). Then the
singularly continuous spectrum of H is void and its essential spectrum >, (H) is [0, «)
(this follows from Theorem 1 because >, (H) = >, (H,) U 2. (H,), cf. [10], Theorem
24.1, and because >, (H,) =[0, x).)

iii) Let K, =Q..(H,) N Q,.(H,). By using the results of Kac [9], one can easily
see that the restriction of H to E(R/K,) L%(0, «) has simple spectrum and the restric-
tion of H to E(K,) L*(0, «) has a homogeneous spectrum of multiplicity two. Note
that, under the assumptions of Theorem 1, one has K, < [0, «).

II1. Proof of Theorems 2, 3 and 4

Theorem 2 follows immediately from Theorem 1 and the remarks at the end of
Section II if one notices that 3, (H,) = >, (H% ([11], Theorem 83.1). Theorem 3
follows from Theorem 2 provided that one can show in each case that the essential
spectrum of the corresponding differential expression in (0,1] is void. For (4) and (5)
this follows from [12], XIII1.10.C25 and XIII.10.C30, respectively, and for (3) from
[12], XIII.10.C26 or [10], Theorem 24.2. '
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For (2), let f be a solution of (—d?/dr?> + U,(r) — M) f=0. Then there exist c,,
¢, € C and two functions ¢,:(0,1) — C with lime,(r) = 0 as » — 0 such that

IM — U,(n)|"*£(7) = (cs + &) exp(i e Ul(s)|”2ds)
0

+(cz+ez())exp( I|M U,(s |”2ds)

0o

(cf. [12], proof of Theorem XII1.6.20). Hence

[1rorv.e |dr—f|f M — U, ()M = Uy (7)™ Uy(r)| dr

onstJ.(M Uy (n)~2|U,(r) |dr < .

One may now apply the following lemma

Lemma 2: Let U, U,e L} _(0,1). Suppose that every solution f of
—d?[dr*f + U,(r) f= 0 is square-integrable on (0, 1) and such that |f(7)|?|U,(») — U,(r)|
€ L1(0,1). Then every solution g of —d?/dr?>g + U,(r) g = 0 belongs to L2(0,1).

(This follows from Theorem X1.8.1 of [17] where « may be replaced by 0 and the
assumption of continuity of U, and U, can be weakened to U,,U, e L}_..)

It follows that every solution of —d2/dr?f+ (U,(r) + U,(r) — M)f=0 is square
integrablein (0,1). Hence L, = —d?[dr? + U,(r) + U,(r) acting in L?(0, 1) has deficiency
indices (2,2) ([10], Theorem 19.4), and the essential spectrum of any selfadjoint
extension of L, in L?(0,1) is void ([10], Remark 19.2).

For (1), the argument is similar. Every solution f of —d?/dr*f+ U,(r)f=0 is
uniformly bounded in (0,1] ([12], XII1.6.27). Hence

J | f(n)|?|Ux(r)|dr < const j |U,(r)|dr <
g 0

and Lemma 2 implies that —d?/dr? + U,(7) + U,(r) has deficiency indices (2,2) in
L?(0,1). This completes the proof of Theorem 3. (Some of the statements of Theorem 3
follow also from the results of [13], in particular Corollary 5.2.) [ |

Under the hypotheses of Theorem 4, it follows from Theorem 3 that H, has the
properties a)—€) of Theorem 2. The proof of the existence of the wave operators £,
will be given in the Appendix. It remains to show that the range of £,. is equal to
H ac(H}). For this, suppose f € 3#,.(H,) and f | £2,#,,,. Let U: #, — L*(R*) be the
unitary operator such that UH,E((0, «)) U~! is the multiplication operator by the
independent variable in L?(R*).2) Write Uf = {f(A)}. For € >0, let 4, = {A|]A >0 and

2)  {E(A)} denotes the spectral family of H;, {Eo(A)} that of Hy ;.
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|f(A)| > €}, and define f,=E(4,)f. Let ¢ € L*(R*). From the intertwining property
exp (1H, 1) 2, = ,exp(tH,_,?) it follows that for g € #,,

((H) [, £218) = (f, L2, ¢*(Ho,)) Eo(4,) g) = 0.

Thus $(H))f, L 2,#,, But f, is cyclic for H, with respect to E(4)#'m, ie.
{¢(H)) f,|$ € L>(R*)} is dense in E(4,)#},,. Hence E(4,) H 1y | £, - Using again
the intertwining property, this gives for all g, € #,,,

0=(E(4,) 8. 8:h) = (8 L2, Eo(d)) 1)

Hence Q,Eo(4,)# 1, 1 H 1, 1.6. 2,Eo(4,)H# 1, = 0. Since £, is isometric, this implies
Eo(d,) =0. Since H,, , is unitarily equivalent to the multiplication operator by the
independent variable in L?(R*) and 4, < R*, it follows that the Lebesgue measure of
4, is zero. Since € > 0 was arbitrary, this means f(A) =0 a.e., i.e. f=0. |

Remark: A different but longer proof of asymptotic completeness under the
conditions of Theorem 2 will be given in the Appendix in connection with the proof .
of the existence of the wave operators. Since these are known to exist in many situations
[6], the preceding argument demonstrates the role played by the spectral multiplicity
in the completeness argument.
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Appendix

Throughout this appendix we shall assume the hypotheses of Theorem 2. It will
be proved that they imply the existence of the wave operators (cf. Theorem 5 below for
the precise statement). We shall use the results of [9], Section 6, especially Theorem 6.

Let (cf. [9] for the notation)

u(*,A) =[sgn 8;,(A)]V 811 (A) u1(, A) + V 8,,(A) uy(+, A).

By using the definition of §,; and £2;, ([9], equations (1.2) and (0.6)) and the fact that
w, 1s meromorphic by the hypothesis made on HY, one finds after a short calculation
that for A > 0 one has

u(*, A) = (1 + o, (N)%) 72 [u5(+, A) — a(A) 5 (-, X)]. (19)

(If Ais one of the poles of w,, it is understood that #(-,A) = —u,(-,A).)
For A > 0 we also define

(-, A) =[a' )] 2 u(-, N). (20)
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Let P = E((0, ©)). According to [9], Theorem 6, one then has:
i) For every fe PL?(0, ») the integral

FO) = (#) () = [ o(x, ) f(x) dx

converges in mean in L?(0, ).

ii) The operator & : PL?(0, ) — L2(0, ) is unitary, transforms H into the operator
of multiplication by A, and its inverse is given by

(F-1F) (x) = j v(x, A) F() d),

(the integral converges in mean in L2(0, «)).

Lemma 3: u(-,A) € L?(0,1) for every A > 0. The function A [[u(-,A)l|L? (o, 1y 1S
bounded on every compact set in (0, ).

Proof : If 0 is in the limit-circle case, the result is evident. We therefore assume
that 0 is in the limit-point case.

Suppose first that A is an eigenvalue of H,. The system Ly(f) =Afand f'(1) =0
has a non-trivial solution in L2(0,1) which is unique up to a multiplicative constant
([10], Theorem 19.4). Since #,(-,A) is a solution of this system, one must have
#4(+,A) € L%(0,1). Since the eigenvalues of H, coincide with the poles of w;, one has
#(+,A) = —u,(-,A) and hence u(-,A) € L?(0,1).

Suppose A is not an eigenvalue of H,. Then it belongs to the resolvent set p(H,)
of H,. It is easily seen that the kernel of the resolvent of H, for 0 <y < x <1 1is given
by (Imz # 0)

G, (%, y) =42y, 2) — w,(2) us(y,2)] uy(x, 2).
For fe L?(0, 1) one then has

[(Hy =7 F1 (1) = [ a3, 2) — @) sy, 21 () . (21)

By providing the domain of H, with the graph norm, it can be viewed as a Banach
space Dg(H,). The mapping Dg(H,) 2 g+ g(x) € C is then continuous for each
x € (0,1] (this is a slight generalization of [12], XIII.2.16). On the other hand
2+ (H,— 2)~1fe Dg(H,) is analytic in some neighbourhood of A since A € p(H,). It
follows that the limit of the left-hand side of (21) as z — Ais [(H, — A)~1f](1).

If f(x) =0 in some neighbourhood of x = 0, one can take the limit z — A on the
right-hand side of (21) under the integral sign, which gives for such functions f

1

[(Hy = VA1) = [ (4200, 0) = on(N) 33, NIF(9) dy. (22)

V]
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On the other hand

|[(Hy — N1 ()| < clitHg = N7 fllpgeny
<cl(Hy — A)_1”93(19(0,1),DG(H,))”ﬂlL’(o,1) < C(A)”f”L’(o, 1)

where C is a continuous function defined on p(H,).

It follows that the right-hand side of (22) defines a bounded linear functional on
a dense subset of L2(0,1). One may now apply the theorem of F. Riesz ([11], Section 17)
to conclude that u,(-,A) — w,%,(*,A) € L%(0,1) and

llo6( -+, All2c0, 1y < C(A) [1 + ey (A)2]71/2,

This shows that [ju(+, )| 2, 1, is @ bounded function of A on every compact set A in
(0, ) such that A contains no pole of w,;. On the other hand, if A, is a pole of w,, one
has the following estimates valid in some neighbourhood of Ay: |C(A)] < ¢;]A — Ag] ™!
and |w;(A)| 2 ¢;]A — Ag|* with ¢, # 0. This shows that |ju(-,A)|| 2, 1) is also bounded
in some neighbourhood of each pole of w, and proves the lemma. [ |

Lemma 4: Let R < w, fe PL?*(0, «) such that &/ has compact support in (0, ).
Then

lim || Fgexp (—iH?) f|| = 0.

[t]—=o

Proof : Let A be a compact set in (0, ) containing the support of #fand x > 0.
Then

lexp (—iH?) f] (%) = j e~ y(x, ) (FF) () dA. (23)

A

It follows from (19), (20) and Remark i) at the end of Section II that v(x, A) is essentially

bounded on A. Thus by the Riemann-Lebesgue lemma, [exp (—H?) f](x) converges to
zero as |t| — oo.

By using the Cauchy-Schwarz inequality we find from (23)
|[exp (—5HY) 1 (4[> < IFSI? | Jo(x, )[2dA
A

Also, from Lemma 3

fdx j |v(x, A)|2dA j dA fdx|v(x, N2
o 4 A4 0

I

f ”v( ‘s A)”gI(O, R)dA < 00,
A

By applying the Lebesgue dominated convergence theorem, one obtains

[t|=o

R
lim ||Fxexp (—iHA fI = lim [ Itexp (—iHp £1 () 2dx = 0. n



530 W. O. Amrein and V. Georgescu H.P. A

Lemma &: There exists a continuous function %:(0,0) - R such that
v(, ) = 712 1" Y4 Im[exp (sn(A) f(+, AY2)].

Proof : Since v(+, A) is a solution of (—d?/d»?> + U(r)) f= 0, one has

v(-, A) = a, N (-, A2) +a_(X) f(-, -AY). (24)
Since (-, A) is real:

o(-,A) = 2Re[a, (V) f(, \2)] = 2Im[ia, (V) /-, X/2)]. (25)
It remains to calculate b(A) =7a,(A). By (4), (24) and (3) it is given by

bQA) =FA2W(f(-,—AY2), v(-, X)) = JATV2W(f(+, AV2), 0(-, Q). (26)

b is a continuous function of A on (0, ) since f(x,A'2), f'(x,AY2), u(x,A) and
a’()) are continuous in A (for ¢’ this follows from (11) since w, is meromorphic). We
may write b(A) = |b(A)|exp (¢n(A)). n(A) can be chosen such as to be continuous, and it
remains to show that

|6(A)| = 3=~ 22 X714, (27)
For this one uses (20), (15), (11), (19) and the properties of w, and easily gets that
v(+,A) = 77| wy(A) + @, (A + i0) | [Im e, (A + 70)]1/2 [u5(+, A) — ewy(A) s (-, V)]

Upon inserting this into (26), and by using (6) to express Imw,(A + 70) and the fact
that w, is real, one obtains

D) | = 372 AT AV (f (-, A2), 044 (<, M) [ 04(A) + 0, (A + 40) |71
AW AY2), 15(+, X)) — (D) W+, AY2), 44 (-, ).
In virtue of (5) the last equation reduces to (27). |

We now define
Uas(®, A) = w12 A sin (VAx + 7(Y)).

Lemma 6: Let A =[A,,A;] < (0, ©) be a compact interval. There exists a constant
K = K(A) such that for each R > 1 and for all # € L?(0, ) having support in A:

]

[ D) = val -, N1A() a

0

< K|llz2c0. o) j \U()|dr. (28)
R

L3 (R, )

Proof : The differential equation for v(:,A) and the condition that v(-,A) behave
asymptotically like v,4(+,A) can be combined into the following integral equation

0(5, N) = Ve, ) = [ A2sin[AV2(y — )] o(y, X) U(5) dy. (29)
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By inserting sin(« — ) =sinacosf — cosasinf and using the Fourier Sine and
Cosine theorems ([12], XIII.5.32-33) one obtains the following estimates valid for
y=21:

<V mlcos (A/23) (y, X)

L1, =)

Y2gin[AY2(y — x)]v(y, A) (D)

X A4 B 2o, wr + Vrlsin A29) (3, DA B 200,

77)\'1_”4””'“&(0, ) SUup [v(y, A)| = K(A)|lAl|L2c0, «)- (30)

y=1
A€EA

The supremum of |v(y,A)| appearing in (30) is finite since v is continuous in both
variables and bounded at large values of y according to Lemma 5. It follows with (29)
and the triangle inequality for vector-valued functions that

-]

[ 1002 — (-, NIAY aA

V]

[ov]

< [ 1U()\dy

L*(R,©) R

j AAX-12sin [AV2(y — %)]
0

x v(y,A) h(A)

Lo, oo).
By combining this inequality with (30), one obtains (28). [ |

Theorem 5: Let U and U be such that each of them verifies the hypotheses of
Theorem 2. Let H be a selfadjoint extension of —#2/dr* + U(r) and H aselfad; oint exten-
sion of —d2/dr? + U(r). Then the wave operators £2, = slimexp (:H?) exp (—th) E,.(H)
as ¢ — +oo exist and are asymptotically complete, i.e. 2, Q% = E, (H).

Remark : It sufficies toset U = I(! + 1) 7~2in the above result to obtain the existence
and asymptotic completeness of the wave operators of Theorem 4.

. Proof : All the quantities defined so far in relation with U can also be defined for
U, in which case they will be distinguished by a superscript °. The definition

Q. =F lexp[F(n— N F

gives us two unitary operators from PL2(0,) onto PL2(0,c0). We shall show that
they are identical with the time-dependent wave operators, i.e. that

lim |/(Q, — 1) exp (—iH{) fl| = 0
for a dense set @ of vectors fin PL2(0, x).

For @ we choose the set of functions such that the support of #f is compact in
(0, ). If f € @, the support of FL, fis also compact in (0, ). By virtue of Lemma 4,
it suffices to show that for all f € & (we consider only the case { — +o)

lim sup ||(I — Fg) (2, — I) exp (—iHt) f]| = 0. (31)

R—>o t>0
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We have

(I — Fr) (2, — I exp (—iH?) f]|

A

I [‘U , )] e—m(i.)+in(ﬂ.) “'t(.g’-f)( )

L%(R, )

| B2 = aal- NI e (N a

L2(R, x)

LR, )

L. J [vas(. ) )\) e—m(l.) _ gas( . A) e—iﬁ(l)] eii'r().)—u.t, (g’?-f) (A) aa
0

As a consequence of Lemma 6, the first two terms in the last member of this inequality

converge to zero as R — oo uniformly in £. It remains to estimate the third term.
We have

(%, A) €7D _ (5 ) e~HHA) = _(grl/2 \1/4) =1 [=2in(R) _ g=24ii(A)] g=IVAx

Thus the above third term has the form

o0

‘Ie‘“‘/z"“"g(k) X

0

o0

e~ it g(u?) D dp
0

(32)

L%(R, «) L3(R, ©)

where g belongs to LZ%(0,) and has compact support in (0,). The function
h(p) =2V 2mug(u?) also has these two properties. Given € > 0, we choose a function
hy € C§((0, «)) such that ||k — &,|| < €/2. (32) is equal to

—i(nx+u2t) h )

”«/— f .

L2(R, »)

0

A
<=yl + Z== | [ =0 by () dpa

Var . (33)

L2(R, )

where we have used Parseval’s relation for the Fourier transformation to estimate the
first term. In the second term on the right-hand side we integrate by parts with respect
to the variable u and obtain for ¢ > 0

b

b
< [ (o) (v + 2ut) g+ [ Bl |260x + 2002 dp (39)

a

I —i(ux+np? t)h )d,u.
0

where 0 < a < b < o are such that supp#, < [a,d]. Since 2¢(x + 2ut)~2 < (4ax)~! for all
t>0 and all u > a, the right-hand side of (34) is bounded uniformly in ¢ >0 by
const-x~1. It follows that the second term on the right-hand side of (33) is bounded by
const - R~1/2 uniformly in ¢ > 0, so that (32) is less than € uniformly in ¢ > 0 provided
that R is sufficiently large. |
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Addendum

In the situation of Theorem 1, suppose f € #,.(HE(—,0)). If 2, exist, fis ortho-
gonal to £, ¢, since >, (H,) =[0, ). Hence, given € > 0 and R, > 0, there exists T
such that ||(I — Fg)exp(—iH¢) f||> < € for all |¢| > T and all R > R, [7]. On the other
hand ¢+~ exp(—iH?)f is strongly continuous. Since [-T,T] is compact, the set
{exp(—iHt)f|t e [T, T]} is compact in L*({R*) and consequently also in L*(R). By
virtue of the Fréchet-Kolmogorov theorem ([18], p. 275) one has

sup ||(I — Fy) exp (—iHY) fI? < ¢

tel-T,T]

provided R > R, = R,(g, T). Hence
lim sup ||(I — Fg) exp (—¢H?t) fI|2 =0

R-owteR

i.e. fis a bound state in the sense of the definition of [1].
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