Zeitschrift: Helvetica Physica Acta

Band: 47 (1974)

Heft: 4

Artikel: Photon correlations in the Dicke maser model
Autor: Scharf, G. / Weiss, R.

DOl: https://doi.org/10.5169/seals-114577

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-114577
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helvetica Physica Acta
Vol. 47, 1974. Birkhduser Verlag Basel

Photon Correlations in the Dicke Maser Model

by G. Scharf and R. Weiss
Institut fiir Theoretische Physik der Universitat Ziirich, Switzerland

(27. V. 74)

Abstract. The second-order photon correlation functions have been calculated for the Dicke
maser model describing N spins (s =}) interacting with a single mode of the radiation field.
Assuming an initial state with all N spins in the upper level and N, photons present, it is found
that the correlation functions g(t ¢,) factorize into products of the photon number g(4,¢,) =
n(t)n(t;) (1 + 0(Ng?t)). This result gives some understanding as to why an inverted population emits
coherent radiation.

1. Introduction

The Dicke maser model has attracted great interest in literature [1], because it is
the only model describing the collective interaction of radiation and matter, which is
to a large extent mathematically tractable. In its simplest version, the matter is
represented by N two-level atoms interacting with a single mode of the radiation field.
Simplifying the dipole coupling according to the rotating wave approximation, the
model is characterized by the following Hamiltonian

H= Z ST ST +a+a+gz (a*s7 + st a) | (1.1)
i=1

where s7 are the usual spin flip operators (s = 4) for the atom 7 and a*, a are the creation
and annihilation operators of the photon mode. For convenience, a resonant mode is
considered.

With respect to the laser phenomenon, an interesting question to be answered
for this model is the following: Assuming a fully excited initial state i, of all N atoms
in the upper level, how does this inverted population radiate? A first step towards a
solution to this problem was the calculation of the mean photon number

() = (o, a*(¢) a(?) o) (1.2)
and its mean square deviation
= (o, [a* () a(t) — n(2)1% o) = d(t) — 7 (¢) (1.3)

in a previous paper [2]. In the present paper, the methods developed in Ref. [2] will
be used to calculate the second-order photon correlation functions

&1, 4) = (o, a*(t,) a(ty) a*(f) a(t) Yo)
&6, %) = (o, at*(ty) a*(t) a(t) a(ty) o). (1.4)
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These quantities are of interest for two reasons: First, they give a measure for the
coherence of the radiation field. If the radiation emitted by the inverted population
is coherent in second order, then the correlation functions (1.4) must factorize

g1t t) = nll) n(t) ~ gt 4). ' (1.5)

That means experimentally, for instance, that no Hanbury-Brown-Twiss effect
occurs, as it is typical for lasers. The factorization (1.5) holds, indeed, the relative
error is of the order Ng! where N, is the number of photons at ¢ = 0. The second reason
for calculating the correlation functions lies in the fact that the knowledge of g, and
&> enables one to analyse the influence of losses on the time evolution of the system
for small times. This will be discussed elsewhere.

2. The Time Ordered Correlation Function g,
As it has been discussed in detail in Ref. [2], the Schridinger equation
40
dt

for the Hamiltonian (1.1) can be reduced to a N + 1-dimensional matrix equation
where

P(t) = {ealt)} eC",  n=0,1,..,N (2.2)

= Hy() (2.1)

and H is a tridiagonal matrix
Hy i1 =Hppy,n=[(R—n) (N —n) (n + 1)}/ (2.3)
=, with g =1.

Here the integer R = N + N, is a constant of the motion, where N, =0, 1, . . . is the
number of excess photons, i.e. the number of photons being present if all N atoms are
in the upper state.

The main tool in the discussion of the matrix problem (2.1) is the mapping on the
following quantum mechanical problem in L2(0, ) ([2], Section 3)

—-z'-aa%}z.}f,;y
02 0 L
WR=—}(xﬁ+ﬁx)+ix3—Ex+—;— (2.4)
where
E=4R+N)+1
2L=Ny=R-—N. (2.5)

This mapping is achieved by the linear embedding operator T

N 1/2
CM1 oY ={g) mor y= Z (N ) (R —m)1)~12 ¢, xN+L-nexp—}a? € L2(0, o).
o\" (2.6)
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We have

wk = —TRHTEI (2-7)

on the NV + 1-dimensional range of T in L2. It is very useful to apply the mapping
(2.6) to other observables of interest and to perform all further calculations entirely
in mechanical terms. For the photon number operator a*a, we get

1/2
TrataTgly=73 (R—n) (n) (R —n)))~1/2 g xN+L-mexp —}x2

- (x—a— + 422 4+ L) 9y. (2.8)
ox

Regarding the creation and destruction operators a*, @, we must note that they
operate between different subspaces with energy quantum numbers R + 1. Therefore,
we obtain the relations

Tra* Tgl =22
0
TgpyaTg! =412 P Lx~1/2 4 32312, (2.9)
, X

Now we turn to the time-ordered correlation function

g1t ty) = (o, a* (t) a(ty) a*(¢) alt) o). (2.10)

As the initial state i, of the system, we choose the fully excited state of all V atoms
in the upper state and R — N photons present, which is given by

Yo=(0,0,...,1)
in CN¥*1 (2.2). Let us introduce the orthonormal states

=10 s 555 1,05 « o) (2.11)
N-j

For g, (2.10), it is only necessary to calculate the matrix elements of the photon
number operator

def

A; = (;, et ataetHtyy ). (2.12)

This can be done in exactly the same way as in Ref. [2] for the photon number itself.
Using equation (2.8), we can express equation (2.12) in mechanical terms

0
A =(¢j, T,;le“"‘(xa— + 322 + L)e“"yo)
X

| o
= Tgle i#t (xa_+ 352 + L) ety (2.13)
i

N—j
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where
Yo = (2L)!"Y2 xLexp— }x2 (2.14)

is the mechanical initial state corresponding to ¢, and the index N —7 means the
(N —j)-component of the vector in CN*!. The right side of equation (2.13) is equal to
the coefficient of the term ~x™*/exp — x?/4 of the function

o0 a ¥ .
Ax) = f dxy K(x, %4, 1) (xoa +4x2+ L) j dx, K(xy, x,, —t) Y exp— 323 (2.15)
0 0 4

where K is the propagator of the mechanical problem (2.4)

(€711 y) (x) = jP dxo K (%, %o,1) y (o). (2.16)

0

The function 4 (x) was studied in Ref. [2] by means of the W.K.B. method which
is asymptotically exact for N — . The W.K.B. expression for the propagator K reads

K = ®exp:iS (2.17)

where
02S(x, x4, ¢
®? = const -——(gLO) , (2.18)
0x 0%,
and
x 12 12
S(x, xo,8) = et + de' E—ix'z-———f-] (2.19)
xlz xl

*o

is the classical action integral along the mechanical path from x, to x in time ¢; € denotes
the corresponding (negative) mechanical energy. Using this form of K in equation
(2.15), we obtain the following result for 4 (x) in the limit x — 0 ([2], equation (5.11))

P+E P 2
A(x)—>fdxo(2L LA S < 13@)

—1 N —_—
P+L '2P+Ip 2P+Ip 0P %,
x K(x,x,,t) 'f dxy K(xq, x,, —t) 2% exp — }x3% (2.20)

where P(f) is essentially Weierstrass’ p-function
E oP

Pit)=p(:8:.8)——, P@)= T

. (2.21)

with the invariants
g =%E*+4L?

gy=— S E3+8EL2+ 2L+ 1)N. (2.22)
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The constant terms independent of € in equation (2.20) contribute only to the power
xE, that means j = 0, which gives the photon number #(f) [2]

P+ E '
o sl = (0L 4 T e e -, (2.23)
o=n(h) = ( )P+L+1

In the second term proportional to € we insert

B POk P8P Lo YT (2.24)
a8 Ko oda K 2 P

Here, the second term again contributes to A, and is already included in the result
(2.23). The first term gives

N ,
-, —-——2(P TI¢ fdxo(—t%) K(x, %o, ) I dx, K (%o, %1, —t) x% exp — }x3 (2.25)

and therefore
P’ P

Ay =i g G H) =i 5 VELH DN, (2.26)

The remaining terms in equation (2.20) are small [2]. This follows for L € E from the
estimates ([2], Appendix II)

P=0(E'™®
€ =0(E?)
%o = O(E~1/2)+e) (2.27)
with
t = ow, L<E, (2.28)

where w is the real half-period of the p-function (2.21).

Consequently, only the matrix elements 4, and 4, contribute to the correlation
function ‘

g1(t,ty) = n(t) n(t,) + A,(¢) Zl(tl)' (2.29)

By comparison with the exact power series expansion around ¢ = ¢, =0, we find that
the denominator (P + L)?2 in equation (2.26) should be replaced by (P + L + 1)2. Then
the final result is

P P}

g1t.t) =n@)n(t) + 2L+ 1) N P+L+12(P,+L+1)p

P+E
nf)=@2L+1)——————1, P,=P(,). 2.30
() = ( Vo T I 1=P(t;) (2-30)
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3. The Normal Ordered Correlation Function g,

The determination of the function

gt b)) = (o, a*t(ty) a* () alt) alty) o) (3.1)

presents a much more difficult problem. Let us start from the expression in mechanical
terms

g2(¢,¢) = lim x"‘fdxo (2, %0:t) "ZJ‘dx1 Ky (%0; %15 13)

x-0

0
1

0
X (xy2 P + Lx;12 4 %xi’z) f dxy Kg(x,, %5, —t,) x5 €xp — 13,

2
tZ - t - tl (3.2)

which follows from equations (2.8) and (2.9). First, we consider the second integral
| dx,. After partial integration, using [2]

- %KR (%0, %4, 85) = —%,% -a%S_(xo, %qs€) Koy = 3V—R_(%1) Kry (3-3)
where

R_(%,) = —x% + 4E_x? — de_x, — AL2 (3.4)

E_=3R—-14+N)+1 2L_=R—1-N, (3.5)

we are faced with the problem of treating a factor in front of Kz_, (x4, %4,¢ — ¢;), which
is a function of x;, and v/—R_(x,). It is an important consequence of Weierstrass’
transformation of elliptic integrals [3], that both quantities can be expressed
algebraically by x, and vV R_(x,):

(4E %, — 203 — 2) (P, + $13) + %0 R(x) — P3VR(x)
X¥1=%+ (3.6)
2(P, + $x3)* + 1 R(xo)

VR(z;) = {~P3[(P, +$23)? (—4x3 + 8Ex, — 4¢) — R(xo) (—23 + 2Ex,
— e+ 4xo(P, + $3))] + VR(zo) (1242 — $E? — 41

X (P +443)* + }R(%0) + 4P2(P, + $x3)1}/{2(P; + 423)* + 1R (%0)}*

(3.7
where

d
P,=P_(t—1t), P2'=E£Pz: by=1t—1;. (3-8)

The subscripts “—"’ have been omitted for convenience.
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In these formulas the x,-dependence is concentrated in e_ and, weakly, in the
invariant g, of the p-functions [2]. The latter can be neglected, if only not too large
times ¢, are considered. Instead of the energy e_ the Hamiltonian 5#_ can be introduced
as above (equation 2.24). Since J# commutes with the time evolution (2.16), the
integral [ dx, is reduced to some function of 3#. Proceeding in the same way with the
other integrals in equation (3.2), the whole expression can in principle be reduced to
expectation values of functions of J# in the initial state ys,. In practice, this general
method is restricted by our ability of handling the rapidly growing complicated
terms. A considerable simplification occurs, if we consider the quantum region
L € E [2], where the estimates (2.27) can be used. Then we have

Xg=0(E—2/D+%) R(xo) = O(E?*) fort, =< w (3.9)
and

%y = O(E-W/D+ar+ay) P, =0(El-®), t = o, w,
and therefore

P,> R(xg)"2> 22 ifa;+o, <. (3.10)
In addition, we find

R(x,)1? = O(E™1+%2) > x3.

Using these estimates in equation (3.7), the leading order in E of equation (3.2) is

P, +2E
2P,

2,(,t,) _hmx deo (%, %o, 81) x5/2 J-dxl[ vV —R_(x,)

P,
+L-3—3 _—2Ex5) | Kp_1(%0, %4, 55) . . .. 3.11
2P§(e o)] R 1( 0,1 2) 1 ( )

Let us denote the first term ~4/—R_(x,) by B and the rest by C. With (3.3)

d
V—R_(x) Kg_y(%q, %1, 2) = 2%, ‘a"— Kg_;,

0
B can be simplified to
P, +2E

_ 0 0
2D, lim x~L f dxg Kp(x, %, #,) %4/% 2x o ( x8% — + Lxgt? + %"%’2)

X0 0%
x | dxs K nlto, x5, 1) 2% exp — }23
P, +2E az 0
el i +(—L+1)x0—--1L+=} (3.12)
P,
where

def

<Dy ¥ lim x7t f %o Dy Kn(%, %, ;) j dx,.. .. (3.13)
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Expressions of this type (3.12) have been calculated in Ref. [2]. The final result is

P,+2E P, + E)? P, +E
p=2% (4L2+6L+2)(1—)_(2L2+8L+%) - +L+=}].
P, Pi 1
(3.14)
The term C; ~ %, in equation (3.11) gives
Cl—-zE——— —x3 — +(L — 2) %,
P} 0%
_pba B 2L2+L+(2L2+3L+1)P1+E (3.15)
pz p2 P, | '

In the remaining term C, ~ e_, we again insert equation (2.24). The term with
the Hamiltonian 5 _ vanishes, and from the second term in equation (2.24) we obtain

e e ¢ 3.16
2= 4 P2 Pz 1 P, n(t) (3.16)

to leading order, because
P?=4(P+E)(P?- L? — ¢ (3.17)

Summing up, we arrive at

&t t) =B+Ci+Cy+ (L —3)n(t)

| E
=417~ 2L + (812 +4L) —+ (4L? + 6L +2)

2
2
1 Pl

E E B
+ —|4L? + (1202 + 10L + 2) — + (8L* + 12L + 4) —
P, P, 1
129 2 . 5 P
+E—2F 2L+ L+@L +3L+ 1 E ). (3.18)

Since we expect approximate factorization (1.5) if the result (3.18) is expressed in
the variables £, #;, we substitute P, = P(t —¢#,) and P, by means of the addition
formulas for the p-function [4]. In leading order in E we have

E E E _E EPP
—=—t— 42
P, P, P "PP, 2P*P?

i S SN St GNP Sl (3.19)
—_——=—— — — . :
P;  P? P? PP U pip,
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After substitution into equation (3.18), the result greatly simplifies:

E E
tt))=|2L—-1+2L—||2L + (2L +1) —
ga(t, ty) [ 4 P] ( )P1]
E E P’ P]
#—=|142=|+LE——. 3.20
Pl( * P)+ PP} (520

Here indeed, the first term is a product of two photon numbers. It is important to
note that in the first factor the quantity L_= L — 4 (3.5) appears. This shows that,
with respect to £, the photon number has to be calculated with the quantities E_, L_
(3.6), which is also to be expected from the general structure of the correlation function
&2 (3.1) and from the special value

= (@, a™ (t) a(t) ao) =2Ln_(3). (3.21)
Our result
E E P' p|
ga(t,8y) =n_() n(t,) + 171 (1 + 2 P) + LE ﬁﬁ (3.22)

agrees very well with the power series expansion

ga2(t, by) — n_(f) n(t,) = Nt + N3N — %L )
+ Nt2t2(2N — 4L — 2) + 4LN#t,[1 + t2(4N — 4L -3%)]

X[14+8#3EN—-3L-H]+.... (3.23)

Therefore, one might hope that one could extrapolate to larger ¢, ¢;, beyond (3.10), in
the usual manner by completing the rational functions of P, P, in equation (3.22) and
adjusting a few parameters. This is possible with respect to ¢. However, it does not
work for ¢;. As a point of illustration, let us consider the odd term g9 in equation (3.22)

P’ P;

ot,t =LN ]
&bt P*4+aP+bP?+a,P+b,

which is the most important correction term. By expansion in powers of ¢, {; and
comparison with equation (3.23), we find a reasonable value @ = 2L + 1, but a strange
value @, = 4L + 1, causing initial doubts towards the validity of the procedure. We
have therefore calculated the difference %, = g, — #_(¢) #(¢,) numerically in the super-
radiant case [2] for N =50, R = 101. As a function of ¢ with ¢, fixed, A,(¢,¢,) is nicely
periodic (Fig. 1), but as a function of ¢, with ¢ fixed, it is not (Fig. 2)! This fact is
very important, because it shows that g,(¢,¢,) is not an elliptic function in ¢,, while
in ¢ it seems to be elliptic. :
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60 0.2 0.4 0.6 0.8 .

40 N=50 £,=0.16 -

R =101
20+ ’\ t,=20.06 .
h

1 [ | 1 1 1 Il 1

Figure 1
h, =g, — n_(f)n(t,) as a function of ¢ for fixed ¢,. w is the half-period of the p-function.

Consequently, the extrapolation of the result (3.22) to larger ¢, is a highly non-
trivial problem. This can also be seen from the special case ¢ = #;, in which the correla-
tion function is known as well (equation 1.3),

g2(t,8) = (o, a™(t) a(t) a™(t) a(t) o) — (o, a*(£) a(?) o)

= a3(t) — n(Y)

(P+E)(P+E+1)
+1+(2L+1)(2L+2)(P+L+1)(P+L+2)'

(3.24)

=2—4@2L+1)

P+ E
P+ L

Since here all p-functions have to be taken with quantities E, L in the invariants (2.22),
the structure of equation (3.24) is quite different from (3.21) and (3.22). Apparently, a
result uniformly valid in ¢, cannot be obtained with the present technique. Thus, a
different method must be found. That a different approach must actually exist, is
suggested by the following reasons: The present method is based on the estimates
(3.9), which hold only in the quantum region L € E. There are no corresponding
estimates in the classical region L & E; there, in fact, almost all the terms contribute.

w 2w 3w 4w Sw
o T 1 T T A T 1 T T _ T II
02 04 06 08
-100} i
hz N- 50
R =101
-200F t=10 o
—300 1 1 1 1 1 1 1 1
Figure 2

hy = g3 — n_(t)n(¢;) as a function of ¢, for fixed .
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On the other hand, the W.K.B. theory is most accurate in the classical region, but
our method of proof applies only to the quantum region. This leaves much to be
desired.

For small ¢;, let us say for the first few periods, the result (3.22) is quite accurate.
For example, the second minimum in Fig. 2 is only 3%, of the total value of g,, uni-
Jormly in t. The fixed times ¢, =0.16 or £ = 1.0 in Figs. 1 or 2, respectively, have been
chosen in such a way that the function %,(¢,¢,) becomes maximal.

4. Discussion

For the properties of the elliptic functions, the fundamental cubic equation
433—g28—g3=0 (4.1)

is of central importance. It is a curious fact, that equation (4.1), with invariants g,, g,
given by equation (2.22), has very simple solutions if L > 1, namely

E I B L
ey = — Sy
1 3+ +4+ B

E L—1+0 1
€y = — — — —_—
‘T3 L

1L
by=—€ —e,=—%E+0|— — |, 4.2
3 1—6=—% (LE) (4.2)

which can be verified by inspection. This allows us to express the Weierstrass elliptic
functions by Jacobian ones, which is sometimes convenient for numerical reasons.
For instance, the photon number (2.23) becomes for L > 1 [5]

n(¢)=(2L+1)——P-+—H5_=(2L+1)p_"’

(E ) p—e
p—|\——-L

3

= (2L + 1) nd*(u, k) (4.3)
where

u= (e, — e;)/2t = RY?¢

E? = = (4.4)

This formula (4.3) was essentially given by Bonifacio and Preparata [1].
Now, let us consider the correlation function g,. The striking feature of our
result (2.30) is the appearance of the odd term, proportional to P’ P, which destroys
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the factorization of g,. In order to estimate the magnitude of this term, let us define
the quantity

g1(t,¢y) — n(t) n(t)
n(f) n(ty)

a(tr tl) = ’ (4'5)

which measures the degree of factorization or the degree of “‘coherence’ of the emitted
radiation. We have for L > 1

1N P’ P,
a(t,t) =-— (4.6)
42L(P+ L)(P+ E)(P,+ L) (P, +E)
First, let us consider
L @)
C(PHL(P+E) (p—e)(p—es) |
Since
') =-2[(p—e) (p—e2) (p—e3)]'/?
we get
_ 1/2
|B(t)| =2 Ll «—2 g . B <2 (4.8)
(p—e2) (p—e5) (p—ey)'? RY* RV
uniformly in ¢, and therefore
(2, ¢ i ) 4.9)
|°_€(;1)|<m<2—i—m- (4.

The relative deviation from the factorization is uniformly bounded by the reciprocal
number of excess photons. For Ny > 1, the emitted radiation is coherent. The situation
is less clear for the normal ordered correlation function g,, because the result (3.22)
could not be extrapolated to larger ¢,. For small times ¢,, however, the same argument
as for g, applies. It is an interesting question as to whether there is some decay of
coherence in g, for larger ¢, in contrast to g,.
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