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Expansion of Gaussian Functions in Hydrogen Eigenfunctions

by V. Dose')
Physik-Institut der Universitat Ziirich

and C. Semini?)

Institut fiir Theoretische Physik der Universitat Ziirich and Ciba-Geigy Photochemie AG,
Fribourg

(4. IV. 74)

Abstract. Methods have been developed which allow the expansion of Gaussian functions
Y9, ) -exp (—ar?) in discrete and continuous eigenfunctions of the hydrogen atom. Different
approaches are presented for application in different regions of an a—% and «—# plane respectively
where £ is the electron momentum in a continuous state and #» is the principal quantum number of
a discrete state. Detailed numerical results have been obtained for the special case [/ =7 =0 and
exponent parameters « in the range 10~ < « < 102. An overall check of the accuracy of the results
is possible with the help of the closure relation which is in all cases satisfied to better than 103,
demonstrating the satisfactory reliability of the proposed methods.

1. Introduction

In 1950 Gaussian functions were proposed as basis functions for molecular struc-
ture calculations by Boys [2], because all multicenter integrals may be evaluated
analytically. The type of function used is

¢ =7 Y["({, @) exp (—ar?)

where « is positive and § is equal to or greater than /. For j greater than /, j — / must
be even. Y[" is the usual spherical harmonic.

A considerable amount of atomic and molecular structure calculations have been
carried out in the past using this computationally convenient set of functions. We shall
not attempt to review this work. It has not always been successful. The failure was
frequently attributed to the Gaussian factor in contrast to the exponential in hydrogen
eigenfunctions and Slater orbitals. Consequently there have been attempts to expand
exponentials and Slater orbitals in terms of Gaussians to combine the physical signifi-
cance of Slater orbitals and the computational convenience of Gaussians (Kiyosi
O-ohata et al. [7], Shavitt and Karplus [11], Hiroshi Taketa et al. [6]). The present
paper is concerned with the problem the other way round. To get an idea of the

1) Now at Physikalisches Institut der Universitit Wiirzburg, Rontgenring 8, Germany.
2)  Now at Landis & Gyr AG, Zug, Switzerland.
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physical meaning of a Gaussian function an expansion in hydrogen eigenfunctions
both discrete and continuous

rexp(—or?) Y= 3 a,(lj, o) Rulr) Y7 + f ARA(k, 1,7, %) Ry(r) YT (L1)
0

n=1

1s presented. R, is the radial part of a hydrogen eigenfunction for a discrete state with
principal quantum number # and orbital angular momentum /. R,, is the corresponding
function for a continuous state with electron momentum 4. Using the orthonormality

of the hydrogen functions we have for the expansion coefficients a, and 4

(1,7, f R, (r) exp (—ar?) /+2dr (L.2)
0

and
Ak, 1,7, @) f Ry, (7) exp (—ar?) #/*2 dy. (I.3)
0

Ry, 1s given explicitly by (Landau and Lifschitz [9))

Ry =C, exp (—ikr) 7' | F, (%-{- 1+17;20+2; 2ikr) | (1.4)
(2k)!1+1 27\ \ 7' 1\)"2

Cou=——1k[1- —— 2y — L5

ki 2 +1)! exp P IS—E)[ s+ e . (1.5)

From (I.4) R,; may be obtained by substituting £ = (¢»)~'. In this case the normalizing
factor C,; is '

9i+1 1 1 l 1/2
C == - 2_ gz 1.6
" (204 1)1 {n U(n ’ )} i

Occasionally we shall use the abbreviations a =i/k + !+ 1 and ¢ =2/ + 2 for the first
two arguments of the confluent hypergeometric function , F; in (1.4).

We were not able to carry out the integrations (I.2) and (I.3) analytically and
therefore used numerical methods. During the course of this work, it soon became

Table I
The four methods and their regions of convergence
Section Method Discrete states Continuous states
I1 Termwise integrations of Kummer's n—1 k=0
series o —> @
III Termwise integration of Bessel function n— © kE—>0
expansion o — © o —> ®
; o1 n —> o kR—0
v Asymptotic series in o % — o o i
v Asymptotic series in « n—1 k— o

a—>0 a—>0
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obvious that there is no simple procedure which would apply to all possible combina-
tions (k,«) and (#, ) respectively. In fact four different approaches have been needed
to cover all cases of interest. Table I characterizes these methods in short and gives
an indication of their respective regions of convergence. 7

In Sections II to V of this paper we shall outline the analysis for the different
methods. Section VI presents numerical results.

Numerical methods to compute some non-elementary functions arising in the
analysis are described in the Appendix.

II. Termwise Integration of Kummer’s Series

We shall first be concerned with the evaluation of (I1.3), that is, overlap with the
continuum. The modifications to be made in the case of (I.2) will be discussed
subsequently.

Since it is the confluent hypergeometric function in R, which prevents analytical
integration in (I.3) it is natural to expand

i o
11«“,(-’;‘-4-” l;2l+2;2ikr)= > Byr” (IL.1)

with coefficients B,, given by

k(I + 1 -1
By=1, B, =2B, ¢t 1+m) m=0,L: (IL.2)
(m+1) 21+ 2+ m)

Defining

0

I, (e, B) = f exp (—ar? +ifr)rmdr m=0,1, ... (IL.3)

(0]

we obtain the series expansion for 4
Ak, Lj, 0) =Cy Z By IZ+1+j+m(°‘r —k). (IL.4)
m=0

The functions I,,(«, B) satisfy the recurrence relation

81m @B m—1
1 =—+4—1
m(al B) 20( + 20( m—l(a’ B) + 205

I, ,(a,B), m=1,2,... (IL.5)

where 38,,, is the Kronecker delta. The function I,(e, B) needed to start the recurrence
is given by

1 B/2 /%

Io(o,B) = 5 N/gexp{—ﬁzmmw%<a~xp{—;92/4<x} [ expya (IL6)

If Bis real, the integral appearing on the right-hand side of (II.6) is known as Dawson’s
integral D(B/24/a). Tables of D(x) are available (Abramowitz and Stegun [1]).
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It may be noted that the individual terms in (I1.4) are complex, while the sum is
real, because R,, (I1.4) is a real function. However, for numerical reasons it is advan-
tageous to retain the imaginary part of I, in (I1.4). In practice the imaginary part of
the sum (I1.4) is used as a criterion to truncate the series when it is sufficiently small.
On the other hand, if in spite of adding further terms the imaginary part of A does not
decrease further, the real part, that is the desired result, is unlikely to have converged.

To adjust the above formulae to the discrete case (I.2) we have to replace 8 in
equation (I1.3) by z/#. With the additional substitution

g \/;(H_l._) (IL7)

2no
we obtain
J © 1 \"  dt
I, |a,—|=exp(1/4an?) exp (—t3)| t — (IL.8)
T e =S P
2/an
i m!exp (1/4n* «) 1
N e | m
Im(a,n)_f\/; D72 1™ erfc e b (IT.9)

The last factor, i™erfc(z) is known as the repeated integral of the error function
(Abramowitz and Stegun [1]). We shall describe numerical procedures to compute
i"erfc (z) in the Appendix.

The accuracy of the expansion coefficients a,(Z, 7, o) is essentially limited by the
accuracy obtainable in the computation of i™erfc(z), since, in contrast to the con-
tinuum case, only the first # — / terms in the sum (II.4) are different from zero. This,
of course, is due to the fact that the confluent hypergeometric function in (I.4) reduces
to a simple Laguerre polynomial for ¢/2 = —n.

III. Bessel Function Expansion

The regular Coulomb wave function is expanded in (essentially spherical) Bessel
functions (Abramowitz and Stegun [1])

[s0] bv
(kr)! exp (—tkr) (F(a;b; 2ikr) = (20 + 1) !! z = / ;EJW”Z(M)' (IT1.1)
v=I

The expansion coefficients by are given by

(I11.2)

i 2v+ 1 {2 H+(v_1)(v—2)—1(z+1)k2bv_2}'
v+ 1) — Il + 1) 2v—3
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Substituting (ITI.1) into (I.3) and reversing the order of integration and summation
yields

) T o~ b, N
Ak Lj, &) =Cy(20 + 1)!!\/% ZF f exp (—ar?) #3124 [ 1o (ky) dr. (IT1.3)
v= 0

The integral appearing under the sum is well known (Gradshteyn and Ryzhik [5]). We
obtain

Ak LG e) =2+ 1)1 Vr-C, (I1L.4)

ol

) 272" 2 F, j 3 3 i
vt+———.
vg Y gv+2 a”/2+j/2+3lzp(v+3/2)l 2+2+2 2" 4a

~

For continuum states a numerically more convenient result may be obtained applying
Kummer’s transformation

Ak, L7, 0) = 21+ 1)11C, Vi -exp (—k2/4a)

3
© b, I'\=+
(2 2+2) v g 3 &
Z WFil=—=v+=—). (I11.5)
242 ov/2+i/2+312 [(y 4 3/2) g 2 2 4o

v=I

In this form, the confluent hypergeometric function may be computed without loss
of accuracy by direct summation of its series expansion.

IV. Asymptotic Series in a=1/2

The procedure of this section applies to overlap with discrete and continuous
states. It is based on an integral representation of the confluent hypergeometric
function (Landau and Lifschitz [9])

1 I'l—a) I’
1Fila;e;2) =— = (F(c f—)a) ©) § exp (£2) (=)' (1 — ¢)c 21 d¢t. (IV.1)

c!

Since ¢ =2/ +2 is an integer in the present problem the contour must enclose the
points =0 and ¢{=1 and is otherwise arbitrary. Again we shall treat overlap with
continuum first and indicate modifications for discrete states subsequently. Defining

X I.P(l—a)F(c) (IV.2)
27t I'(c —a)
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and inserting (IV.1) into (I1.3) we obtain

Ak, 17, &) =Cy f exp (—ar?) yl+i+2
0

X § exp {—ik(1 — 2¢) r} (=)~ 1(1 — H)c=o=1 dt dr. (IV.3)

Expanding the exponential under the contour integral and interchanging integration

and summation yields a series S, which will be shown to be the asymptotic expansion
of A(%,,7,e) in terms of &~ 142, Writing

M
S= 3 F, (IV .4)
m=0

we have from (IV.3)

Cual—ik)" _
F, =——— | exp(—ar?) rititm+2,
m!
0
X ff (I =2H)™(=t)* " A= g as. (IV.5)

While the integral over 7 is elementary, the contour integral is just an integral repre-

sentation of the hypergeometric function ,F,(e¢,—m;c;2) (Landau and Lifschitz [9]).
The result 1s

(—2)™(&)™

F,=———C, o Utitm3)2 [ (l tgtm+s

2

2! )'2F1(ﬂ,—m;6;2) m=0,1,...
m!

(IV.6)

Fortunately, since the second argument of ,F, is a negative integer, the hypergeo-
metric series terminates and ,F, (a,—m;c;2) can be evaluated exactly. For practical
purposes it is essential that the functions F,, can be calculated by recurrence. Using
the recurrence relation (Abramowitz and Stegun [1])

(c—b),Fi(a,b—1;c;2)+ (2b—c—bz+az)-,F,(a,b;c;2)
+b(z—1)-,F(a,b+1;c;2)=0 (IV.7)

an equivalent relation for the F,,’s may be derived. This is

l+7+m+2
C+7j+m+2) 2 2Fm+k2F
2m + 1) (2 + 2 + m) F(z+j+m+3)\/& o« "
' 2

Fm+1:_

(IV.8)
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The starting values are obtained directly from (IV.6)

Fo= 9‘.5 i+ ____l +5+3 (IV.9)
2 2
1 I+7+4 I+7+3
Fi=——FyI'\———||I'|——]|.- IV.10
() () o

We shall prove now that the series S calculated in the way outlined above is the
asymptotic expansion in «~ /2 of A(k,7,7,). To this end we shall prove that (Knopp [8])

L=lim{Akl]a ZF} M2_0 M=01,.... (IV.11)
Va—-o

If we put x =74/« and define

U M : m m,m
R=exp{—{/k—_(l -—2t)x} -> (:;f) a —::!) i (IV.12)

& m=0

we obtain, using (IV.3),

0

Cig o™
L= lim (—H-J'T)/Z f exp {—xz}x(1+“'+2)/2
Ja—soo o

0

X- § R(—8)*1(1 — f)c-+~1 dt dx. (IV.13)

From Lagrange’s formula (see for example Courant [3]) we have

xM+1 ik
= m oM+lexp{ — —\7—_ (1 -2 % (IV.14)
) o x=§
with
0<é<x

Carrying out the differentiation and replacing the exponential by § with || = 1 we get

M+1 73 M+1
=(Jl;+l)!{—:/;(l—2t)} 9. (IV.15)

Inserting (IV.15) in (IV.13) yields

0

Cu

L= lim ——— | exp{—x*}x!'*?

Vi g UHIT92
0

xM+l
< _(f(M ) (—th(l = 28)M*1 (=)~ 1 (L — )" dt dx. (IV.16)

c’
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The expression under the lim is proportional to «~*/*4/2 and therefore L =0, q.e.d.

Numerically, asymptotic series are convenient, since the first neglected term is an
estimate for the achieved accuracy. The above formulae may be adapted for the
calculation of overlaps with discrete states replacing 2 by (:»)~! and C,, by C,;. Con-
vergence is rapid for large values of #. Moreover, the recurrence relation (IV.8) may
be used to obtain the general behaviour of the overlap integrals (I.2) for large ».

Inspection of (1.6), (IV.9), and (IV.10) shows that the first two terms in the
expansion of a,(/,7,«) depend on # through »~%? independent of /. From (IV.8) we
see that the third term is proportional to »~7/2. This fact may be used to estimate

Z |aa(l,7, ) |? (IV.17)
from a finite number of terms, M.

M
Y=3 (alioi+ S | o) (IV.18)

n=0 n=M+1

where the terms of the second sum have not been computed. To a good approximation
we may write, using the »73 scaling law,

M
~ > |anlg, 0)|? + |ap (7, @)|? Z — (IV.19)

=0 n=M+1

V. Asymptotic Expansion in «

For a rigorous derivation of this expansion it is necessary to introduce a con-
vergence factor exp {—e-7} with € positive but arbitrarily small. With the help of this
factor we define

Ale, k1,7, 0) = Cy, f exp {—or* — er — thr}-r**'t F (a;c; 2ikr) dr. (V.1)
0

The limit € — 0 may at this step of course be interchanged with the integration to yield

lim A (e, k1,7, 0) = A(k, 1,7, o). (V.2)

£—0

Expanding the Gaussian in (V.1) and interchanging summation and integration we
obtain

A (e,rk, Liva) =S (—2)* Uye) (V.3)

y2t2vtitlexp (—er — ikr) - F,(a; c; 2ikr) dr. (V.4)

S
=
Il
|2
ok_‘}g
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Interchanging summation and integration in the last step is not necessarily a valid
operation. Before turning to practical aspects, we shall therefore prove that the series
(V.3) is the asymptotic expansion of A(e,k,/,7,a) in « that is

L=1imlf_l.(e,k,l,j,oc) - % (—a)? Uv(e)}l=0 N=01,.... (V.5)

a—0 l ozN

Denoting the expression in brackets by R it may be shown by an analysis similar to
that in Section IV

=]

C
R=(—a)V*1 —2 J yIN*a+ltiexp {—er — ikr} -0 Fi(a; c; 2ikr) dr. (V.6)
(N+1)!
0

Here 4} is between 0 and 1. Since R is proportional to «™** equation (V.5) is satisfied,
q.e.d.

As in Section IV, this semi-convergent series is suitable for the calculation of
A(k,l,7,«) as long as the smallest term is smaller than the desired accuracy.

For application of the above formulae, we are left with the evaluation of the
integral in (V.4). We define

G, =limC,, f rmexp (—er — ik) | F,(a;c; 2ik?) dr. (V.7)
£—=0
0
The integration may be carried out (Landau and Lifschitz [9]) and yields

Cul'm+1 21k
Gm=limL——).2F1(a,m+l;c; ) (V.8)

e20 (€ + 1k)™*! €tk

With the help of the recurrence relation (IV.7) we get the recurrence relation for the
functions G,,

mm—21—1)G,_ +2G,+kGpy =0 m=1,2,... (V.9)
and observing that ,F, (2,0;¢;2) =1
2Go+ R2G, =C,, (2 + 1). (V.10)

It remains to determine a starting value G,. To this end we note, that (Abramowitz and
Stegun [1])

2F1(a,6;b;2) = (1 —2)~° (V.11)

with the restriction that the term on the right-hand side has to be taken with the
smallest absolute value of its phase. This gives

. 1
Gy =Ch(2l + 1)311_{1(} @

1. 21ke .
.exp{_g(tﬂ+k2+ez)+2nﬂz} n=0; il: i2) § = e (V’lz)
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Since € > 0, the argument is smallest for » = —1 and we obtain after e — 0
2+ 1!
Gop1=Cy ~aire OXP {—m|k}. (V.13)

Now, since the recurrence relation (V.9) is linear, we may determine G, from two
different trial values G§ and G3 respectively. G} and G§ will generate corresponding
values G},,, and G3,,,. From the linearity of (V.9) and (V.10) follows

Go =BG + yG}

Gyis1 = BGai41 + ¥YGiiiy
1=8+7. (V.14)

As in the foregoing sections, these formulae may be adjusted to the case of discrete
states replacing % by (in)~! and C, by C,;. However, it turns out that, though the
method described in this section is powerful for calculation of overlap integrals for
continuous states, it is of rather limited value for discrete states.

YI. Numerical Results

The methods described in Sections II to V have been used on an IBM 360/50
computer (double precision, 15 significant decimal places) to evaluate overlap integrals
between hydrogen S-functions and Gaussian functions with / =j = 0 and exponents «
in the range 107° < « < 10%.

LS .
R P,

o \N '\\w\\\\ L

PRINCIPLE QUANTUM NUMBER n

20 |

Figure 1
The hatched areas in this figure give the empirically determined regions, where the methods
described in the text converge when applied to computation of overlap integrals with discrete
states. Roman numbers in the plots refer to the section where the respective method is discussed.
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Figure 1 shows the regions of convergence of the four methods when applied to
overlap with discrete hydrogen eigenstates. Figure 2 is a similar plot for the hydrogen
continuum. A method is considered to have converged if the respective normalized
overlap integral is correct to six decimal places. A check on this accuracy is obtained
using two complementary methods in the region where they overlap. This region also
serves to establish convergence criteria. Breakdown of a method may occur for several

(8,1
I

o
T

WAVE NUMBER K (a.u)
=3
T

(8]
I

Vg a

Figure 2
The hatched areas in this figure give the empirically determined regions, where the methods
described in the text converge when applied to computation of overlap integrals with continuous
states. Roman numbers in the plots refer to the section where the respective method is discussed.

reasons. Table IT indicates the nature of the breakdown near the limit of convergence
and gives the number of terms in a series expansion used at this limit.

An overall check of the accuracy of a projection calculation is, of course, provided
by the closure relation. From (I.1) we obtain

1= Z |a,|? + _[ |A(k, 1,7, a)| dk (VL1)

n=1

Table II
Breakdown of the four methods

Discrete States

Continuous States

Method Max. number Max. number
section Application limit of terms Application limit of terms
11 rounding errors 20 rounding errors 25
III rounding errors 45 exponent overflow 75-100
v rounding errors 60 rounding errors 120
A% divergent character 1-30 divergent character 1-30

of series

of series
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where N(«,7) is given by

N*(a,7) = ff” exp {—2ar?} r2dr (VL.2)
I'(7+3/2
N*(a,7) = —2—(52]‘3‘)1_—;/2) , (VI.3)

While the infinite sum in (VI.1) is evaluated with the help of (IV.19) choosing
M =8 + 40, the integral in (VI.1) was taken between 0 < & < 125. The upper limit
was again determined empirically.

Table I11
Squared normalized overlap integrals for /=7 =0

Exponent parameter «

10-3 10— 103 102 10! 1 10 100

n Discrete states

1 .000003 .000102 .003154 .081852 .746861 .647359 .079396 .004009
2 .000103 .003206 .085933 .770894 .090647 .051262 .009543 .000499
3 .000799 .022947 .379569 .127086 .022365 .013943 .002807 .000148
4 .003232 .083407 .438929 .012269 .008721 .005708 .001181 .000062
5 .009564 .188671 .092285 .003060 .004296 .002882 .000604 .000032
N-2 30, aa? 1.000005 1.000014 .999994 .998193 .881335 .726976 .094767 .004816
k Continuous states

1 .0 0 .000006 .000207 .054031 .187788 .071640 .003977
3 .0 .0 .0 .000007 .000249 .000173 .160810 .013040
5 .0 .0 .0 .0 000017 .001045 .141164 .024564
7 .0 0 .0 .0 000003 .000127 .066044 .036770
9 .0 .0 .0 .0 .0 000026 .017162 .047393
N-2 j;‘f A2dk <10? 2.1077 6.10-¢ .001808 .118668 .273026 .905240 .995183

Closure relation

1-S —-5-107¢ —1-10—3% 2-1077 —1-10¢ —3-10—¢ —2-10-¢ —7-107% 8-10~7

Table III gives a sample of squared normalized overlap integrals of hydrogen
functions with Gaussians in the exponent range 107° < « < 10%. In all cases we were
able to obtain the closure relation to better than 1-107°. From Table III it is apparent
that a Gaussian function may overlap considerably with continuous hydrogen functions
if the exponent parameter is not too small. An application of this fact will be given
in a subsequent paper.

Though detailed numerical results have, up to now, only been obtained for the
case 7 =1=0, exploratory computations for /=j=1, 2 indicate a rather similar
convergence behaviour in these cases of non-vanishing angular momentum.
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APPENDIX

In this Appendix we describe the evaluation of the repeated integral of the error
function defined by

t—z)m
t™erfc (2 exp (—#?) dt. Al
- f p (£ (A1)

m !

By partial integration it may be shown that

% 1 -
tmerfc (2) + — ™ lerfc (2) — — ™ 2erfc (2) = 0. (A.2)
m 2m
If we define
i lerfc (2) = 2 exp (—z2) (A.3)
Va

it may be shown that (A.2) holds form =1, 2, . . .. Since
1%erfc (2) = erfc (2), (A.4)

imerfc (z) could be calculated for arbitrary m in principle. However, in contrast to the
recurrence relations derived in the main text, which empirically turned out to be
stable, equation (A.2) is extremely unstable for upward recurrence. (A.2) is therefore
used in downward recurrence putting Merfc(z) =0, M 'erfc(z) =1. With this
choice ai~terfc (2) is evaluated and by comparison with (A.3) the factor « determined.
Since (A.2) is homogeneous all functions iXerfc(z) with K sufficiently smaller than M
may be obtained by dividing the trial values by «. This technique, originally proposed
by Miller [10] for the evaluation of Bessel functions, was applied to the repeated
integral of the error functions by Gautschi[4]. From the work of Gautschiit is apparent
that the method will show poor convergence for z — 0. In the present work we used
this procedure for z > 1.1 only. For 0 < z < 1.1 the same technique may be applied to
a four-term recurrence relation. Consider the identity

t—z

1merfc (2) j_ f t_f exp (—¢?) dt — v f exp (—#?) dt. (A.5)
7,. m!
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The first integral on the right-hand side is

2 [(t—2" 1 < (gmd (m+1
\/;f o~ exp(—tﬁdt:v;-zj!(m_j)!f'( - ) (A.6)

Jj=0

while the second one obeys the recurrence relation

1
Ym—2 =- {2m(m - l) Ym+1 + 4(m - 1) A Ym + (222 —-m+ 1) ) Ym—l}
V4

m=23,... (A7)
with
9 z(t_z)m—l 5
Y,,,=\/;J‘ D1 exp (—t?) dt
Y= 2 - A8
0_—\-7—;exp(—z). (A.8)

Applying the above described downward recurrence procedure to (A.7) yields, together
with (A.6), 1™ erfc (z) for z < 1.1 with satisfactory accuracy.

Table IV
Starting values for recursive computation of ;™ erfc (z)
Recurrence relation Starting index M Y pea Y Yu_y Range
45 -25
A2 2m+?+10 0 10 ll<z< o
A7 m+ 30246 Io==h M-10—%°  M?*-107%°® 0<z<1.1

Starting indices M depend of course on m and z and were determined empirically.
Values given in Table IV will produce :™erfc (z) for 0 < m < 11 to relative accuracy of
better than 10-5,
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