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Schwinger Functions and their Generating Functionals, I

by Jiirg Frohlich')
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

(25. I11. 74)

Abstract. (Euclidean) Markoff fields and in particular the fields of the P(p), models in two-
dimensional space-time arestudied. Itisshown that the states on the Markoft fields, i.e. the generating
functionals for the Schwinger functions of the P(g), models with different boundary conditions,
converge as the interaction region tends to R2. The generating functionals in the infinite volume
limit are in 1-1 correspondence with Euclidean invariant measures on &’; (here & = & ..(R?).
Existence of coincident Schwinger functions and continuity in the time arguments are proven.
The Wightman axioms are verified for the quantum fields in the infinite volume limit. Some results
on the general structure of Markoff field theory are presented.

1. Introduction

This is the first part of two papers on the Schwinger functions, the generating
functionals and the infinite volume limit interacting measures of the well-known

P(p), models in the Euclidean formulation. The material of these papers is organized
as follows:

PaArT 1

Section 2. Review of estimates for ¢-perturbations of the P(gp), quantum field
Hamiltonian.

Section 3. Analysis of Markov field theory, the generating functional for the
Schwinger functions, applications to the P(g), models with space cutoff.

Section 4. The infinite volume limit for the generating functionals of the P(g),
models, verification of the Wightman axioms, sharp-time Euclidean fields.
PARrT II (to be published)

Section 6. F-quasi-invariance of the interacting measure for the P(p), models
in the infinite volume limit. Local Markov property and DLR equations. Canonical
structure of the P(p), quantum field theory.

Section 6. Asymptotic perturbation expansion for Araki functionals and Euclidean
local number operators.

REMARK.

The results of Section 2 and a certain number of results proven in Sections 3 and 4
are basic for the analysis presented in Section 5 and Section 6.

1) Supported in part by the National Science Foundation under grant GP40354X.
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1.1. Main results of Part I

We prove that the generating functionals for the Schwinger functions (Euclidean
Green’s functions [1, 2, 3] etc.) exist in the infinite volume limit and are in a 1-1 cor-
respondence with Euclidean invariant measures on &’ for the P(¢), models in the
Euclidean formulation of quantum field theory. We prove the existence of coincident
Schwinger functions [4], continuity of sharp-time Schwinger functions, and we verify
a special form of the Osterwalder-Schrader axioms [3, 5] yielding Wightman'’s axioms
[6, 7]. We show that the physical vacuum is an analytic vector for the (time 0-)
quantum fields ¢(f), f € #(R). All the essential results of this paper and Part II and
their proofs are formulated within the framework of Markov and Euclidean field
theory in the sense of Symanzik and Nelson [1, 2, 4, 5, 8-10].

Acknowledgments. 1 thank Prof. Lascoux for financial support of my participation
at a meeting on Euclidean field theory in Paris which was a source of inspiration for this
paper. This meeting was organized by F. Guerra and B. Simon. I also thank Prof.
B. Simon for numerous helpful conversations and very valuable criticism. Finally I
thank the Département de Physique Théorique de I'Université de Genéve for the kind
hospitality at a time when most of this work was done.

REMARKS.

These two papers extend the results of an unpublished manuscript written in June
1973. I am grateful to B. Simon and O. Bratteli for pointing out some errors and sug-
gesting changes in the first and second version of these papers.

After the completion of this work I learned that Prof. G. Hegerfeldt has also
studied generating functionals for the Schwinger functions from an abstract point
of view (preprints, University of Gottingen, 1973). He describes Nelson-Symanzik
and Osterwalder—Schrader positivity in the language of generating functionals.

2. Review of Estimates for ¢p-Perturbations of the P(¢), Quantum Field
Hamiltonian

In this section we summarize some basic results on perturbations of the Hamil-
tonian H, with space cutoff / by functions of the (time 0-) quantum field ¢. These results
were first proven by Glimm and Jaffe[11] and later with some modifications by Guerra,
Rosen and Simon [12-14]. They are one of the starting points for this paper.

Let us begin Section 2 by summarizing some fundamental field theoretic termin-
ology, such as Fock space, quantum field (boundary conditions) etc. We also collect
some results on the spatially cutoff P(¢), quantum field Hamiltonian H;. As general
references we recommend Glimm and Jaffe [15, 16]; see also Ref. [4].

2.1. The Fock space for the free quantum field, spatially cutoff P(p), Hamiltonians with
different boundary conditions

Let & be the symmetric Fock space over L?(R) [4, 10, 15, 16] associated with the
creation and annihilation operators a*(f), a(f), (f € L*(R)) and the vacuum £2,, which
has the property that a(f)§2, =0, for all f in L?(R). We define the free one-particle
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Hamiltonian p, s by

a2
M, s = J_ I +mg + s*(1 — x)) (2.1)

where y,(x) is the characteristic function of the interval [—//2,//2]. Note that g, is to
be understood as the square root of the operator

d‘2
d2

which is positive and self adjoint (s.a.) on L?(R). Thus p, is well defined. The positive
real number s is called mass parameter [4).

+ md + s*(1 —x))

. Remark: We say that an operator 4 is well defined (s.a., positive...) on a Hilbert
space # iff its domain of definition D(A) is dense in # (A is s.a. on D(A4) ; the quadratic
form determined by 4 is positive.. ).

The free Hamiltonian HY ; on & is defined to be the biquantization of p, ,, i.e.

H?, :=dl(p, ) = j dk dia* (k) fi, J(k, 1) all), (22)
where i, ((%,0) is the kernel of u, ; in the momentum space representation. If s =0
it,smolk ) = Vi + m38(k — ). 2.3)

The operator H?  is positive and s.a. on F.
We define the (time 0-) Newton-Wigner field @, :

Po(%) = 1 dk e**{a* (k) + a(—k)} (2.4)
Vin
and the (time 0-) quantum field by
Pusl8) = (7 # 90)(4): @)

‘The canonically conjugate momentum is given by
m,s(¥) = i[H] 5, @1, 5(%)). (2.6)

Notations: If s =0 we write u for u, ;_o, Ho for HP o, ¢ for ¢, ¢ and 7 for m; o.
(The objects ;. o, H o, - . . are tndependent of I). We call these boundary conditions
Jfree boundary conditions.

We now define Wick powers of the fields ¢, ;.

[n/2) (1) n!

Pal)ii= D e s

m=0

Note that ||p~/2f||, is independent of s and /. Therefore this definition of Wick powers
of the field agrees with the usual definition of Wick powers only if s = 0.
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Let P be a real polynomial with even, positive leading coefficient. We define the
wnteraction Hamiltonian with space cutoff [ by

/2 '
Vis=V,{P) = [ dx: P(g, 4): (%). 2.7)

—!./2
The spatially cutoff P(p), Hamiltonian is given by
Hy =H,,(P) :=H} +V,, (2.8)

Theorem 2.1: Let 0 < s < o and l < . Then the operator V; ¢ is s.a. on F, I;T,,s is
essentially s.a. on D(HY ;) N D(V, ) and

H,;>-0(1)I>—-o (2.9)

untformly in I and s > 0.
We set

E, |(P) :=inf spec H, (P)
and
H,,w=H,,—E, (P). (2.10)

The operator H, ; has a unique ground state 2, ;€ F corresponding to the eigenvalue 0
and

(£20,2,,) # 0. (2.11)

Proof: Precise formulations of this theorem and proofs follows from Refs. [4,
15-19].

Notations: If s = 0 we write V, for V, o, H, for H, o, E,(P) for E, (P).

We now consider the case where s = « (see Ref. [4]): The free one-particle Hamil-
tonian u, , is defined to be the square root of —(d?/dx?), , + m$ on the space L} ; of
square integrable functions with support in [—//2, //2]. Here (d?/dx?),, p is the Laplacian
on Li , with Dirichlet boundary conditions at x = +1/2.

We define &, , to be the symmetric Fock space over L? ,,.

Notations: We write HY ;, for HP ., V, p for V, o, H; p for H, ., etc. We call

I, 0

H, p the Hamiltonian with half Dirichlet boundary conditions [4].

Theorem 2.2: If | < oo, then the operator V, pis s.a. on F, p, H, p is essentially s.a.

on D(H? p) N D(V, p) and has a unique vacuum 82, p, corresponding to the eigenvalue 0
and

(£20, 82, p) #0.

Furthermore

E, p=infspec H, p=1limE, ,=sup E, . | (2.12)
S0 s
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Proof: The theorem follows from Refs. [15, 16] by essentially the same proofs that
work for Theorem 2.1. See Ref. [4] for a careful analysis of the Dirichlet boundary
conditions.

2.2. @-Perturbations of the P(p), Hamiltonians

All the results of Sub-section 2.2 (and most of the results in Section 3) concern the
spatially cutoff P(¢), theory with free boundary conditions, i.e. these results are formu-
lated in terms of ¢, =, H,, . . . These results extend to the case of Dirichlet boundary
conditions (see Sub-section 3.5).

Let P be the polynomial defined in Sub-section 2.1 (2.7), and let () be some real
polynomial with deg Q < deg P. Let & be a real function with ||4||, <1 and supp 4 <
[—£/2,1/2]. We set

SH(h) = f Q@) : (%) h(x) dx, (2.13)
and .
8E(l,h) :=inf spec(H, + 8H (h)). (2.14)
Estimate I: Under these assumptions on P, Q, and n
+t8H(h) < H,+dE(l, ¥ h)
and |

|8E(l, B)| < a||h|; + b,-diam (supp &), (2.15)

where a depends only on P and Q but not on h, and b, depends only on P and |b,| = O(1[))
(as I ).

Corollary : On the physical Hilbert space we have under the same assumptions and for
arbitrary € > 0

T 8H(h) <€Hren.+c(€) ”hnl (216)
where c(e€) only depends on P, Q, and € but not on h.

Proof : See Ref. [11]. The form in which we have stated (2.15) and (2.16) is proven
in Ref. [13]. See also Simon [14].

Estimate I1: Let supp h < [—1/2,1/2]. Then

+ @(h) < K|A], (H,+1) (2.17)
where the constant K depends only on P but neither on I nor on h. If K||h|, < 1 we get

+ o(h) < H; + K| h|,. (2.18)

Proof : Inequality (2.17) was first proven in Ref. [11]; another proqf ‘is.given in
Simon [14]. Inequality (2.18) is a trivial consequence of (2.17) and the positivity of H,.

Q.E.D.
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Asanillustration of the methods developed in Refs. [12, 13, 20] we prove the follow-
ing:

Estimate I11 :
+ Ap(h) < Hy + K, A2 ||h||2 + K4-diam(supp k). (2.19)

Proof: We use Nelson’s symmetry [9, 20] for the proof of (2.19). Let supp & <
[—a,a]. We set

Helt) = Hr+Xhlt) | dx p(a),
-T/2
2a - 2ma
Urlha,~a) i=s ~Jim TT exp|~ 37-fr ~a+ 5~

and the existence of the limit follows from the results of Sub- sectlon 3.2.
Nelson’s symmetry yields:

(QO» exp[—T(ﬁ, + A(P(h’))] QO) = (EXP [_ (_;" _a)gl'} Qo: UT(k! a, —a)

xexp[_(é_a)m]go)

< (2, exp[—(l — 2a) Hr) 96)1| Ur(h,a,—a)|

= (Do, exp[—TH,_,,) Q)| Ux(h, a, a)].

Now

Uk, a,—a)| < exp [— J. dt|inf spec f;{T(t)|] (2.20)

and

T/2
inf spec Ht {) > inf spec (EHO + AA(t) f ax @ x))

-T/2

+(1—e)infspec(H0+1i VT(P)), | (2.21)

for all 0 < € < 1. Clearly

T/2
K,
eH, + Mi(d) fdxqo) >~ S NlhY T (2.22)
€

-T/2
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for some K, < «. From the linear lower bound (2.9) (Guerra [20]), and from Refs. [12]
and [13] we know that

H,+ V2 (o (P)+0(e)) T+ 0(1), forO0<e<? (2.23)
— €
where
E,(P
o, (P) =1lim — L
-0 l
(Guerra [20]).

Choosing now e =4 we easily complete the proof of Estimate III by standard
arguments [11-13].

O.E.D.

But choosing e = €(f) = 1/(2 + #*) in the above proof and using (2.20) to (2.23)

and
E,/(P 1
_+) —a (P)|=0 (?)

we get

Estimate IV :

+ Ap(h) < Hy + K A% (2 + %)% h|3 + K (2.24)

where K, is independent of P, I, X and h, and K5 depends only on P.

The techniques used for the proofs of Estimates III and IV, namely twice Nelson’s
symmetry, convergence of —[E;(P)]/l to a,(P), as I, concavity of E,(P), etc. are
typical for the GRS proof of Estimate I such as presented in Refs. [12] and [13].

Remark: Let P(x) = Sn_o @u%*™ + pux, a,> 0 be a real polynomial. Let H; (P)
be the Hamiltonian thh mass parameters,0 < s < o, associated with the polynomial P.
Then Estimate I with Q(x) = x or x? and Estimates II-IV hold for the quantum field
@15, and the Hamiltonian H, ,(P) with constants that are independent of s; this is a
consequence of correlation inequalities (Sub-section 3.5.)
Estimates I-1V also hold for the Hamiltonians H, , with half Dirichlet boundary
conditions, uniformly in /[11, 14].

3. Analysis of the Generating Functionals for the Schwinger Functions with
Space-Time Cutoff

3.1. Introduction

Throughout Section 3 we work with free boundary conditions, i.e. the mass
parameter s = 0. The results of this section extend to arbitrary mass parameter and
Dirichlet boundary conditions by a monotonicity argument (‘Griffiths inequalities’
[4, 21]). This is explained in Sub-section 3.5.
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Let A=A7 :=[-1/2,1/2] x [-T/2,T/2] be a space-time region and let 4, . .
be test functions in &, (R?) with time-ordered supports. We define the z-point Schwmger
functions with space-time cutoff A

1 m T &
6rll‘t(klr L ‘rhm) = Zf E dti (QOs exp[— (_2__ tl)Hl] (P(hl(itl))

x exp[—(t; — o) Hil - - . @(hm( ", 1)) €XP [ - (; + t,,,) ﬁ,] 90)
3.1)
where
Z 4 = (S0, exp(-TH)RQ,);

see Refs. [4, 22-24].
In thissection we want toshow that forall/ < « and T < « there exists a generating
functional J ,r(-) defined on &,(R?) such that

om m
—_— T .
aA, . .. a)\,,,J 4 (El A f)

We show that the function J 4r(Ak) is the boundary value of an entire analytic function
]AT(C %), as Im{—0, for arbltrary l<w, T<w.
We derive uniform bounds on | J 4l Ch )| and we show that the family { e( ({h))0 <

! < @} is equicontinuous in the test function % in some norm on %,(R?), which'does not
depend on {. Our results imply that the functionals J a(h) are the Fourier transforms
of measures v 4o on &’ =%/ (R?) which are closely related to the path space measures
determined by the s.a. semigroups ¢~*H! (extensively used by Nelson [25], Glimm and
Jaffe [11, 26] and Rosen [18]). The results of Section 3 are basic for the proofs of our
main results in Section 4, where we construct the limit measures v ,_g2 and discuss its
properties, e.g. Euclidean invariance.

Sl (hy, ..., hy) =" (3.2)

Apmeeimigy=0

3.2. Markoff and Euclidean fields, the Euclidean Fock space

We summarize here some Markoff field terminology in the sense of Refs.[1, 2, 4, 9]
for Bose field theories in a two-dimensional space-time. We motivate the use of this
terminology in the study of the P(¢), models, and we mention the connections between
Bose quantum field theory models, conservative Markoff processes on compact spaces
and Markoff field theory.

We start with a probabilistic definition of fields and Markoff fields [2, 4, 9, 27].

Let J be a non-linear functional on the space & = &,(R?) with the properties:

1) J is normalized,ie. J(0) =1.
i) ] is continuous on & in the topology of ¥ (R?).

iii) ] is of positive type, i.e. given arbitrary complex numbers ¢, . . ., ¢, and test func-
tions fi, . . ., f, then

i cie; J(fi—/f) =20

i,Jj=1

iv) J()y =T/
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A theorem of Minlos [28] (generalization of a well-known theorem of Bochner), tells us
that J is the Fourier transform of a unique measure v defined on the o-ring generated
by the Borel cylinder subsets of &, i.e.

Ji)= [ eanany). (3.3)

&
We define the Hilbert space

H, = L*(&', dv) ‘ (3.4)
and the unitary groups

{e'*?N|s e R},

[els®(](q) :==¢!%9, gin & . (3.5)

Because of 3.2, ii) these groups are strongly continuous on 5, and hence have an in-
finitesimal generator @(f), [@(f)](g) = ¢(f), which is called the field associated with v, J.

Let s, ¢ be real numbers and s < ¢. The subspace #,(s,f) of #, is defined to be the
closure of the linear hull of all vectors of the form {¢*"I/fe &,suppf < R, % [s,f]}
where [ is the function identically 1 on &’ and is also denoted by £2. The orthogonal
projection onto #,(s,?) is denoted by E,(s,?). If ‘sharp-time fields’ @(g ® 6,) exist
(as limits of the fields @(f) with f in &) we define the subspaces J#,(f) generated by
{explid(g ® 9,)]/g € &,(R)} and the corresponding s.a. projections E,(t).

If the functional J is space-time translation invariant we define ‘space-time
translations’ by

Texy I=1, Tixyexplid(N)]T —x,—s5 = exp[id(fex, )] (3.6)

for all {x,#) in R?, where f, ,»(¥,5) ==f(y —,s —t). Thegroup {T, ,,|<x,t> e R*}isa
continuous unitary group on 3#,;

T' := T<0, t>'

Definition 3.1: The field @ is called a Markoff (Bose) field if @ is a field and the
Markoff property

E(f) = E\(~,0) E,(t, ) = E,(t, ) E,(~, ) 3.7)

holds for all ¢ in R.
Let F beameasurable, v-integrable function on &’. We define the expectation value
of F with respect to v

(Fy, = [ F(g)dv(g) = (2, FQ). (3.8)

Definition 3.2: The field @ is called a Euclidean Bose field if the functional J is
Euclidean invariant and all the moments of the measure v, i.e. the Schwinger functions,
{<b(f1) - .- () Dy} C0 €xist, are tempered, and have a unique analytic continuation in
the time variable to the Wightman distributions [6, 7] smeared with the test functions
fis « « o far (See Sub-section 3.3.)



274 ' Jirg Frohlich  H. P. A.

The connection between this definition of Schwinger functions and definition
(3.1) is explained in Sub-section 3.3. See also Refs. [4, 22, 23].

One of our goals is to construct a Euclidean invariant functional J with the pro-
perties 3.2, i)-iv) whose Schwinger functions are the Schwinger functions of the P(g),
model and obey the Osterwalder—Schrader axioms [3, 5, 29].

We now explain the connection between quantum field theory, Markoff field theory,
and Markoff processes and the relevance of the latter in the study of the P(p), models
[27, 30, 31]. We assume that we are given guantum fields on a Hilbert space #y, a
Hamiltonian H on i, with a groundstate 2 and a maximal abelian von Neumann
algebra .#(0) generated by {¢'?/f € &,(R)}, where ¢(f) is the (time 0-) quantum field.
We assume that £21is cyclic for #(0). It is shown in Ref. [16] (and references given there)
that we can pass to the Schrddinger representation of # y and #(0); Let X be the spec-
trum of #(0) (which can be replaced by &,(R) with some topology that makes it a
compact Hausdorff space). Then

M (0) = C(X) (algebra of continuous functions on X);

# w = L?(X,du) for some regular Borel probability measure u on X ;
Q=T

One can show

Theorem 3.1: The following are equivalent

(I) The s.a. semigroup {e~*®|t > 0} preserves positivity of functions in L*(X,du) and
Q2 = I is invariant under {e~*4|¢ > 0}.

(II) There exists a Markoff field @ on a Hilbert space H ., such that for all ¥ and 0 in
H,(0)

(W, T,0)=,T_,0) (reflection principle [2])

with the following identifications: (a) #y, = #,(0), (0) =1, (c) p(f) = d(f ® 8y),
Jorallfin #,(R), (d) e~ "'M0 = E (0) T 0, for all0 in H# . Let f be in & and suppf <
R, x [0, ). Then (e)

i (s o - o[ s (1 (-5 )] ) -0

The functional ] is also called the characteristic functional (of the Markoff process on X
determined by {e~*®|¢ > 0}; see Ref. [27)).

The part (II) = (I) of this theorem is due to Nelson [2].
The part (I) = (II) is due to Simon [30]. (See also Ref. [27].)

Remarks : The part (I) = (II) follows from the fact that {¢"#|¢ > 0} determines a
so-called self adjoint, conservative Markoff process [27, 31]. This Markoff process de-
termines a measure p on the path spaceQ, (e.g. = &R x R,)) [31,32]. Since e™HI =1,
for all £ > 0, or equivalently the Markoff process is conservative, there is an extension
Q(e.g. = &’) of the path space Q,, and the path space measure p uniquely determines a
measure v on (). The Fourier transform of v is the functional J. Equation (3.7) #s the
Markoff property of the Markoff process determined by {¢=*¥|¢ > 0}. Identifications (d)
and (e) represent the Feynman—Kac (—Nelson) formula [4, 9].
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The free, Euclidean Markoff field [10]

Conditions (I) of Theorem 3.1 hold for #y, = &, H = H,, where H, is defined in
(2.8), (2.10) and / € [0, ), and for the groundstate £, of H,; see Refs. [15, 16]. Therefore
there exists a corresponding Markoff process and a Markoff field theory [27, 30].

For!=0, H = Hy, we have

Jolf) = exp[—¥<f.f>] | (3-9)

where
&) = [ @@ f€)S3(E - em)

and SY(£ — x) is the kernel of the operator (—4 + m3)~! (which is the free two-point
Schwinger function).

The Fourier transform of [, is the Gaussian measure v, on &' with covariance
(operator)

(—4 +m2)1, | (3.10)

The Hilbert space #, = A" associated with J,, v, is called the Euclidean Fock space.
The subspaces (s, ), #"(¢) and the projections E(s,?), E(t) are defined in the same way
as H,(s,?), H#,(f), E,(s,2), E,(¢), respectively.

Identifications :
H0)=F, $(f® d)=e(f)
E(0)T,0=¢"/""0@, forall in &. (3.11)

The function I in L?(%’,dv,) = is denoted by £2, (and is not distinguished from the
vacuum in ). '

3.3. General properties of the characteristic functional or the generating functional for the
Schwinger functions

In this sub-section we study some general properties of the generating functional
for the Schwinger functions or the characteristic functional, defined in 3.2, i)-iv);
Theorem 3.1, Identification (e). Since we are mainly interested in the application of the
results of this sub-section to the study of the P(¢), models we do not try to prove the
most general results (but see Ref. [27]). The assumptions for this sub-section are as
follows: :

i)  The semigroup {¢*#/t > 0} with the invariant state £2 obeys conditions (I) of

Theorem 3.1.
ii) Let ¢(f) be the (time 0-) quantum field on the Hilbert space #y, = L*(X,du).
We assume that there is a norm |||-||| which is continuous on &(R) such that
a) [eW < IIAIIH + ). (312,

b) The vector £2 is in the domain of ¢(f) if |||f]|| < « and
le() 2., < OISl (3.13
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Note that in the case of the P(p), models these assumptions can be verified for H = H,,

Hw =% and some norm |||-||| determined for example by Estimate IV which is
independent of 1. For the P(¢p), models we can show more:
le > < IFN1*H+ D)%, (3.12)

uniformly in / < «, which yields 3.3, ii), (a) and (b). (See Refs. [11, 12] and sub-section
3.4.)

L. Continuaty properties of functionals obeying 3.2, 1)—iv)
Let J(-) be a functional obeying 3.2, i)-iv), i.e.
I = [ er avlg), fez,

&

for some probability measures v on &’. Clearly,
TG+ =T < [ avig af)*. (3.14)
F
We now want to study the class of functionals such that
J@ = [ eaavg)
o

is holomorphic in {in a certain domain in C (containing R) for all fin a certain class of
test functions and we then derive bounds on the right-hand side of (3.14). Since

|J(LN] < J(Af), where A :=+1Im{, (3.15)

it is obvious that the domain of analyticity of J({f) is a strip around the real axis.
Let | -|; be some norm which is continuous on &(R?). We define the test function
spaces:

¥ = completion of &(R?) with respect to the norm || [,

v, ={fl[f € ¥, fis real valued}. (3.16)
Lemma 3.2: Assume that

sup |J(Lf)] <3 K, <. (3.17)
T

Then the absolute value of

1) = J vt )T 4

i=1

15 bounded by
O(1)™ m! ﬂ I fills- (3.18)
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In particular
K, L
G, < 112 3.18)
and for

2[Im (I fls +1£15) <

1 K?
JC+1) =TI < [ [ asT@iNs+ ) [ < 112 (3.19)

Proof: Let h := f]| f|s- Then J({h) is holomorphic inside and on the circle
F={{|{l=«/2} and |J(LW)|;crl< 4K,

Hence

: a”
PNy =fIF<BE™> s = (=)™ fIF 577 T(Eh)] 1=o

oLm
exists for all m < . Using Cauchy’s integral formula we get
o m! zh
‘éF](U‘) (=0 ='2'1gr dzii“)-
Hence
2
a_CZJ(Ch)h:o Sa—;

This proves (3.18).

For the proof of (3.18) we replace J({h) by J(3 ", {;4;) and use the same analy-
ticity arguments.

Using Duhamel’s formula, we get

1 2

TS+ =J@HE=| [ ds [ avig) explitialf) + salfN]a(f")

0

[ 1

/A

ds J(2iA(f + Sf’))”z] B

)

1
<

' . 1KZ
ds J@N(f+ Sf’))l<¢(f')">v <sIfI2
Lo
(by applying the Schwartz inequality first to [.,dv(g) . . . and then to | ds...).
O.E.D.
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Remark: Let @ denote the field associated with J and let :@™:(-) denote the mth
Wick power of @ (where Wick products are defined in Segal’s probabilistic way [4]).
Let

Chiiicﬁ)

and
GQ.&h) = [ dv(g)expliQ(%-b)(g)]
/

Then Lemma 3.2 can easily be geheralized to apply to the functional G(Q,€-h), pro-
vided this functional exists and has suitable analyticity properties in 4, ...,
We will eventually use such generalizations (Part II).

1. Analyticity properties of the characteristic functional associated with {e~*2|¢ > 0}

We assume here that 3.3, i) and ii) hold. We first prove a result on the Schwinger
functions associated with the Hamiltonian H. We define the following test function
spaces over R:

={flll|fl|]| <=} and #, :={f[f€ W, fisreal-valued} (3.20)
(more precisely, #” is the completion of & (R) in the norm ||| -|||)-
Lemma 3.3:1) Let f,, . . ., [, be in W. Then on the set
{ti,. yl— o<t <t,<...<t, <o}
the expectation value (e.v.)
(2, 9(f1) exp[—(t2 — 81) H] @(f2) - - - @(fm—1) €XP[~ (b — tm—1) H] p(fm) £)
exists and 1s C® in &y, . . . t,. It is called ‘m point Schwinger function’.

ii) Let f and g be in W". Then the e.v. (2,q(f) e~ (g) £2) exists and is bounded on
{1' > 0}. It is C® in v on {r > O} and continuous at v =0. The ev. (2,0(f) e Hp(f) Q)
1S a convex function of T on {T = 0}.

Proof: Let R = (H + I)~*. From 3.3(ii) we know that
[ RYZ () R < [IIA1Il, o) 2] < OMmIIIAIl-

Hence
Jeest Hm () Hr e s < (|| (B + 1) V2 Hme"s%| - | (H + 1) Hme 2%,

But

!
” (H + I)llZHm e—tH” sup V) 1 Ame—t4 < O( ) i

150 Tm+l/2

These bounds prove the existence of the e.v.’s defined in (i) and imply that they are C*®
on{ly:slalli €l <. i <5
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Remark : The e.v.’s defined in (i) are of course holomorphicin ¢,...¢, on {¢y,...,¢,/
Ret, < Ret, < ... < Ret,}.

Proof of (41) : Since by 3.3(ii)(b) £2is in the domain of definition of ¢(f), for arbitrary
feW, o(f)2is in s#y. The continuity of (2,¢(f)e ™ p(g) 2) on {r > 0} follows now
from the strong continuity of e~ on #y on {r > 0}. Finally, for j=1,2 and 7> 0

d’

(_Q e—TH f)-Q (Q"P( Y H/2 g=7H [J 412 o(f) Q).
Thus
(2, 0(f) e~ @(f) Q) is convex on {r > 0}.

Q.E.D.
Definitions: Let f be a function on R2. We set
I£1s = [ 117111 e+ sup||| -, ]]]- 3.21
Let
t(f) = inf{t/3 x such that <{x,¢> e supp f}
t(f) = sup{¢/3 x such that <{x,£> € suppf}. (3.22)

Let ¥~ denote the completion of & (R?) in the norm | -||,,

Vo ={flfe ¥, —o < t(f) < {(f) < } (3-23)

and let ¥",, ¥, denote the real parts of ¥°, ¥7,, respectively. Using Theorem 3.1(1I),
Identifications (c) and (d) we.conclude that

(Q2,6(h ® 8:) (' ® 8,)2) = (2, b(h ® 80) T oy bW @ 80) 2)

= (Q, p(h) eI~ (") Q). (3.24)
Thus
(2, $(f) $() )| = ”dtdt (Q, @, ) 1411 g (- ) £2)
< [atar|o (- ) Q1 I ple(-. ) 2
sfwwMMumnﬂm«fmrqmukm (3.25)

i.e. the two-point Schwinger function is continuous in each argument in the norm

Ll
Lemma 3.4 : Suppose that f is in ¥ o, and supp f < [—T/2,T|2). Then

tim (g 5 (exp[—%ﬂ}a@[i%?’(}’(ﬁ(%—%)T))D.Q)E](f)

exists, and the characteristic functional J(f) has a unique extension from ¥ g, to ¥,.
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T
i ))]).Q)-
From Theorem 3.1(1I) we know that

aer
In(f) (-Q eXP[ Zﬁ fn®8((n/N)—1/2)T)]Q)»

where

F¥() :=f(x, (%—5)1").

Thus, by Duhamel’s formula,

Proof : Let

Tnlf) = (9 1l (exp[—~ —H] exp

| Tn(f) — < ( [ Z (f7 ® 8«mwm -1

T M-1 2
2 Z d(fm @ 8((m/m—1/2)r)] Q)-
m=0

We now use (3.24) and get

N-1 T 2 [ ’
N TP < D (—ﬁ) (Q,qo(fn”) exp| - | TH]sv(fm)
N-1 T T\ m
8 (N3]

X @(fo) Q). | (3.26)

Since fisin ¥" and ¥"is the completion of & (R?) in thenorm || - |, ||| f(-,#)||| is continuous
in £. We now use Lemma 3.3(ii) (continuity of two-point Schwinger funct1on) and con-
clude that the first and the last term on the right-hand side of (3.26) are Riemann sums
which tend to

[ e ae' (@, 9(f(-,0) expl—|t — | H) 9(f(-, ) Q) = (2, (> Q).

as N —>o, M — w.
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The second term on the right-hand side of (3.26) is a Riemann sum which tends to

—2 f dt dt'(Q, p(f(+, ) expl—|t — ¢ [H] o(f(-, £) Q).
Hence
ljn(f) —JM(f)lz—>0, as N—)-oo, M-—>oo,

Therefore the limit
Eﬁ]ﬂﬂEl@
exists.
Obviously
N-1 2 '
IhUﬂﬁﬁth‘Z(é)@Mﬂﬂwan_nfﬂkuﬂQ)
m=e (3.27)
The right-hand side of (3.27) tends to (2, $(f')*£2) as N — . Hence
lJU+) =T < (R, 6(F)2 Q) <|f?
by (3.25). Thus J(-) has a unique extension to ¥".
Q.E.D.

Corollary 3.5: Let M, be the von Neumann algebra generated by operators of the form

M
{eXP[Z (i ® 3,[)]/flE’Wﬁ i=1,... M, M< ;.
=1

Then

1) M, is maximal abelian on H, and the vector 2 (the function I in L*(¥’',dv)) s
cyclic and separating for M .
1) If{F;}i s a bounded net in M, then F; — F, strongly, iff

|(F, — F) £ 0.

Proof : Because of Lemma 3.4 .4, contains the von Neumann algebra M generated
by {e'*Y)|fe &}. The vector 2 is cyclic for # and therefore .4 is maximal abelian

(see Ref. [15]). Since .#, is abelian, we have .#, = .#. Therefore £ is cyclic for .4,
and, since .4, is maximal abelian, £ is separating for #,. Let 9 = {GQ|G e M4 ,};
9D isdensein #,. Let 0 € 9, i.e., 0 = GS2, for some G € .#,. Then

|(F.~ F) 6] = |(F, — F) G| = |G(F, - F) 2| < |G| -|(F, - F) 2|
which tends to 0 as 2— . Thus {F}, ; converges on & and, since it is bounded, on #,.

Q.E.D.

Let f be a test function in %", and let { be a complex number.
On the domain D(H''?) x D(H'/?) we define the sesquilinear form

H, = H +ilp(f). (3.28)
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If

121 Al < 1 (3.29)
then by 3.3, i) (a) H,, is sectorial.

ReH ¢, > — [Im {] |[|f]|] > 1

|ImH ;| < O(1)[Re H ¢, + |[Im {] [[|f]]]]. (3.30)

(Hence for { purelir imaginary H,, determines a unique s.a. operator, also denoted by
H,,, which is bounded below by —|Im{]|-|||f]||-)

Lemma 3.6: If inequality (3.29) holds then H .+ |L|-|||f||| is the generator of a
contraction semigroup denoted by

{exp[—#(H ¢, + (L] |[If1ID]]¢ > 0}

and

exp[—tH ] 0 = E ,(0) exp[—i{$(f ® X 0,17)] T 0 (3.31)
for all O in Hy, t = 0; where ypo, 1 s the characteristic function of [0,¢].

Proof :

1°. By assumption (3.3, 1)) ¢(g) is s.a. on #y, for all gin &,(R) and ¢(g) represents
a real-valued function in L?(X,du), since |jp(g) £2|| < «, by 3.3, ii) (b). Since ¥, is the
completion of &,(R) in |||-]|||, there is a sequence {g,}2, < &,(R) converging to f in
||| -]|]- Therefore p(g,) 2—o(f) L2, strongly, as n— . Thus @(f) represents a real-valued
function in L?(X,du) and hence is s.a.

20, Let

N,x>N
Fy(x) =={x,-N<x<N

—-N, x<-N.

Then Fy(p(f)) is well-defined (via spectral decomposition of ¢(f)) and is in .#(0)
(=C(X) = L*(X)), for all N < . By the Feynman-Kac-Nelson formula (see Refs.
4, 9, 22, 23)).

exp{—[H + i{Fy(p(f))]} 6 = E (0) exp[-—i{ [ dt’ Fy(d(f ® 8,))1 T.6,

forany 0 in 5y, ; and for all N < wexp{—[H + i{F y(p(f))]} is an operator valued holo-
morphic function of {, for |Im{| < 1/|||f||| with the bound

lexp{~4[H + il Fu(@(f) ] < explelim £} |]1f1]) 3.32)

(which is uniform in N).

We now show that exp{—t[H + i{F y(p(f))]} converges strongly to the right-hand
side of (3.31), as N— 0. Because of (3.32) it suffices to prove convergence on a dense
set and, for example, all real {. By Corollary 3.5 this follows from the convergence of

exp[—z'c [ar Fur ® 6,,))]!2 to exp[—i{$(f ® Xto.n)] 2.
0
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But for real

2

(exp [—zZ f at' Fy( (f ® 8,-))] — exp[—i{d(f ® X[O,t])])‘Q

< (9[ [ at{Fuig(f @ 8.) - if @ at,)}] 9)

=2 [ar [ ar(@, (Fulolf) — o)) expl—lt — | H) (Fa(el) - 9()) Q)

< (&1 (Fnle(f) — o(f) 2|
which tends to 0, as N — o, since ¢(f) is in L3(X,du).

Q.E.D.

Corollary 3.7: Let H,;(t) := H + ilop(f(-,t)) and let |Im | ||f|; < 1 where

I£1e= [ IAC. 111 de + sup |||, 1]
Then for all 0 in H y,

N4 t—s n n

U(Cf,f:s)3=3—11v1_{2 r.ll)exp —THU J—V—t+ 1 =3 s|le
exists, is holomorphic in { for |Im| < 1/|f, and bounded by

|U(Lf.4,5)|| < exp(|Im £[ | f]|,). (3.33)
Finally

U(Lft,5)0 = E,(0)T_ exp [-z’c [ ar f dxd(x, t) f(x, t’)} T, 6. (3.34)

Proof: Let

N-1 t—s n n
UN(Cf,t,S) = nl:[o exp| — THU(Ff-E- (1 _ﬁ) S) :

From Lemma 3.6 and its proof we know that for all N < o Uy({f,t,s) is holomorphic
in { for [Im{| < 1/[sup|||f(-,%)|||] hence for |Im{| < 1/||f|l; and bounded:
t

N-1 ‘i
|Untfitis)] <exp 3 [Im] e =1 Ns)

where
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The right-hand side of this inequality tends to

exp

‘hn@lfdlefﬂ,fHI@<<expﬂhn6|wa} (3.35)

as N— oo, since f,(+) :=f(-,?) is continuous in ¢ in the norm ||| -|||.
By Vitali’s theorem it suffices to show that Uy({ f,¢,s) converges to the right-hand
side of (3.34) for real {. By Lemma 3.6

N
Th+1

Un(lfit,) 8 =EL(0) T_, exp[zc S [ ar [axglensi r,.)]T_te

=0 ¥

Hence, by Corollary 3.5 and the bound (3.35), Uy({f,t,5)0 converges to the right-hand
side of (3.34), as N — oo, iff

N
_q1 a1

cxp[iCNzl f dt’fdx d(x, t’)f(x,q-,,”)]Q

n=0

tends to

exp [z’{ f dt’fdx d(x, ) f(x, t')J.Q

as N — . Since f,() is continuous in £ in the norm ||| - ||| this follows almost in the same
way as Lemma 3.4, (3.26). But this and (3.35) complete the proof of the corollary.

Q.E.D.
Theorem 3.8: Let J(If) = (22,exp[ild(f) (see Lemma 3.4 for real (). Then
a)  J(Cf) is holomorphic in { on the domain {z||Imz| < Y|\ flls} and | J(f)| < exp (|[Im |

x| fls)-
lss for | flls < 1/[Tm ]

b)  J(Lf) is continuous in f in the norm | -
c) Letfy, ..., fn be test functions in ¥ o, with strictly time-ordered supports, i.e.

L) <E(f) <t(fa) < <t(fw) <t(fw)-
Then

<~z‘)m\ﬁ- 7(3n)

= [TT dt(@. plfu(-, 1)) expi—(ty = ) HI (Aol 1)) - @l )

A_l=.. =Am=0

X €XP[—(tm — tm1) H] @(fon(*1 1)) 2). (3.36)

(Compare (3.36) with (3.1) and (3.2).)
d) Let|-|o be some norm which is continuous on & (R?). Suppose that | J({f)| < K, < ©
if [Im ||| fllo < a for some positive a. Then the absolute value of the so-called coincident
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m-point Schwz'nger Junction [4)

Sulfss -+ s fm fm £2) - - aUfw)

= (i)™ (3.37)

a“raT 7(5)

Ay=-+-=4dm=0

1s bounded by

m
"em! iEIl ”fi”o-

In particular, this holds for || -|o =] *||s-
e) The distributions S,,(%,ty,..., % bm) are tempered and positive in the sense of
Osterwalder and Schrader [3].

Proof: (a) is an immediate consequence of Corollary 3.7, inequalities (3.14)
and (3.25). The bound follows from (3.33). (b) follows from Lemma 3.2.

Proof of (c): Because of {a) it is clear that
am
o (2 )

exists and is equal to

(=)™

;'l= . aa =Am=0

[ av@ I atrd =TT . (3.38)

By construction of the path space measure »[27, 30, 32], it is clear that (3.38) is identical
with the right-hand side of (3.36). See also Refs. [4, 14, 22-24].

(d) follows directly from Lemma 3.2 (3.18), and yields obviously the temperedness
of the distributions &,,(x1,;,-..,%mtm) (by the nuclear theorem). The Osterwalder—
Schrader positivity follow directly from the existence and positivity of the Hamiltonian
and the positive definiteness of the metric on 4, whence (e).

Remark: Obviously the right-hand side of (3.36) is the fime-smeared m-point
Schwinger function as defined in Lemma 3.3. Theorem 3.8 justifies that we call J gener-
ating functional for the Schwinger functions and the moments of the measure v the
Schwinger functions.

3.4. Applications of the results of Sub-sections 3.2 and 3.3 to the P (), quantum field models

Let H, be the P(¢), quantum field Hamiltonian with space cutoff / and ground-
state £2, such as defined in 2.2 (2.10), (2.11) with mass parameter s = 0.

We have mentioned in Sub-section 3.2 that conditions (I) of Theorem 3.1 hold for
Hw=%, H=H, 2=, and 0 <! < . We now verify Hypotheses 3.3, i1) (a) and
(b) of Sub-section 3.3. All estimates that we use in this sub-section are uniform in [
and henceforth will eventually hold in the limit / =
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Let

11llo = o/ [ 45 + 2] > £l
then
+ Ap(f) < Hi + R K ||f|||Z + Ks.

uniformly in I (with constants K, and K, independent of A, £, and /) which follows from
Estimate IV, Sub-section 2.2. Hence

f ) -
+o|——|<H,+K,+K
(IHfIHo e

and therefore

+ o(f) < ||IfI|[.(H, + 1), - (3.40)

for some norm ||| -||1; with |, < [[[7]llo < [[1/1]]: < OW)|11fl|lo and wniformly in 1
Since the interaction V,(P) (defined in (2.7)) is a function of the field we have

Lemma 3.9:
7(f) =1i[Ho, @(f)] = i[H\, ¢(f)]

and

0< 3ii¢lee¢w(f)= HI F 7T(f) + ”f"%'

hence
+ #(f) <|fl(H, + D) < ||| f|||:(H, + 1);
see Ref. [17].
From Lemma 1.1 of Ref. [11] we get
e(f)* < [[IA[1*(H, + 1)?, (3.41)

uniformly in I, where

1712 < [HAT < HAN < o) [l
Thus

le() Qills < (A1 H+ 1) &)l g = [1IA1]]- (3.42)

We have now proven

Theorem 3.10: For # =%, H=H, Q=0, and all I, 0 <1 < w the assump-
tions 3.3, 1) and i), (3.12) and (3.13) hold. Thus all the results of Sub-section 3.3 apply
to the P(g), quantum field theory models with the following identifications:

Sulxy, by, o) = Cplxy, by, .. ) = (2, @(xy) exp(—|t, — 4, |H)) @(%3) - . . @(Xm) Q)
(3.43)
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U({f.t,s) —

U,(Lf.t,9) —S_Llfl,.lj exp{-—%[[—] +¢§cp(f( ;t+(l—%)s))” (3.44)
J&) = Ju(&f) = lim (€2, U\(Lf.t,5) £2)) (3.45)
and v — v, = probability measure on &' with Fourier transform J,. (3.46)

Defimition: Let v be a probability measure on &’. A v-multzplzcatwe Sfunctional
J [9, 33] is the Fourier transform of a probability measure » on &’ which is absolutely
conttnuous with respect to v. By the Radon-Nikodyin theorem there is a non-negative
Sfunction F in L'(%’,dv) such that

dv(q) = F(q) dv(g).

(The function v F(q) is a vector in L*(¥’,dv) = #,.)

Let v, be the Gaussian measure on %’ with covariance operator (—4 + m2)™!
defined in Sub-section 3.2 (3.10). We want to discuss a class of vy-multiplicative func-
tionals. In particular we want to show that

JlEh =lim J g (&f). Ifls< e (3.47)

for a sequence {J AT}T<on of vo-multiplicative functionals. We prove (3.47) by means of
the Feynman—Kac-Nelson formula.

Let {H(f) = Hy + W(#)} be a family of s.a. operators on the Fock space &# which
are bounded below. Here H, is the free Hamiltonian and W () is a s.a. function of the
(time 0-) fields, (i.e. W(¢) is affiliated with .#(0) = C(X) in the notation of Sub-section
3.2). Let fbein &,(R? and { € C. We want to solve the differential equation

d
— UL 6.5) == (HO) +ilg(f(-, 1) U 1. 5),

with U({f,s,s) = 1.

Since the semigroup {¢*Ho|¢ > 0} determines a Markoff process on X and W(f) +
1lp(f(+,¢)) is affiliated with C(X), this equation can be solved by use of the Feynman-
Kac formula, i.e. by means of a path space integration (under suitable assumptions on
W (#)). We now specify the class of interactions W (f) of interest: Let

Ol 18) = 3 an(x.0) &7 anx.1) (3.48)
continuous and

a) sup[[|am(*,f)|%dx] < o, fora=1,2andallm=1,..., 2x,
teR

b) Q(x,t€) 2 K >— o, forallx,tand ¢ where K is independent of x, ¢ and £.
We set

sz (%, ) : ()™ . (3.49)

m=0
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Properties of the s.a. operator W, (¢) have been discussed in Refs. [15, 16, 26] and ref-
erences given there. It is shown in Refs. [4, 17, 18] etc. that Hy(f) = Hy + We(f) is
essentially s.a. on D(Hy) N D(W 4(#)) and bounded from below for all £ € R. Let

1011 =0, / [ dx(z + 22 s, ),

If1s == sup ||/, A1+ [ a1/, 01| < o (3.50)

Then |p(f(+,8)|* < eHy(t)* + c(e,f) for all £ and for arbitrary e > 0 and some c(e, f)
which is finite if, for example, ||f||; < «. (The inequality follows from results in Refs.
[17] and [18] and (2.22).)
Hence the following definition makes sense:
N-1

Ua(Lfits) = T1 eXP[—t—;—s(Ho(fﬁ) +ilo(f(-. ™)) |-

n=0

where

Obviously |Ug(Lf.t,s)| < K(Q,f.t,s), uniformly in N, for some K(Q,f,t,5) < © (—® <
s<t< o).

Theorem 3.11: Under conditions (3.48a, b), and for |f|s <
Uqllfit,5) = s~ lim UL/, 1,9

exists, 1s a bounded operator and

Uollf,t,s)0=E(0) T_,exp [— go fdt'fdx Ap(%,8): ™ (2, 1)

+ig [ar [ ax fl,t) (. t’)]T,e (3.51)

for arbitrary 8 in F.

Remarks: Formula (3.51) is called the generalized Feynman-Kac-Nelson formula.
The pathspaceintegrationis hiddenin the (probabilistic) definition of the free Euclidean
Markoff field @ (see Refs. [14, 27 and 30] for an elaboration of this point). The proof of
Theorem 3.11 is implicit in Refs. [4, 14, 22, 23], and therefore not given here. Note that
Theorem 3.11 is a generalization of Lemma 3.6 and Corollary 3.7 for H = Hy, 2 = £2,
(and it can be proven in quite a similar way). The operator exp[— > 2", [t dt’ [ dx...]
({ =0), on the right-hand side of (3.51) is the Euclidean analogue of the Bogoliubov
S-matrix [34] and is Euclidean covariant (‘Nelson’s symmetry’).

Application of Theorem 3.11: Let A be a Borel set in R? and let y , be the character-
istic function of A. We define

AT =[-1/2,1/2] x [-T/2, T|2). (3.52)
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Let P be the polynomial determining the interaction Hamiltonians V;(P) (Sub-section
2.1 (2.7)). We set

P ,(x,t|€) =x 4(x,t) P(§). (3.53)
Suppose now that / is a bounded region. We set
Hp (t) = Ho+ f dx x 4(%,8): P(@): (%). (3.54)

We now define the ‘partition function’

Z 4 = (6, Up, (0,420, —0) )
== (Qo, 3_VA .Qo) > 0 . (3.55)

where

V, = f dx dt: P(¢):(x, §)
A
and the functional

TAll) = 5 Tim (R0, Up, (1,9 20)

A t->+o

1
=5 (2,62 e Va ), (3.56)
A4
Obviously [ , is the Fourier transform of the measure
1
v 4(q) = —e V4 dvo(q) (3.57)
Z4

and is a vy-mulliplicative functional. | _
The following estimates are immediate consequences of the results of Sections
2 and 3

Z 4y > e TED)|(Q, Q) > 0

(see Theorem 2.1). We set

el =/ [ dx@+2)] fis, )2 (3.59)
From Estimate IV, Sub-section 2.2, we infer
+ Alflse (&) < H, + X|f|2 K, + Ks,
17 ¢l
hence by linearity of ¢ and since |[|f(,]||/| ] < 1
ot (R 2 ol 350
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Using Theorem 3.11 and equation (3.56) we now get
| (820, exp[il(f)] exp[—V 471 820)| < exp[~TE,(P) + ([Im L|*|f[ K4 + K5)].

Therefore

T arllh)] < exp(im £[2[f[2 K, + K. (3.60)

1
|(£20, £2)) |2
By Lemma 3.2 J ,r is continuous in the norm | ||, uniformly in T, for each fixed ! < .
It is easy to show by means of the FKN formula (3.51) that for test functions 4,,
., b with time-ordered supports and ||4;|; < « foralli=1, ..., m

s Jar (3 um)

where S#f (+++) is the space-time cutoff m-point Schwinger function defined in (3.1).
Since the eigenvalue 0 of the Hamiltonian H, is simple and isolated (see Refs.
[16, 17]) and since (£2,,£2,) # 0 we have

= GAl(hy, ... h,) (3.61)

TR B,

exp[—(T/2) H,] 2y . exp[—(T/2) H,] 2,

2, =1lim a3
b e lexp[—(T/2) H,] | T‘j‘: Zl/Z

(3.62)

If fis a test function with ||f|, < o, suppf € R, x [-#/2,¢/2]. Then

7. (lf) = (exp[— (T —¢/2) H|] Lo, Ur,z(Lf. £2,—4/2) exp[—(T — ¢/2) H,] £,)
" (exp[— (T — #/2) H;] 2o, exp (~tH)) exp[~(T — #2) H,) 20)

Thus by (3.60) and (3.62)

i}_r)n JAT(g) =('Qh UPAI"O(U’_;-’ "%) 'Ql) = Ju(Lf).

By Estimate IV or (3.59)
|J1(8)| < exp([Im {|*|f||2 K4 + K5) (3.63)

uniformly in .
Because of the bounds (3.60) and (3.63) and Lemma 3.2

Ju&f) =lim J 4z (Lf) for all f with ||f]|, < co. (3.64)

Too

For later use we want to improve estimate (3.60).

Assumption:

inf(spec H,\{0}) > m > 0, (3.65)
uniformly in /, i.e. there exists a uniform mass gap [24]. Thus

(exp[—(T — 7) H,] Qo, exp[—H(T — 7) H,) o) < |(£2;, £20)|* + exp[~(T — 7) m]

< er™(|($2, £20)[2 + 7).
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Itis shownin Ref. [12] that |(£2,,£2,)| = e~?V'!. Therefore for T > «/, for some positive
o depending on m

(exp[—3(T — 7) H|) o, exp[—4(T — 7) H,] ) < 2¢7™|(82;, o) |*-
Hence
(exp[—(T — 7) H,] o, exp[~4(T — 1) H, Qo) |
2 |(£21, L20)|* = 4 exp(—7m) (exp[—(T — 1) H,] 825, exp[4(T — 7) H] o) (3.66)

provided T > ol.
Let ¥~ be the completion of &#(R?) in the norm | - |, (see (3.23)), and let

V. ={f|fe ¥, suppf c A} (3.67)
Then
exp([Im {|?| f|2 K4 + Ks)||lexp[—H(T —#) H,] £
Tl < @, 201

<2 exp(rm) exp([im {2 |f|2 K, + Ks). (3.68)
We summarize our results in

Theorem 3.12: For each { in C the family { ] ,({f)}2o is bounded in absolute value
by exp (|Im E|2||f112K, + Ks) and (by Lemma 3.2) continuous in the norm ||- ||, uniformly
ml< oo,

For [ in ¥, the family {J 4g({f)|T > «-1,l < 0} is bounded in absolute value by
2exp(rm)exp |11m§| IfI2K, + Ks) and (by Lemma 3.2) continuous in the norm || -||s on
V., uniformly in T > al and | < .

3.5. Schwinger functions with half- Dirichlet boundary conditions

In this sub-section we review the results of Sub-sections 3.3 and 3.4 for arbitrary
mass parameter s > 0.

Let V, ((P) be the interaction and H, ((P) the Hamiltonian with mass parameter
s 2 0 corresponding to the polynomial P (see Sub-section 2.1). It is obvious that for
0 < s < o and for arbitrary, fixed ! < «, all the results of Sub-sections 3.3 and 3.4
hold (by the same proofs that work for s = 0). In particular the coincident Schwinger
functions &L%(x,,¢,,...,%,,t,) exist and have the properties stated in Theorems 3.8
and 3.9 (with estimates that possibly depend on / and s).

We now consider a particular class of interactions. We choose the polynomial P
to have the form

= % oy £3" + pé (3.69)

and we take u > 0. (Of course a, > 0.)

Remark.: The restriction to positive u is no loss of generality, since there is a sym-
metry between the cases u >0 and x < 0; see Ref. [4].
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Theorem 3.13 (essentially due to Refs. [4, 21]): Let P be as in (3.69). Then

0 BL (X1, bry o T ) < GEO (g, by, - o) Ky ) (3.70)

foralll, s 2 0.
The sequence {SL5(X1,E1, .« s X bn) J2 o 1S decreasing as s increases and

lim S48 (X, 81, - Xpy b)) = SLP(X1, 81, ooy X b)) 2= O (3.71)

5§50

exists and is called the m-point Schwinger function with half- Dirichiet boundary conditions.

Proof: The theorem is a consequence of the GRS (Griffiths) inequalities for the
P(¢p), models, where P is as in (3.69). The proof of (3.70) and (3.71) is given in Refs.
[4, 29]. Because of (3.70) and Theorems 3.9 and 3.12 the distributions SL2(x,,%;, .. -,
Xm,tm) are tempered with an order that does #ot depend on /.

Q.ED.
Corollary 3.14: (a)
usttn= "> Doy p 372
m=0

exists 1s entive analytic in {, for each fe ¥, and

|J1.0(&f)| < Ji,p GIm Lf) < Jy p(—¢|Im IIf) < Ji(=¢Im ¢lIf1) (3.73)

where |f| denotes the absolute value of f.

(b) Estimates I-1V of Sub-section 2.2 hold (with constants that are independent of
s and l).

(c) All the results of Sub-sections 3.3 and 3.4 hold (with estimates that are uniform in l).

Proof.: Using (3.70) and (3.71) we get

Zc_me,,,(f A< E'C'mewm 1)

o] g m
<> et ...
By Theorems 3.9 and 3.11
Z I @71, 10 = L=t 3.74)

which is finite for all |{| < « and all fe ¥". This proves (3.72). The first inequality in
(3.73) is obvious (see (3.15)), the second follows from (3.71) (positivity of the distribu-
tions &L:P(--+)!), and the third follows from (3.72) and (3.70). This proves (3.73).

Proof of (b): It is easy tc show that for each fixed / < « and all s € [0, 0] H, ; +
Ap, o(f) has a ground state 2, (Af) with

(Q:.5(f), 2,.,) #0. | (3.75)



Vol. 47, 1974 Schwinger Functions and their Generating Functionals, I 293
Let

OE, ((Af) :=inf spec(H, s + Ap, 4(f)).

The eigenvalue
SO, 5(Af) (3.76)
is simple and isolated. (For a proof of (3.75) and (3.76) see Refs. [4, 15, 16].) Hence

. expl-T/2(Hy, + Ay s(f) — 8E (AN L2,
Tow lexp(—T/2(-- )] 2, |

= £2, J(Af). (3.77)
Now let 21 = f ® X1-1/2.1/23- Then by (3.75)—(3.77)

1
8K, (Af) = — lim ‘f log (2, ,, exp[—T(H, s+ A, s(f))] 2,

T

1 .
= lim —10g ], (i¥hr)

1
2 —lim - log J(~i[A[| ) = SE (| f])- (3.78)

But (3.78) yields Fstimates II-IV for arbitrary s < «, by some standard arguments
[11]. The same arguments apply to g-perturbations of the type :¢?: (%), since here the
Wick-ordering just means subtraction of a (infinite) constant from ¢?(%). (The general
form of Estimate I follows from methods of Glimm and Jaffe [11]). Finally (c) follows
from (a) and (b) and Theorem 3.1(I) for H = H, ;, 2 = £, ,.

Q.E.D.

Remarks on the P(p), Schwinger functions with half-Divichlet boundary conditions
(4] on a compact, regular set A = R?

We summarize briefly some results on the P(¢), Schwinger functions with half-
Dirichlet boundary conditions on a compact, regular set /1 in R? which are studied in
more detail in Refs. [4, 14, 29]. We call a set 4 = R? regular if it has continuous,
piecewise smooth boundaries and /1 is the same as the closure 4, of its interior A;,,..

Let P be a polynomial satisfying condition (3.69). Let 4 4 be the Laplacian on the
space L2(A) with Dirichlet boundary conditions at 8/ and let S;;_ ,(£,79) be the kernel
of the s.a. operator (—4 , + m2)~'. We define the generating functional for the free
Dirichlet ‘Euclidean’ field:

Jaolf) = exP[—2(fx 4, Sy 0¥ (X ) 2> ], (3.79)

where fis in & and y 4 is the characteristic function of the set /.
It follows from Section 3.2 that the functional J § , is the Fourier transform of a
Gaussian measure v, on & with mean 0 and covariance S, p. We set

V,=V (P) = f A2 £ P(D): (£), (3.80)
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where the Wick ordering : : is the one determined by the free, Gaussian measure v,
(Sections 2.1, 3.2, Ref. [4]). It is shown in Refs. [4, 14] that the function ¢7¥4 on %’
is positive, v f-measurable and v4-integrable. Hence we can define the measure

1
ape AP dvg, (3.81)
D

avpP =
where Z§* = [,.dve "4® . It is shown in Refs. [4, 14] that the moments
m
Gﬁ'D(xl,tl,...,xm,tm) e f dVg'P(q)‘I—{ g(xl,tl)
¥’ -

of the measure v§'? exist and are tempered distributions. As a consequence of Theorem
3.13" and Corollary 3.14' stated below this is true even for A = A?.
It is obvious that the moments (or Schwinger functions)

{6#?’_[) (xlr tl’ s X tm) :_-.0
are ‘time’-translation invariant. (See Ref. [4].) We define
!4 = sup{|x| 3¢ such that (x,¢) e A}.

Theorem 3.13": (Proven in Refs.[4, 14, 21).) Let A’ < A < R? be regular sets. Then

Og 6#1”D(xlrtlr'-'1xmytm) < 6$'D(x1,tl, c ooy Xops tm)
s 6l‘nA-D(xlxtll "':xms tm) \<. e:nA‘o (x],tl,-..,xm,tm).

From this theorem, our results in Section 3.4 and results proven in Ref. [29] we now get

Corollary 3.14': Let A be some vegular set in R? with | , < . Then (a)

P " AP ia(f) — 3 Q'_Q_'i A,D
J a.p(Lf) -—y_fdvo (Q)ec“)—; yoy SGY (s v as))

exists, is entive analytic in {, for each fin ¥~ and
[T E.o(&)] < JZo(illm {[f) < Jiap(—iIm {[f]) < Ji,(=¢[Im {] f])

All vesults of Sub-section 3.4 remain true (with bounds that are uniform in A).
(b) The Schwinger function {6,’,%010"’};'::0 are positive in the sense of Osterwalder and
Schrader [3, 5, 29).

Remark: Part (a) is obvious. Part (b) is proven in Ref. [29].

From Theorem 3.13’, Corollary 3.14’, and the estimates of Sub-sections 3.4 and
2.2 we derive the following useful bounds:

Proposition 3.15: (a) Let h, hy, h, be real functions on R! such that the norms |||hl||,
|51 ||| and |||k,||| are finite, where ||| -||| ¢s gtven by (3.58). Let xr be the characteristic
Sfunction of the interval [—T,T]. Then

0 < J4 p(+th ® xr) < exp[2T (K,|||%]||? + Ks5)]
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and
, 6il’D(h'l ® 811’ h'2' ® 8’2)' g 6;A’o(lkll ® 8!‘1’|h'2| ® 8!2) S O(]') I I |h1|” : “thI | "

uniformly in A (and t,,t,).
(b) Let B be a compact, regular set in R2. We set K (B) = max|xs(", 8|, and assume

t
that |Im{|-K-K(B) < 1, where K is the constant occurring in Estimate 11, Sub-section
2.2. Then

|/ %.0(Lxs)] stA(—”Im {lxs) < exp(K[Im{]||xs].)-

Proof: The estimates of Part (a) follow directly from Theorem 3.13’, Corollary
3.14', Lemma 3.9 and (3.42). The estimate of Part (b) follows from Theorem 3.13’,
Corollary 3.14", Theorem 3.10, and from Estimate II of Sub-section 2.2.

Q.E.D.

Remarks: The results summarized in Theorem 3.13’, Corollary 3.14’, and Proposi-
tion 3.15 tell us that all the results proven in Section 4 for the Schwinger functions
{ShP}m_o and the generating functional J, , remain true under the substitution:

1,D AL, D P
Sl €t P, Jipr>Jh=p.

Those results are basic for our verification of the Osterwalder-Schrader axioms (Axioms
(E0")—(E3) of Ref. [5]) presented in Sub-section 4.3. They have applications in Ref. [29].

4. The Infinite Volume (Thermodynamic) Limit

4.1. The infinite volume limit for the generating functionals

In this sub-section we show that for all fin ¥ and all { in C
JU&f) =lim J (&) (4.1)

exists is continuous in the norm | -||; and Euclidean invariant, under the condition that

(C1) the polynomial

PO =2 S a,tr @y

determining the interaction V,(P,) and the Hamiltonian H,(P,) is positive and the
quotient A/m} is sufficiently small, such that the Glimm- Jaffe-Spencer cluster expansion
[24] converges.

We also show that for fin ¥, where r < «, and all {in C

J(&f) = }fﬂ Jar(lf) = }imfl(éf)

T-ox
TZal

exists.
We then show that for all fin ¥ and [ e C

Tollf) =lim Jio(lf) 43)
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exists, is continuous in the norm | -||y and Euclidean invariant under the following con-
dition:

(C2) The polynomial P is of the form

P)=2 an&"+pf (1z0) (4.4)

0

¥ M=

(such that Nelson’s convergence theorem [21] for the Schwinger functions applies).
The proof of (4.1) and (4.3) is based on

Theorem 4.1: Let m be an arbitrary integer and f,, .. ., f,, be functions in C§(R?). Then:
(I) (Glimm— ] affe-Spencer [24]) Under the condition (CI)

lim Saf (fi,- oo f) = Him S, (f, -0 fo)

T
[ ]
TZal

= 6m(fl!""fm)

exists and 1s Euclidean invariant.
(II) (GRS [4, 14]) Under the condition (C2)

lim Gl,,’,D (fl’ . "fm) = 6g(f]- .. 'rfm)

-0

exists and is Euclidean invariant.
e‘:lrr'lﬂ(%l’ 'tl’ L xmr tm)T eg (xl’ tlt Gl xmr tm) (45)
wn the sense of convergence in &F'(R*™).

Proof: (I) is proven in the ingenious paper of Glimm, Jaffe and Spencer [24];
(IT) 1s proven for the non-coincident Schwinger functions in Ref. [14]. But because of
Theorem 3.13 (3.70) and Theorems 3.12, 3.8, (II) holds for the coincident functions as
well. The monotonicity (4.5) is the consequence of a beautiful application of the GRS
inequalities, Refs. [4, 21]. Another version of (II) is proven in Ref. [29].

Theorem 4.2 ( first main vesult): Let (C1), ((C2)) be true.
(I) For all fin ¥ and all { in C
J o (Lf) = }i_)r{};]t.(m(gf)

exists, is an entire analytic function in { of order <2, for each f in ¥, is continuous in
the norm |||, for each { in C and is Euclidean invariant.

1T o ()] < O(1) exp([Im £|2| {12 Ko).- (4.6)

The functional J () is the Fourier transform of a unique measure vp, on &' (which s
Euclidean invariant), and [, () is the generating functional for the Glimm-—Jaffe-
Spencer—(Nelson)-Schwinger functions obtained in Theorem 4.1.
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({I) The distributions {SP (x1,t1, ..., Xy bm)}S_o Are continuous in each argument
in the norm | -||; and they are positive in the sense of Osterwalder and Schrader [3, 5].

(@52 (fuo- - ol S O™Vl Al fuls (4.7
(III) Forallfin ¥ ,, 7 < oo, and all L in C

Tox
T=Zal

exists.

Proof: Because of Theorem 3.12 and Corollary 3.14

T () = Z = GKD(f,...)), (4.8)

where the series on the right-hand side of (4.8) converges absolutely for all fin ¥~,
{in C and uniformly in I, i.e. for fixed { and fand all € > 0 there is a #,(€) independent
of / such that

o0 m

> g—cs:,;“”(f,-..,f) <e
m!

m=n

for all # = n4(€) and all / < .
Applying now Theorem 4.1 we conclude that
0 Cm
Joo@) > D &P (f ) = Jomn (L) (4.9)
m=0 L

as I — w, for fixed fin C§(R?). But, since for each { in C the families {J; (p,({f)}i <>
{Sn® (LS, L i< o ate equicontinuous in f in the norm |- ||, (4.9) holds for all fin ¥~
Euclidean invariance of ], .,,({f) follows directly from (4.9) and the Euclidean invari-
ance of the Schwinger functions in the limit / = . The bound (4.6) and the continuity
of Jpy(Ef) in || -||s follow from Theorem 3.12 and Corollary 3.14. Since J,  p)({f) obeys
the properties 3.2, i)-iv) of Sub-section 3.2, for all / < «, we now conclude that Jp,(f)
obeys the same properties and hence it is the Fourier transform of a unique measure on
&’. This completes the proof of (I).

Proof of (1I): From Theorems 3.8 and 4.1 we conclude that
1SR 1o+ o S| € O1)"m! H I ills-

Since the order of the entire analytic function J,p,({f) of { at « is €2, it is easy to con-
clude that

m

0
_ 2 ( Cf.)
aC]_ C @ Z1 i L=+ =Cp=0
The rest is obvious.

Proof of (I1I): This follows directly from Theorem 3.12 and Theorem 4.1(I).
0.E.D.

Ie(m { Fiorrs s , —

< O™ v/l r[ £l
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Corollary 4.3: Under condition (C1) or (C2) the functional Jp,(f) determines a Eucli-
dean field @ (Definition 3.2, Sub-section 3.2) on a Hilbert space #, = L&', dvpy).
The vacuum 8, = I (= function identically 1 on ') is an analytic vector for the fields
D(f), fe V. The coincident Schwinger functions exist.

Proof: This is a direct consequence of Theorems 4.1 and 4.2, Estimate IV (Sub-
sections 2.2 and 3.5). It is easy to verify that because of Theorem 4.1(I), (II), Estimate
IV holds in the infinite volume limit, too. For this, and a Euclidean transcription of
Estimate IV, see Ref. [29].

0.E.D.

We now want to prove the existence of (¢ime 0-) guantum fields in the infinite volume
limit as operators on 3y, p,.

4.2. (Time 0-) quantum fields in the infinite volume limit

We prove the following general result:

Theorem 4.4: Suppose that

a) ] is a functional on & obeying properties 3.2, i)~iv) and that the Schwinger functions
{Snu12_o associated with | arve positive in the sense of Osterwalder and Schrader
(3, 8] and are tempered distributions.
Suppose moreover that

by the two-point function S,(f ® 6, f ® &) is bounded in some mneighborhood of
t=0 for all fin ¥ (R).

Then the (trme 0-) fields @(f) = P(f ® ) exist and ave self adjoint on H ,, for all
fin & (R).
Proof:

Step 1°. It follows from hypothesis (a) that the function &,(f ® J,,f ® &) exists
and is C* in ¢ on {¢||¢| > 0} for fin &(R). Thus hypothesis (b) is meaningful. It is easy to
see that

GZ(f@ 8t:f® 80) = ez(f@ 8]:|:f® 80)

under hypothesis (a).

It is shown in Refs. [3, 5, 29] that S,(f ® 8,,f ® 8,) is decreasing in ¢ and convex
on {t|¢ > 0}. It follows now from hypothesis (b) that &,(f ® &,,f ® 8,) is bounded and
continuous in ¢, even at t = 0. (For details see Ref. [29].)

Step 2°. Let y,(f) = VuJm e ™, n=1, 2.... Obviously

{Xntne1 <& (R) and  yx, — 0o, (4.10)

asn — oo, weakly on C(R). Let fbe in &,(R,). Then {exp[is@(f ® y,) ]}, 1S a sequence
of unitary groups on #,. We show that

s —lim exp [1sP(f ® xn)] =: exp[isP(f ® &o)] (4.11)

n—-o

exists for all s in R and thus {exp[is@(f ® 8)]} is a unitary group on #,.
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By construction, the vector [ is cyclic and separating for the algebra generated by
{e'®D| fe &} on #,. Thus (4.11) is proven if we can show that

[ (exp[is@(f @ xn)] — eXPLisP(f ® xm)]) I| — O, (4.12)

asm, n — oo, for all s in R.
Step 3°. Proof of (4.12): By Duhamel’s formula (3.14)

| (exp[isP(f @ Xa) — exp[is@(/ ® Xm)]) I|* < 52 J dt dt (xa(t) — Xm(®) (Xalt) — Xm(?"))

X ez(f ® SI—I’Jf ® 80) (413)

By step 1° &,(f ® 8,,..f ® 8y) is jointly continuous in ¢ € R ¢ € R. Hence by (4.10)
the right-hand side of (4.13) tends to 0, as m, n — .

Q.E.D.

Corollary 4.5: Under conditions (C1), (C2), respectively the (time 0-) quantum fields
defined by

P(f) =¢(f ® &), fin &+ (R), (4.14)
exist (in the infinite volume limit) and are s.a. on H, . The functional Jp)(f ® &) s
continuous in fin the norm ||| ||| (defined in (3.58)), for real valued f. Therefore

J oy (f ® &) (4.15)

ts the Fourier transform of a measure p p, on &7 (R).

Proof: By Theorem 3.13
SP(f ® 8./ ® &) < S3P(|f| ® 8, |f] ® o)
< GfI ® 8. |f] ® &)
= (2, (| f]) "1™ (| f]) 2
< [[IFIII* by (3.42) (4.16)

From Theorem 4.1, (4.16), Theorem 3.10 and Lemma 3.3, ii) it follows that under the
conditions (Cl1)

S ® 8:.f ® 8o) > G,(f ® 8.,/ ® So) < |[IfII,

as ! — oo, and S,(f ® §,,f ® &) is bounded, continuous, and convex on {f > 0}. From
Theorem 4.1, (4.16), Corollary 3.14 and Lemma 3.3(ii) it follows that under the condi-
tions (C2)

2°(f® 8,.f ® 8o) > SP(f ® 8./ ® o) (< ||| fII7)

as/—o, and S2(f ® 6,,f ® 8,) is bounded and continuous on {{>0}. Hence Theorem
4.4 applies and proves the first part of the corollary.

[T (F+S) @ xu) =Ty (f ® xa)I> < S (' ® xuf ® xa) < || (4.17)
by (4.16), for all » € «
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Hence [Jp,(f ® &y) is normalized, of positive type and continuous on % ,(R).
We apply the theorem of Minlos to conclude that it is the Fourier transform of a unique
measure u,p, on & (R).

Q.E.D.

Remark: ppp, can be obtained from v, by restriction. We now show that
Jwy (A(f ® &) is the boundary Value of a function which is analytic in a strip around the
real axis, for each f with [||f|[|1,« =|f] + [ f]1 < .

Because of Euclidean invariance of the functional [, we can study Jpy(A(6p @ f)).
We prove the following more general result:

Lemma 4.6: Let {y, ..., {, be arbitrary complex numbers in the strip X, = {{|[Im{| <
1}. Suppose that K- (37 ||| /illl1.) < 1, where K is the constant defined in Estimate 11
(2.17), Sub-section 2.2.

Then J 5y (> 1-1 Ci\fi ®38,,)) is analyticin {4, . . ., {, on the domain 25" and continuous
wn the variables t,, ..., t,. Moreover

T 3 1t @ 8)| < exe & ( 3 pm a1l )| 418)
on > 7"

Proof: Let [/2> max |¢|+ 1 and let
i=1, ...,n

1, <
Elx) w= {O, I|i||;%lf 0<éx) <, EisC®; £4{(x):= E(x — 8).

Let x2,(x) := x(¥ —t) where ¥, is defined in (4.10). Obviously
Ixmét]y <1, supp(xaé®) < [1[2,12], xi€"— 8,

onC(R),asm — o, foralle=1, ..., n.
' Suppose that K- (37, ||| fill|1..) < 1. Then by Estimate II, Sub-section 2.2
of S i) <+ k-( 3 1701) (4.19)
i=1 i=

Hence by Corollary 3.7 (and Theorem 3.10, Corollary 3.14)

T 3 L @) <Juoi 3 1m Lo ® /)

<exp|&( 3 m gl )| (4.20
i=1
Now by Theorem 4.2 and (4.20)
Too( 3 bzt o) = lim T £ Lttt @ 10).
= =0 =1

Therefore [ 5, (>, {i(xt€" ® f,)) isanalyticin {,, ..., {,, on the domain 2" and on this
domain

Jon( 3 vl £0@ )| < exp (3 1m L1110 )|

i=1
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Now by (4.11), (4.12) and Corollary 4.5

T 3 1o, ® i) =lim T3 Lict€"® 1) a.21)

uniformly in ¢, ..., t, on compact sets (because of uniform continuity of S?(f ® 8,,
J ® &) in ¢ on compact sets). Therefore [ p, (37 {i(8,, ® f)) is analytic on 25" and on
this domain

T 3 68, © 1)) <exp K ( 3 m &) | (4.22
We now show continuity in ¢,, ..., ¢,.

By Euclidean invariance of the functionals J, [,

Joo( 3 660 © )= 3 L7 ® 50).

In order to establish contmulty of the functions [, O, &i(fi ® 8,)) inty, ..., ¢, for
arbitrary, fixed {,, ..., {, in their domain of holomorphy X" contalmng R" it suffices
to show that for arbltrary, real {,, ..., [,

Joo( 5 L ® 8,)) > oo 3 101 0 8,)

ast; -t forj=1,...,n
We use Duhamel'’s formula and the unitarity of the operators exp[:{, ®(f; ® 8,)],
for real {;, and conclude that

Jool 3, 1th ©30)) ~Jun 5, 01 @18,

=1

gél|g|c|ewv ® (8,— 8;)./; ® (8,,— 8,)))-

Estimate (4.22) tells us that the vacuum £, =7 is in the domain of the (time 0-)
fields @(p)(fi)) = P(f; ® 8o), =1, ..., n. As in step 1° of the proof of Theorem 4.4 we
may show now that the two-point functions SP(fy ® 8,1, f; ® §;y) are jointly continu-
ousinf andfj,4,7=1, ..., n. Thus

SP (i ® (3, = 8)). f, ® (8, —8,)

tends to 0 as ¢,, — ¢, forall m =1, ..., n. This completes the proof of the lemma.
Q.E.D.

Remark: Estimates I and IV of Sub-section 2.2 imply that for fand g in #(R) the
family

{SLP(f®38,,8 ® 8) =(2,, p) Pr (f) EXP[-/HH:,(D)J P> (&) 2, )} <
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of two-point functions is equicontinuous in ¢ € R. Therefore

Jw» (i_Zl hHi® 3:;) = }i_fg]z.(n)(!zl fi® 3:,)
for f, ..., [, in &, (R).
- The proof is straightforward and is left to the reader.
Theorem 4.7 (second main result):

(I) The vacuum 8, = I in the Hilbert space # Vo) 1s an analytic vector for the sharp
time fields O(f @ 0,) for arbitrary t and all [ with |||f|||,.« < ©. In particular Q p, s

analytic for ) (f) if ||| fl]]1,0 < .
(II) Let fy, ..., frm be test functions with ||| fi|||1.c < ©.¢ =1, ..., m. Then the m-point

Schwinger function
SP(fy ® 8,0 fou ® 8,
= (Q(D)'(P(D)(fl) exp[— |4, — t2|Hpy] .. ~eXP[_[tm—1 - tm'H(D)] P (fm) L)

exists, 1s analytic tin sy =1t — b5, oo, Syey =ty — by OB {{Sy, <+, Spy-1|Re 5, # 0,1 =1,
..., m} and continuous in t,, ..., t, on R™. Furthermore

CO(f, ® 8,r- S ® 8,,)| < O(L)" m! H AT

Proof: Clearly

m

e(mp) Srlr"') m®8tm S w0 "g
U ® 8y of ® ) = 57—

Applying Lemma 3.2 and using the analyticity of [ (> {i(fi ® 8,)) in {y--- L,
the theorem follows easily.

The analyticity properties of the Schwinger function S{(f; ® 8,,,..../n ® &, )
in sy, ..., Sp,_y 1s a standard result, given Estimate II or IV.

L=+ =Cm =0

("o 3, tilh © 8,)

Q.E.D.

Remark: Assume that the hypotheses of Theorems 3.12 and 4.2(III) hold, i.e.
that the polynomial P is such that the Cluster Expansion of Ref. [24] converges. Let
fi, ---, fa be real functions on R* with

TT s
suppffg[——é,;, i=1.n and K( S II) <1
i=1

Then the estimates of Lemma 4.6 and Theorem 4.7 hold already on the level of space-
time cutoff generating functionals and Schwinger function.

Let I > [y > /o (for some finite /;) and T > «f, where the number « is such as in
Theorem 3.12. Let ¢, € (—y/2,04/2) and {;€ X, i =1, ..., n. Then

Jap( 2 66u@h)|< 0memexp| K (S mm LAl )| 4.23)
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uniformly in / and T. Also, bounds on the space-time cutoff, sharp-space Schwinger
functions similar to the ones of Theorem 4.7(II) hold and are uniformin/ > /yand T >
o-l.

Straightforward generalizations of these bounds based on Estimates I and II
of Sub-section 2.2 and results of Dimock [35] now imply that the sharp-time Schwinger
functions

efnb) (fi ® 8“, wx i 00 8:,..)

have a perturbation expansion in the coupling constant A defined in (4.2) which is
asymptotic to the exact solution at A = 0. (See Ref. [35] and Pert II of this paper, and
Ref. [29] for applications of this result.)

4.3. Verification of the Osterwalder—Schrader axioms for P(p), models under condition (C2)

In this sub-section we verify the axioms proposed by Osterwalder and Schrader
[3,5]in the form of axioms (E0’)—(E3) of Ref.[5] and hence, a fortiori, Ref. [5], the Wight-
man axioms (up to the uniqueness of the physical vacuum) for the P(¢p), models with
half-Dirichlet boundary conditions under condition (C2). Those axioms were verified
for the P(¢), models under condition (Cl1) in Ref. [5].

First we briefly outline what the Osterwalder-Schrader axioms for one neutral,
scalar Bose field in two space-time dimensions (axioms (E0')-(E3) of Ref. [5]) are.
These axioms are formulated in terms of the Schwinger functions {€,}m_o:

Axiom (E0’) is a distribution property for the Schwinger functions formulated
below.

Axiom (El) says that the Schwinger functions ought to be Euclidean invariant.

Axiom (E2) is the Osterwalder—Schrader positivity condition: For all finite sequences
Jo» --., fw of test-functions f, € #(R%) [3, 5]

Crim(0fn ® fr) 20 (4.24)

0

M=

n,

where 0f,(¥1,t1, ., X tn) = F(X1,—t1, - s X —La).-

Finally, axiom (E3) says that the Schwinger functions are symmetric in the spa.ce—
time arguments.

From our results in Sub-section 3.5 (Corollaries 3.14, 3.14") and from Theorem 4.2
and Corollary 4.3 we know that axioms (E1), (E2) and (E3) hold for the P(¢), models
with half-Dirichlet boundary conditions under condition (C2) in the infinite volume
limit. Among the axioms (E1)-(E3) the only axiom which is not quite obvious is (E2).
This axiom holds for the Schwinger functions {€};?}2_, and (SAT Py foralll < o
and hence it 1s true in the limit / = .

It follows from the existence of a positive, s.a. quantum field Hamiltonian (H,, p,
H 42, p, respectively). More details concerning the verification of axiom (E2) are given
in Ref. [29].

We can now formulate axiom (E0’). Since the Schwinger functions &{(¢,, ...,
¢,) are Euclidean- (in particular translation-} invariant, there are distributions S$2,

(@1r-+sGm-1)» @i = Ei41 — &, such that
S Gmt) = G €y €, S =8P, SP=1. . (4.25)



304 Jiirg Frohlich  H. P. A.

Axiom (EO0") in the form of Ref. [5] requires that

m—1
Sy (ks - mey) | < K(m)E TT [y (4.26)

-

for some constants K, L and a Schwartz space norm |- |, which are tndependent of m.

Theorem 4.8 (third main result): Let

|hly = sup |(1+|g]*)*"A(q)], (4.27)

geR

Jor some positive e. With this Schwartz space norm there exists a positive, finite constant K,
such that

m—1
1Sa-1(hy, - . . Bmy)| < KG(m!)? ll—[ LAPS (4.28)

=1
where {SP_}2__, are the Schwinger functions of a P(gp), model under condition (C2)
i the infinite volume limit, i.e. axiom (EQ') (4.26) holds with L = 3 and |- |y, as in (4.27).

Proof: Let {4} be a covering of R? by unit squares centered at the points (7, 5> € R?,
({x 4|4 € {4}} is a partition of I). Given two squares 4,, 4, we define

Aa + Ab = {QJq =92+ 909 € Aa: 4 € Ab}
Let x 4,, ..., 4, be the characteristic function of the set Ao+ ---+4,;. Then

IX ag+---+4,11 =(7+1)%, where 4, € {4}. (4.29)

From Proposition 3.15, Sub-section 3.5 and from Theorem 4.2, Sub-section 4.1 we know
that

Jp (g szl;od[) < eXP[K (Tg—:llm i+ 1)2)] :

provided K[> 73 |Im{,|(? + 1)] < 1, where K is the constant determined by Estimate

IT of Sub-section 2.2.
Hence, by the Cauchy integral formula

m—1
D nm ]
|G (X a0, - - o Xgmo1, )| < (K)"m! Ho i|xz:=od,”1- (4.30)
Now
h= 2 hy, (4.31)
Ae{4d}

Let 4, be the unit square centered at {0,0>. Clearly

[ &xa6=1.
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We now use (4.29), (4.30) and (4.31) and the first Griffiths inequality SB(¢,, ..

> 0 (which is true under condition (C2)) to estimate SB_, (A, ..., im—1)-

53—1(111: cee h’m-l) =

-1

AZ{A} f l:gdzfjeg(foﬂ- s Bt ) XAO fo) ] (fi“fﬁ—l)XA,(fi—fi—l)-

seesM

S

But

m—1

Xdo(fo) I-Il hi(€ — 51—1)){4,(& —&i4) SXAO(fo)"_ijl XEI':M: (gj)llhjxdj"oo

i=

and therefore

| JTT @28, @8 o n) Xao€) T il = 1) X (61— 6100

63(XA0""'XZ{=0A1’” ’xz’" ’A thXA,'“

< (K')mm) (m!)? 1‘[\1h.-xa,||w by (4.29), (4.30).

i=1

With the definition (4.27) of ||, we now get

m—1
|S,‘,Z_1(h1, . "h’m—l)l < (K')™(m!)3 il_[ AP
-1

* T (1 +[dist(0, 47)]) ¢

for some K, < «. This completes the proof of Theorem 4.8.
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orEm)

Q.E.D.

We have now completed the verification of the Osterwalder-Schrader axioms [5].
It is shown in Ref. [5] that axioms (E0)—(E3) are sufficient for the reconstruction of
relativistic quantum fields which satisfy the Wightman axioms (up to the uniqueness

of the physical vacuum).

I thank Professor K. Osterwalder for suggesting to me the problems solved in this

subsection.

For more detailed results concerning the quantum fields of the P(gp), models

under conditions (C1), (C2) and other axioms, see Ref. [29].
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