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Helvetica Physica Acta :
Vol. 47, 1974. Birkhiuser Verlag Basel

Berechnung der Grundzustandsenergie des 3-Alpha-Teilchen-
Systems (*?C-Kern) mit Hilfe der Faddejev-Gleichungen

von Walter Jaisli!
Institut fiir Theoretische Physik der Universitat Schonberggasse 9, CH-8001 Ziirich

(21. 1. 74)

Abstract. The quantum mechanical three-body theory is applied to the three-alpha cluster
model of 12C to explain the experimental ground-state energy. A detailed comparison of the results
with the work of other authors is presented. It turns out, that the cluster model does not describe
the physical reality of the !2C ground-state adequately.

1. Einleitung

Die Arbeiten von Faddejev [1] und Lovelace [2] zum quantenmechanischen
Dreikérperproblem sind bisher insbesondere auf das Drei-Nukleon System und das
Drei-Alpha System angewandt worden. Wihrend im ersten Falle unter anderem die
Berechnung der Bindungsenergie des *H aus der Nukleon-Nukleon Wechselwirkung
moglich sein sollte, handelt es sich im zweiten Falle hauptsichlich um die Ermittlung
der Bindungsenergie des 2C aus der Wechselwirkung zweier Alpha-Teilchen. Leider
ergeben sich in beiden physikalischen Systemen Schwierigkeiten: Im Drei-Nukleon
System hat man algebraische Komplikationen wegen des Spins der beteiligten Nuk-
leonen; im Drei-Alpha System dagegen hat man es zwar mit identischen spinlosen
Teilchen zu tun; sie sind jedoch geladen und man hat die langreichweitige Coulomb-
abstoBung zu beriicksichtigen.

In der vorliegenden Arbeit soll das Drei-Alpha System ausfiihrlich untersucht
werden. Auszugehen ist dabei von der durch Benn et al. [3] genau gemessenen ®Be-
Resonanz des Zwei-Alpha Systems, sowie den iibrigen Streudaten zweier Alphateilchen
aneinander (s. z.B. [4]). Benn et al. [5] haben aus diesen Daten ein zuverlidssiges phdno-
menologisches Alpha—Alpha Potential berechnet. Die Frage lautet also: Reichen die
Daten der elastischen Alpha—Alpha Streuung aus, um die gemessene Bindungsenergie
E.p="73 MeV des 2C Grundzustandes gegeniiber drei “He Kernen zu erkldren?
Anders ausgedriickt: Ist das Clustermodell, welches das '2C als aus drei strukturlosen
“He Kernen bestehend beschreibt, eine gute Naherung fiir die Berechnung der Grund-
zustandsenergie?

In die Fadde]ev-Glelchungen geht das Zweiteilchenpotential nicht direkt ein,
sondern nur die Off-Shell Streumatrix.?) Diese ist durch die Zweiteilchenstreuexperi-
mente nur auf der Energieschale (On-Shell) bestimmt. Um die Off-Shell Fortsetzung zu

1) Jetzt: Fachsektion Physik, Universitat, D28 Bremen.

2)  Relativistische Effekte und eventuelle Dreiteilchenkrifte werden in der vorliegenden Arbeit
durchgehend vernachlassigt.
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ermitteln, gibt es zwei Wege: Entweder nimmt man ein die Zweiteilchenstreuung gut
beschreibendes Potential und berechnet damit die Off-Shell Streumatrix; oder man
stellt das allgemeine analytische Verhalten der Off-Shell Streumatrix durch einen
Niherungsausdruck dar, dessen Parameter durch die Forderung bestimmt sind, da3
die Streuexperimente gut beschrieben werden. Mit dem Resultat einer der beiden
- Methoden 16st man dann die Faddejev-Gleichungen fiir das Dreikdrperproblem.

Im folgenden wird stets vorausgesetzt, daB nur der Zustand mit relativem Bahn-
drehimpuls / =0 (s-Welle) zur Zweiteilchenstreuung wesentlich beitragt. Dies ist bei
identischen spinlosen Bosonen deshalb eine gute Niherung, weil sowieso nur gerad-
zahlige Drehimpulse vorkommen diirfen. Die Faddejev-Gleichungen fiir einen gebun-
denen Zustand des aus drei identischen spinlosen Bosonen bestehenden Systems kénnen
dann als Integralgleichung in zwei Variablen geschrieben werden. Da dieses Problem
nur mit extrem aufwendigen Methoden gel6st werden kann (s. z.B. [6]) ist es zweckma-
Big, eine weitere Vereinfachung zu machen: Man entwickelt die Zweiteilchenstreu-
matrix in eine Summe von separablenTermen und nimmt an, daB von der Entwicklung
nur die ersten Terme einen wesentlichen Beitrag leisten. Beriicksichtigt man nur einen
Term, d.h. legt man ein separables Potential zugrunde (s. z.B. [7]), kann die Faddejev-
Gleichungals Integralgleichung in einer Variablen geschrieben werden, die tiberdies vom
Fredholmschen Typ ist und mit numerischen Standardmethoden gelést werden kann.
Beriicksichtigt man mehrere Glieder der Entwicklung, erhilt man ein gekoppeltes
System von Integralgleichungen, dessen Losung ebenfalls keine prinzipiellen Schwier-
igkeiten bietet.

Lovelace [2] hat gezeigt, daB die Verwendung separabler Potentiale oder Streu-
operatoren in der Kernphysik gerechtfertigt ist, wenn das Zweikorpersystem durch
einen gebundenen Zustand oder eine enge niederenergetische Resonanz beherrscht
wird. Diese Bedingung ist im a—x-System mit der ®Be-Resonanz naherungsweise erfiillt.

Harrington [8] hat die erwihnte Integralgleichung mit einer Zweiteilchenstreu-
amplitude geldst, die einem separablen Potential vom Yamaguchi-Typ entspricht. Die
Parameter des Potentials wurden so angepaBt, daB Streulinge und effective-range der
a—a-Streuung richtig wiedergegeben werden. Dabei wurde die genannte Coulombabsto-
Bung in der a—a-Streuphase abgespalten. Als Resultat gibt Harrington eine '2C-
Bindungsenergie von 12,8 MeV an. Die CoulombabstoBung im '2C schitzt er nach-
traglich klassisch auf —5 MeV ab, so daB die mit E,,, = 7,3 MeV zu vergleichende Zahl
7,8 MeV ist. Einen angeregten Zustand des !2C fand Harrington nicht. Die Grund-
zustandsenergie wiirde also durch ein 3a-Teilchenmodell befriedigend wiedergegeben.

Leung und Park [9] haben mit einer Wellenfunktionsmethode u.a. auch fiir ein
Yamaguchi-Potential das '2C behandelt. Sie zeigten allgemein, daBl ihre Methode mit
der von [8] identisch ist. Sie erhalten die gleiche Grundzustandsenergie fiir 12C wie in
[8], finden aber zusitzlich noch einen angeregten Zustand. Die Diskrepanz fiihren sie
auf Ungenauigkeiten in der numerischen Rechnung zuriick. Die gute Ubereinstimmung
des Resultates von [8] und [9] fiir die Grundzustandsenergie des 2C mit dem experi-
mentellen Wert beruht darauf, daB der Ansatz fiir das verwendete Yamaguchi-Poten-
tial nur den anziehenden Teil der a—« Wechselwirkung, nicht aber den abstoBenden
Hard-core beriicksichtigt. Ein in dieser Hinsicht verbesserter Ansatz [10] fiir das Po-
tential fithrt dann auch zu einer theoretischen Grundzustandsenergie von 1,48 MeV im
Gegensatz zum Experiment.

Einen anderen Weg haben Ball et al. [11] und Fulco et al. [12] beschritten: Mit
Hilfe eines Potentials berechneten sie die Off-Shell 7-Matrix und entwickelten das
Resultat in eine Summe separabler Terme nach Lippmann-Schwinger Eigenfunktionen
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(s. Weinberg [13]). Lésung der Faddejev-Gleichung ergibt dann eine Bindungsenergie
fiir ?C von ca. 2,2 MeV. Fuda [14, 15] hat die Weinbergentwicklung auch auf Potentiale
mit einem Hard-core angewandt, ohne jedoch ein konkretes Beispiel durchzurechnen.
Da nicht das Potential direkt, sondern nur die Off-Shell 7-Matrix in die Faddejev-
Gleichung eingeht, bietet der Hard-core keine grundsitzlichen Schwierigkeiten.

Ohne den Umweg iiber ein Potential hat Duck [16] direkt eine spezielle Form fiir
die der a—a-Streuung angepafite Off-Shell 7-Matrix in die Faddejev-Gleichung einge-
setzt. Damit findet er keine Bindung fiir den *2C-Kern.

In Anbetracht dieser Situation ist es gerechtfertigt, die bereits vorhegenden num-
erischen Untersuchungen zur Bindungsenergie des 2C mit Hilfe der Faddejev-Gleich-
ungen zu ergianzen und zu vervollstindigen. Dabei soll insbesondere das Problem der
CoulombabstoBung zwischen den «-Teilchen konsequenter als bisher beriicksichtigt
werden. Das geschieht dadurch, daB bei einem groBen Abschneideradius von ca..
12-107*3 cm die a—a-Streuphase auf endliche Reichweite des Potentials umgerechnet
wird: das duBlere Ende des Coulombpotentials wird abgeschnitten. Dieses Verfahren
wird in Abschnitt 2 kurz erliutert und der EinfluB des Abschneidens auf die ®Be
Resonanzparameter angegeben. In Abschnitt 3 wird der Faddejev-Formalismus fiir
die Zwecke dieser Arbeit kurz beschrieben. Abschnitt 4 behandelt die Lésung der
Faddejev-Gleichungen fiir verschiedene lokale Potentiale mit Hilfe der Weinberg-
Entwicklung. Die ausfiihrlichsten Rechnungen werden mit dem Benn-Scharf Potential
[6] durchgefiihrt. Damit wird insbesondere der Hard-core EinfluB auf die Bindungs-
energie des 2C zum ersten Mal genau ermittelt. Zu Vergleichszwecken werden auch das
Haefner-Potential (s. z.B. [17]) sowie das in [12] verwendete Darriulat-Potential her-
angezogen. Beide besitzen einen Soft-core. Dies gibt AnlaB zu einer Kritik der Resultate
von [12]. In Abschnitt § wird die Faddejev-Gleichung mit einer Reihenentwicklung fiir
die Off-Shell T-Matrix geldst, welche nur die a—a Streuphase sowie die analytischen
Eigenschaften der Off-Shell Amplitude zur Voraussetzung hat; es wird also kein
Potential benutzt. Dies ist eine Verbesserung und Verallgemeinerung der von Wong und
Zambotti [18] angegebenen Methode. In Abschnitt 6 werden die Resultate diskutiert.
Die angewandten numerischen Methoden werden in einem Anhang kurz erldutert.

Als wesentliches Ergebnis der Arbeit stellt sich heraus, daBl der Grundzustand des
12C micht durch die Zweiteilchenwechselwirkung von drei strukturlosen a-Teilchen
beschrieben werden kann. Die aus den elastischen o« Streudaten folgende Bindungs-
energie liegt fiir alle behandelten derartigen Modelle zwischen 0 MeV und 1 MeV ge-
geniiber einem gemessenen Wert E ., = 7,3 MeV. Dieses Ergebnis stimmt mit den Rech-
nungen iiberein, welche die Grundzustandsenergie des 2C mit Hilfe von Variations-
methoden ermittelten [19, 20, 21].

2. Die a—a Streuphase
2.1. Numerik

Wir wollen die numerischen Werte der a—a-Streuphase (es bezieht sich alles auf
die s-Welle, d.h. 1 = 0) kurz erliutern und den EinfluB der Umrechnung auf endliche
Reichweite des Coulombpotentials diskutieren. Dabei wird als Lingeneinheit 1 F =
10~13 cm genommen und die anderen Einheiten werden so gewihlt, da

h=M,=1
(M , = Masse des a-Teilchens). Die Energieeinheit ist dann 10,42 MeV.
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Nach [3] und [4] ist die a—a-Streuphase insbesondere im niederenergetischen
Bereich gut bekannt. Rasche [22] hat gezeigt, daB sie unterhalb 1 MeV durch eine
Effective-range-Entwicklung mit EinschluBl des Shape-Parameters gut wiedergegeben
werden kann. Bezeichnet man den Coulombparameter mit

2¢2  0,27605 2.1)
TR TR '
una definiert
I (—im)
h(n) = Re — —log 7 (2.2)
P T
‘so gilt fiir die Phase 8.(%) (k¥ = Wellenzahl der Relativbewegung):
-ct
mtg0B) _ 44 BrtCcH (2.3)
exp(2my) — 1
Die beste Anniherung an die gemessene Phase erreicht man mit:
A4=0,778-10"3
B =1,012 F2
C=08F*

Die davon abweichenden Werte in [22] enthalten numerische Fehler.

Oberhalb 1 MeV ist die Effective-range-Entwicklung nicht mehr brauchbar.
Die MeBpunkte liegen hier aber so dicht, daB man sie z.B. durch eine geglittete Kurve
verbinden kann (s. [5], Fig. 2). §, ist die durch die Kernwechselwirkung relativ zu den
Coulombwellen entstehende Phase. Da die im folgenden Abschnitt benutzten Formeln
auf der Annahme eines endlichen Zweiteilchenpotentials beruhen, schneiden wir das
Coulombpotential bei einer endlichen Reichweite R ab. Das ist folgendermaBen zu
verstehen: Wir nehmen an, daB die Kernwechselwirkung zwischen den beiden o-
Teilchen eine Reichweite von weniger als 5 F hat. Fiir groBere Abstinde wirkt dann
nur noch das Coulombpotential. Wir berechnen unter dieser Voraussetzung die Phase
8o(%; R) die bei gleichem Kernpotential, jedoch mit einem elektrostatischen Potential
endlicher Reichweite R (>5 F) relativ zu freien Wellen entsteht.

Das elektrostatische Potential fiir Abstinde <R soll mit dem Coulombpotential
iibereinstimmen. Die Abhingigkeit der 12C-Bindungsenergie von der Wahl des Para-
meters R mul natiirlich untersucht werden.

Eine wohlbekannte elementare Rechnung (s. z.B. [5]) liefert:

1 + A(k; R) ctg(kR)

ctg 6o(k; R) = g kR) — Ak R) (2.4)
wobel
Ak R) = Go(; RR) + Fy(n; kR) ctg 6.(R) @.5)

Go(n; kR) + Fo(n; kR) ctg 8.(k)

Go(n;p) bzw. Fy(n;p) sind die irregulire bzw. regulire Coulombwellenfunktion fiir
die s-Welle. Der Punkt bedeutet Ableitung nach dem Argument p.
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Figur 1 zeigt, wie sich die Streuphase 8,(k; R) als Funktion des Parameters R
verhilt. Offensichtlich hingen auch die Parameter der ®Be-Resonanz von R ab.
Bezeichnen wir die zur Resonanz gehérige Wellenzahl mit £, und die Resonanzbreite

[}
100 4 50
80~ =NF
¢

60

404 Rs 15F

201

0 002 I i . ! n 1 L 131’20';
T L L] L] —F ¥ 1 T
00 012 04 016 018 020 022 0,24

-20 - k (F
=404
-60-

Figur 1
Totale Streuphase 3y(%, R).

mit I, und mit Z(R) und I'y(R) die dem abgeschnittenen Coulombpotential entsprech-
enden Werte, so wird (s. z.B. [5]):

lim %23(R) = k2 = (0,8824 + 0,0005)-10-2F~2 (2.6)
R—w
lim I'y(R) = I', = (0,65 + 0,16) -10~5 F—2 (2.7)
R—>c® ’
T,
I'y(R) = = - 2.8
O F o b )+ P BB 9
G, k. R F(n.k.R I,
RR) = bt | St D) e be ) L e
' F(qpe,kcR) F(ne, ke R)[F?*(qc, k. R) + F?(nc, ke R)]) 2
Fiir £ > 1,1 F~* geht 8,(%; R) in die reine Hard-core-Phase iiber:
So(k, R) o~ "—kRHC (2.10)
Ryc~12F
Im folgenden arbeiten wir mit der Phase
8(k, R) = 8o(k, R) + kRyc (2.11)

Dies ist deshalb notwendig, weil in den folgenden Abschnitten Formeln benutzt
werden, die nur gelten, wenn die Streuphase als Funktion der Wellenzehl % im Unend-
lichen beschrinkt bleibt. Wegen der Subtraktion der reinen Hard-core-Phase von 8y(%;
R) muB der EinfluB des Hard-core auf die Bindungsenergie gesondert behandelt werden
(s- Abschnitt 4).
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Die durch die Subtraktion der Hard-core-Phase hervorgerufene Anderung der
Resonanzparameter %, und 1', ist so klein, daB sie numerisch nicht ins Gewicht fillt.

Die Parametrisierung (2.3) in Verbindung mit (2.4), (2.5) und (2.11) wird fiir
0,11 F~! < £ < 0,32 F~! beniitzt. In [5] wurde gezeigt, daB bei sehr kleinen Energien
die folgende Darstellung zweckméBiger ist:

k
Fo'
Fy(n, kR :
d(k, R) = —kR + arctg ¥ + arctg e (2.12)
Fo(n, kR) k3 — K

(2.12) hat den Vorteil, daB die beiden ersten Terme allein durch das abgeschnittene
Coulombpotential verursacht werden, wihrend der dritte von der zusitzlichen nu-
klearen Wechselwirkung herriihrt.

Tabelle 1
Resonanzparameter nach Abschneiden
der Coulomb-Wechselwirkung

R[F] RZ[103F-2] [,[10~3 F-2]

11 5,907 6,856
12 6,956 4,785
13 7,608 3,393
14 8,020 2,441
15 8,287 1,780
16 8,461 1,313
17 8,677 0.980
18 8,654 0.739
19 8,707 0,662

Tabelle 1 zeigt die numerische Anderung der Resonanzparameter mit R. Das
Abschneiden des Coulombpotentials hat zur Folge, daB die Resonanzenergie kleiner
und die Resonanz breiter wird. Will man die Dominanz der Resonanz erhalten, darf
man R also nicht zu klein wihlen.

2.2. Bemerkungen zur Off-Shell- Amplitude

In die Faddejev-Gleichungen geht die Off-Shell-Zweiteilchenstreumatrix
(G| T(2)|¢"> ein. Dafiir gilt die Partialwellenentwicklung

QTG =4g.¢:9 + > @+ 1142 Py(3-7) (2.13)

=2

Da wir nur die s-Welle beriicksichtigen wollen, lassen wir in (2.13) die hoheren Terme
weg:

q|T@)|g) =g.9.2) (2.14)

Durch die aus dem Experiment bekannte Phase 8(%; R) wird nur die On-Shell Amplitude
bestimmt :

4 .
HE, R R? +1€) =— = e!sin § (2.15)
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Im tibrigen verweisen wir beziiglich theoretischer Einzelheiten auf [22]. Das Problem
der Ermittlung von (2.14) aus dem direkt bekannten (2.15) wird uns im folgenden immer
wieder beschiftigen.

3. Die Faddejev-Gleichung

Die Faddejev-Gleichung fiir einen gebundenen Zustand aus drei identischen
Bosonen mit Spin 0 lautet im Schwerpunktsystem (s. z.B. [22]).

2 1 e i e
3 7 2 .
VG519 = G s | CRATE— I+ 1H¥G+ 1B @D
Dabei ist (§|T'(s)|g") die in (2.13) definierte Off-Shell-Streuamplitude. Gesucht sind die
negatwen reellen Werte s fiir welche (3.1) Losungen hat. Diese s-Werte sind die Ener-
gien der gebundenen Zustinden des Dreiteilchensystems. ¥(g,7;s) hingt eng mit
der Wellenfunktion des Dreiteilchensystems zusammen [22]. Wir brauchen jedoch
darauf hier nicht weiter einzugehen.
Wir beschranken uns in der Partialwellenzerlegung der Off-Shell-Streuamplitude
auf den Zustand mit Drehimpuls O (s. Einleitung). Es ist also (s. auch 2.14)

QGIT(s — 37|k + 3p) = (g, |k + 3P|; s — 37 (3-2)

Dann ist es konsequent, sich bei der Suche nach gebundenen Zustinden des Dreiteil-
chensystems auf solche Konfigurationen zu beschrinken, in denen der relative Bahn-
drehimpuls von zwei Teilchen sowie der Drehimpuls der Relativhewegung des dritten
Teilchens beziiglich des Schwerpunktes der beiden andern Teilchen verschwindet.
Daraus folgt, daB der Gesamtdrehimpuls ebenfalls verschwindet (s. z.B. [22]). ¥ héngt
dann nur noch von den Betrigen der Impulse ab:

PG.5:9% ¢(g,0;9) (3.3)

Einsetzen von (3.3) und (3.2) in (3.1) gibt mit einer elementaren Variablentransforma-
tion:

21 F T g PERIRE s
Vet = Ef | J, s—(y* +35) haats
o p—3k
(3.4)

Gleichung (3.4) ist eine Integralgleichung in zwei Variablen, welche nur mit groBem
numerischen Aufwand und fiir ein einfaches Potential gelost wurde [6]. Man benutzt
deshalb zweckmiBigerweise die Tatsache, daB nach Meetz [23] und Weinberg [13] die
Funktion #(g,p;s) fiir s < 0 in eine Summe separabler Terme entwickelt werden kann:

o0

Hgpis) = 3 7al(s) €a(g3 5) -8alh: 9) (3.5)

n=1

Fiir ein separables Zweiteilchen-Potential bleibt von der Summe (3.5) nur der erste
Term iibrig. Dasselbe gilt, wie Lovelace [2] gezeigt hat, wenn die Streuphase nur in der
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Nihe einer Resonanz wichtig ist. Diese Tatsache hat verschiedene Autoren, insbeson-
dere Harrington veranlaBt, das !2C versuchsweise mit einem separablen Yamaguchi-
Potential zu losen. Dies ist aber nicht gerechtfertigt; denn obschon die s-Welle der
o—a-Streuung von der ®Be-Resonanz bei ca. 92 keV beherrscht wird, ist doch der genaue
Verlauf der Streuphase bei héheren Energien fiir die Berechnung der Bindungsenergie
des *2C wichtig. Insbesondere wird durch Harringtons Ansatz der Hard-core iiberhaupt
nicht beriicksichtigt. Andererseits besteht jedoch die berechtigte Hoffnung, daB die
Reihe (3.5) rasch konvergiert, so daB3 die Beriicksichtigung eines zweiten Summanden
schon eine bedeutend bessere Naherung ist.
Entsprechen (3.5) macht man fiir (¢, ;s) den Ansatz:

P(g.p;s) = % i Ta($ — %) £a(q; s — 327 fu(P: 9) (3.6)

-

Mit (3.5) und (3.6) wird (3.4) ein gekoppeltes System von Integralgleichungen in einer
Variablen fiir die Funktionen f,($)

LR R NTEEIACE 37)

mit
T (VT IRE =15 — 1) (s — 1) B (75 — 3H)
Kml’(]b!k;s)= f ydy 7 2 2
lp—3k| s—(y* + 3F%)

(3.8)

Die Gleichungen (3.7) und (3.8) bilden die Grundlage fiir alle weiteren Rechnungen. Die
Information aus den a—a-Streuexperimenten geht in die Funktionen 7,(s) und g,(#;s)
ein. Dabei sind nun zwei verschiedene Wege moglich:

1) Man nimmt fiir die a—a-Wechselwirkung ein lokales Potential an, welches die
Streudaten méglichst gut wiedergibt. Dadurch ist die Off-Shell-Streuamplitude
bestimmt und damit auch die Entwicklung (3.8). Diese Methode wird in Abs¢chnitt
4 benutzt.

2) Man sucht aus der bekannten On-Shell-Streuphase direkt eine Off-Shell-Ent-
wicklung (3.8). Diesen Weg behandelt Abschnitt 5.

4. Benutzung vorgegebener, lokaler Potentiale

Die in diesem Abschnitt angewandten Methoden erweitern und verbessern die
Arbeiten [11], [12], [14] und [15]. Soweit sich die Ausfiihrungen auf die a~a-Streuung
beziehen, beschrinken wir uns stets auf die s-Welle (I = 0).

4.1. Die verwendeten Potentiale

Es wurden das Haefner-Potential, das Darriulat-Potential, sowie das Benn-
Scharf-Potential benutzt. In unserer Rechnung miissen diese Potentiale natiirlich
bei r = R abgeschnitten werden.
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Das Haefner-Potential V() wird von Experimentalphysikern bevorzugt, weil
es sich teilweise analytisch behandeln 148t.

10,42
VH(f) = gz — D 4 s 1’0
1'2
482
VH(T) = T r>7 (4'1)

Die gemessene s-Wellen-Resonanz 14Bt sich durch folgende Wahl der Parameter
wiedergeben:

g2=30 D=2708MeV 7r,=45F (4.2)
Das in [12] benutzte Darriulat-Potential V() hat folgende Form

2

Vo =U{l +exp(r —7,]/a)}™" — U,{1 + exp([r — 7,]/a;)} " + 4% ' (4.3)

Die gemessene a—a-Streuung 148t sich durch folgende Wahl der Parameter wiedergeben.
U ,=150MeV a,=01F 7,=165F
U,=92MeV a,=04F 7r,=372F ‘ (4.4)

Das von Benn und Scharf [5] durch Losen des ‘Umkehrproblems’ berechnete phiano-
menologische Potential V(r) 148t sich nicht in geschlossener Form angeben. Da es
ohne Riickgriff auf einen willkiirlichen Ansatz zustande kommt, halten wir es fiir das
verlidBlichste Potential. Es zeigt einen Hard-core, welcher den anderen Potentialen
fehlt. Den Einflul des Hard-core werden wir ausfiihrlich untersuchen.

Figur 2 gibt eine Vorstellung vom Verlauf der Potentiale mit der angegebenen Wahl
der Parameter.

V[MeV]
20¢ Ve Vb W

16}

12t

| \

Figur 2
Haefner-Potential (Vy), Darriulat-Potential (Vp) und Benn-Scharf-Potential (V).
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4.2. Entwicklung von t(p,q; s) nach Sturm’schen Funktionen fiir Potentiale ohne Hard-core

Bei gegebenem Zweiteilchenpotential V' (#) definiert man

V(p, e P dr V (7) sin(pr) sin(p’7) (4.5)

dann gilt fiir t(p.,q ;) folgénde Integralgleichung (s. z.B. [22]).

V(. PP ;)

'2—3-—16

(4.6)

Hp.q;s) = V(Pq——f ap’

Fiir s < 0 und Potentiale endlicher Reichweite ohne Hard-core ist der Kern der Inte-
gralgleichung (4.6) vom Hilbert-Schmidt-Typ. Man kann dann #(p,¢;s) in eine Summe
von separablen Termen entwickeln. Das Resultat ist (s. z.5. [22]).

© An
p.4:9) 21 WO AAARAL LR (4.7)

n=1

In (4.7) sind die Eigenfunktionen der homogenen Lippmann-Schwinger-Gleichung
und A, die zugehorigen Eigenwerte:

1 [ P2V
MOupio) =gz [ P g 49
1]

und es wurde folgende Normierung gewihlt.
l md ’ P’z ’, ’, 8 4 9
2w2j Pﬁ%(ﬁ:s)q?m(?,s)-— - (4.9)
1]

Mit (4.7) hat man die in (3.5) gegebene Entwicklung explizit, wenn ein lokales Potential
vorgegeben ist.

Fiir rein anziehende Potentiale ist A,(s) > 0. Der Punkt 0 tritt dabei als Haufungs-
punkt auf. In unserem Fall, d.h. keine gebundenen Zweiteilchenzustinde, ist ferner
An(s) < 1 und absteigende Werte von A,(s) liefern in der Entwicklung (4.7) offensicht-
lich immer kleinere Beitrige. In [11] wurde gezeigt, daB fiir iibliche Potentiale bereits 2
bis 3 Terme eine gute Niherung liefern.

Hat das Potential einen abstoBenden Teil, kommen auch negative Eigenwerte
vor. Eine Entwicklung nach absteigenden Werten von A,(s) wird dann nicht gut sein,
da dadurch gerade die groBen negativen Eigenwerte vernachlissigt wiirden. Der in [12]
angegebene Wert fiir die mithilfe von V¥ berechnete Bindungsenergie des '2C ist
deshalb unrichtig, da in der Rechnung gerade die groBen negativen Beitrige in der
Entwicklung verfehlt wurden.
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(+

2+ A(g(s) A
/ 1—;1(1+ ,(s)

-1 -2 -3 -4 -5 -6 -7 -8 -9 g[Mev]
<1 \ Afle)
1’)&1&]

Figur 3
+)
1= A%)(s)

(+)

A(s)

fiir das Darriulat-Potential.

| T

0,2- 1 3 L o (F1)

Figur 4
Eigenfunktion ¢, (p;s), s =—1,2 MeV, R = 11,0 F, Darriulat-Potential.

Um die Trennung in positive und negative Eigenwerte A,(s) explizit zu machen,
schreiben wir (4.7) in folgender Form:

© AS’+) A(;)
Hp.q;s) =— Z [Tf(ﬂ(s) PP s)oiP(g;s) + T-F"Xg(-s)_)(s) oS (P;9) 07(g; )

n=1

(4.10)

AJ(s) <0< AP < 1 (4.11)

Die Figuren 3 und 4 zeigen typische numerische Ergebnisse fiir die Eigenwerte und
Eigenfunktionen der homogenen Lippmann-Schwinger-Gleichung fiir V',

4.3. Beriicksichtigung des Hard-core

Wie bereits (4.5) zeigt, gilt die Herleitung von (4.10) nur fiir Potentiale V(7), die
fiir » =0 nicht zu schnell wachsen. Fiir Potentiale mit Hard-core miissen deshalb die
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Gleichungen modifiziert werden. Auch fiir Potentiale mit Hard-core existiert die
Streumatrix und kann in eine Summe separabler Terme entwickelt werden. Allerdings
wird die numerische Behandlung ganz erheblich kompliziert. Im folgenden geben wir die
Ergebnisse von Fuda [14], [15] an, welche fiir numerische Rechnungen besonders geeig-
net sind.

Sei Viyc(?) ein ‘reines Hard-core Potential’, d.h.

Vucr) = 7 < Ryc

Den zugehorigen Anteil der s-Welle an der Streumatrix (s. z.B. (2.14)) bezeichnen wir
mit f,c(p,¢;s). Nach [15] 148t sich £y in folgende Summe separabler Terme entwickeln
(n.b. s < 0)

\/|_5| exp( mRnc sin(p - Ryc) sin(¢ - Ryc)
el ) = OV Ru) — exp (VI Rnd) z
42z,(s) sin? z,(s)
22,(s) — sin 22,(s)

+4wRﬂc2g..(P ) 8a(q; ) [23(s) — sRE c]

(4.13)
wobei
__,‘/ I R R
P -cos(p ‘RHC) + A /|s| Sin(PRHC) eXp( il HC) + exp(\/-l-i_l HC)

g (P . S) = ] eXP(_‘\/I?l RHC) bt exp(\/-l?l RHC) (4 14)
o PE) — 77 Rad
z, sind die positiven, reellen Losungen der Gleichung

: exp(~V/[s| Ruc) + exp(V]s|R
2 ctg 2, = — Vo] Ry RV S| Rud) + exp(V I5] R .

exp(— \/-l?l Ryc(— exp\/|§_| Ryc)

Wie in [15] gezeigt wird, diirften im allgemeinen 2 bis 3 Terme dieser Entwicklung
geniigen, um eine fiir numerische Anwendungen geniigende Genauigkeit zu erreichen.
Es sei nun

V= VHC+ Vo_ (4.16)

und der s-Wellenanteil der zu V gehérigen Streumatrix sei #(p,q;s). In [14] wurde ge-
zeigt, daB sich auch ¢ — #¢ in eine Summe separabler Terme entwickeln 14Bt.

e +) ©
Hp,g;9) — tuc(®, ¢:9) = Zl M oo W) ) Y5 (@) — 21 ol @)@

(4.17)
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wobei

) +)

IO(P) = cos(pRud) 97(5: )
L2 sin(pRa{ i
?

f ap’ B o' s)

]

m

1
s

- +) 1

+2 fdP’P” PP 9) F—_ﬁz} (4.18)

0
In (4.17) und (4.18) sind A, und ¢, die Eigenwerte bzw. Eigenfunktionen der homogenen
Lippmann-Schwinger-Gleichung fiir das ins Zentrum verschobene AduBere Potential
Vo(r + Ryc). Die Summation iiber positive bzw. negative Eigenwerte wurde wie in
(4.10) wieder getrennt ausgefiihrt. Fiir Ryc = 0 geht (4.17) mit (4.18) selbstverstindlich
in (4.10) iber.

In (4.13) und (4.17) haben wir die fiir die weitere Rechnung benutzte separable
Entwicklung von #(p,q;s).

4.4. Numerische Ergebnisse

In der Tabelle 2 sind die errechneten Bindungsenergien fiir die beiden Potentiale
ohne Hard-core sowie fiir das Benn-Scharf-Potential nach Abzug des Hard-core
zusammengestellt. Tabelle 3 zeigt die entsprechenden Werte fiir das Benn-Scharf-
Potential mit Hard-core.

Tabelle 2
Theoretische Bindungsenergie fiir das Haefner-, das Darriulat- und das Benn-Scharf-Potential
ohne Hard-core in Abhéingigkeit von der Anzahl beriicksichtigter positiver (N*) und negativer
(N~) Terme in (4.10) sowie des Coulombabschneideradius R

Eg[MeV] Eg[MeV] . Eg[MeV] Eg[MeV)

R[F] N =1 NO =] NP =] NGO =1 NH=2 NO=0 N®=2 NO=1
Vi Vo . Ve Vu Vp Vs Vp Vs Vo Va

11 2,1 1,28 2,63 1,0 0,06 2,44 1,29 2,563 0,07 2,45

13 2,1 1,28 2,683 1,0 0,06 2,44 1,28 2,63 0,07 2,45

15 2,1 1,28 2,53 1,0 0,06 2,44 1,28 2,63 0,07 2,45

Es ist zu beachten, daB nur der s-Wellen-Anteil der a—«-Streuung berticksichtigt
wurde. Die Beriicksichtigung der d-Welle ergibt offensichtlich eine Erhéhung der
Bindungsenergie, wie man aus [12] entnehmen kann. Der dort angegebene Beitrag von
0,69 MeV ist jedoch sicherlich zu groB, und zwar aus demselben Grund wie der s-
Wellen-Beitrag zu groB ist. Nimmt man realistischerweise die Hilfte, bekommt man
fiir die Bindungsenergie des 2C einen Wert von 0,6 MeV. Die Beitrige mit / > 2 diirften
vollig zu vernachlissigen sein. Schitzt man den Einflu8 aller gemachter Niherungen
pessimistisch ein, ist doch zweifellos die folgende Aussage richtig:

3 strukturlose a-Teilchen, die nur via lokale Zweiteilchenpotentiale wechselwirken,
haben einen gebundenen Zustand, dessen Bindungsenergien kleiner als 1 MeV ist.

Es diirfte interessant sein, die Resultate fiir das Benn-Scharf-Potential mit und
ohne Hard-core zu vergleichen. (6. Spalte in Tabelle 2 und 5. Spalte in Tabelle 3). Aus
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diesem Vergleich sieht man, daB der harte «-Kern die 3-a-Bindungsenergie um ca.
2 MeV verringert.

Tabelle 3
Theoretische Bindungsenergie fiir das Benn-Scharf-Potential mit Hard-core in Abhangigkeit
von der Anzahl bericksichtigter Terme in (4,13) (Nyc) und (4.17) (Np) sowie des Coulomb-
anschneideradius R

Eyg [MeV] Eg[MeV] Eyg [MeV] Ey [MeV] ~ Eg[MeV]
N =1 N =1 N =1 NP =1 N# =1
N =0 NI =0 NP =0 N =1 NP =1
R [F] Nyc=10 Nyc=1 Nyc=2 Nyc=2 Nyc=3
11 1,84 0,60 0,58 0,30 0,30
13 1,84 0,60 0,58 0,30 0,30

15 1,84 0,60 0,568 0,30 0,30

Ein weiteres Resultat von Interesse erhilt man, wenn man vom Benn-Scharf-
Potential den Coulombanteil subtrahiert. Fiir das so bestimmte reine Kern-Potential
finden wir:

Eg =—4,56 MeV mit Hard-core
Ey =-7,3 MeV ohne Hard-core

Fiir die CoulombabstoBung ergibt sich somit

4,2 MeV mit Hard-core
4,9 MeV ohne Hard-core

5. Off-Shell Zweiteilchenstreumatrix ohne Potentialmodell

8.1. Einleitung

Im vorigen Abschnitt wurde die einschrinkende Annahme gemacht, da@ sich die
o—a-Wechselwirkung durch ein lokales Potential beschreiben 148t. Es ist jedoch
wiinschenswert, eine Methode zur Losung der Faddejev-Gleichungen zu haben,
welche vom Potentialbegriff unabhingig ist.

Die in diesem Abschnitt hergeleitete Reihenentwicklung fiir die 7-Matrix ver-
wendet nur die bekannten analytischen Eigenschaften sowie zusitzlich die Tatsache,
daB die niederenergetische Streuung von einer scharfen Resonanz dominiert wird.

Bekanntlich kann man fiir jede gemessene Streuphase eine ganze Klasse ‘elastisch
dquivalenter Potentiale’ finden, von denen im allgemeinen jedes zu einer anderen Off-
Shell Fortsetzung fiihrt. Es ist deshalb von vornherein klar, daB8 durch die gemessene
Streuphase die Off-Shell Fortsetzung nicht eindeutig bestimmt ist. Auch die Methoden
dieses Abschnittes sind deshalb in gewisser Weise willkiirlich. An Stelle der Lokalitat
des Potentials miissen andere Annahmen gemacht werden. Diese werden im Abschnitt
5.2 eingehend beschrieben. Die in Gleichung (5.20) angegebene Entwicklung ist
trotzdem aus zwei Griinden niitzlich:

Erstens ermittelt man mit ihrer Hilfe die 12C-Bindungsenergie auf einem ganz
anderen Wege als in Abschnitt 4 und erhilt somit einen Hinweis iiber den EinfluB,
welchen die Voraussetzung spezieller Potentiale auf die Bindungsenergie hat.
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Zweitens kann (5.20) auf alle Dreikorpersysteme angewandt werden, deren —
als bekannt vorausgesetzte — Streuphasen von einer niederenergetischen Resonanz
beherrscht werden. Letzteres ist aber keine besondere Einschrinkung, da sonst ein
gebundener Dreikérperzustand gar nicht zu erwarten ist.

Es sei noch erwihnt, daB im Gegensatz zu einer in [18] angegebenen Entwicklung
die in der vorliegenden Arbeit hergeleitete Gleichung (5.18) auch anwendbar ist, wenn
man sich fiir die Parametrisierung der Streuphase nicht auf die Effective-range-
Niherung beschrinkt.

Der Hard-core Anteil der Phase wird im folgenden weggelassen (s. 2.11)). Dies ist
notwendig, da die Rechnungen nur fiir Phasen gelten, welche fiir 2— o endlich bleiben.
Die nachtragliche Beriicksichtigung des Hard-core bietet keine grundsatzlichen
Schwierigkeiten, erh6ht den numerischen Aufwand aber erheblich. Wir fiithren dies
deshalb nicht explizit durch, sondern entnehmen den numerischen Wert des Hard-core
Anteils der 12C-Bmdungsenerg1e den Ergebnissen von Abschnitt 4.

Im iibrigen bezieht sich alles wiederum auf die s-Welle der Zweltellchenstreuung

5.2. Herleitung der Entwicklung fiir die Streuamplitude

Die Streuphase kann (nach Abspaltung des Hard-core Anteils) entsprechend (2.12)
folgendermaBen geschrieben werden:

k

1",_

Fo(")’kR) ) 02kt:
o(k, R) = —kR + tg ————+ arctg ———— 4+ A(R, R 5.1
( ) e gFo(")»kR) gkoz—k2+ ( ) ( )

In (5.1) kann A(k, R) fiir sehr kleine Energien vernachlissigt werden (s. z.B. [5])
Oberhalb 200 keV trigt er aber merklich bei.

Im folgenden werden wir von der Hypothese ausgehen, daB der Resonanzanteil
der Phase den Hauptanteil zur Bindungsenergie liefert und der Rest als Korrektur
betrachtet werden kann. Als Resonanzphase definieren wir:

k ~ R
Loz, 'ox
Sres(k) a'rCtg k2 k2 a'rCtg %2 _ k2 (5.2)

Durch den zweiten Term in (5.2) wird erreicht, da3 %im 8,es(R) = 0. Der erste Term allein

strebt bekanntlich in diesem Grenzfall gegen . I und % sind in gewissen Grenzen frei
wihlbar, jedoch miissen folgende Bedingungen erfiillt sein:

a) Fiir Energien unterhalb 200 keV soll der zweite Term in (5.2) nicht wesentlich
beitragen, damit das reine Resonanzverhalten gewahrt bleibt.

b)  8,.s() soll als Funktion von % bei einigen F~! bereits sehr klein werden.

c) Die Kausalititsbedingung fiir Potentiale mit endlicher Reichweite D soll erfiillt
sein (s. z.B. [24] S. 353) :

dares(k) 1
ak (D * Zk)
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a)—c) sind erfiillt mit der Wahl:

k=07 F1
~ 4k
r= —
D+3k
Definieren wir ferner die Korrekturphase durch
Fy(n, kR) f‘2%
Seors(k) = —kR + arctg ——V" " 1 A(E, R) + arctg = 5.3
iore(R) +archo(n,kR) (k, R) S (6.3)
so wird
8(k) = Bres(k) + Siore(k) (5.4)
Figur 5 zeigt das Verhalten beider Summanden.
+3A 6
+24
i 5 (k)
0 L 1 1 i 1 1 1 1 L]
01 02 03 04 05 06 07 08093 11 1,2_1
-1 k[F]
korlk)
-2
-3
Figur 5

Resonanzphase §,.,(k) und Korrekturphase 8y, (k). R=15F, E=0,7F1

Der Aufteilung (5.4) der Streuphase entspricht eine Aufteilung der Strenamplitude
auf der Energieschale:

4
bk, ks k? + i€) = —-;7- exp[i8(R)] Sin (k) = f,og(k, k; B2 + t€) + tonek, b B + 1€)

(5.5)
mit
4
ool o 2 + i) 2 — = expliBcy ()] 5in Sres() (5.6)
4 ! .
Hoee (B, 3 B+ d€) & — =T eXP[2i8rey(£) + 1Bxcre(8)] S0 Bore(B)
S exp(2iBres(W) brorb b B2 +i6) 6.7

tors (B, R ; k% + ie€) ist also die zu &y, (k) gehorige Streuamplitude.
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Der Ubergang zur Off-Shell-Amplitude geschieht im folgenden fiir beide Anteile
getrennt. Nach [2] kann man 7,.(p,q;k* + 7€) folgendermaBen faktorisieren:

B2 4 ie) = Eres(D) *Lres(q)
tres(ﬁ» q; k +: ) = Dres(kz n ze) (5.8)
wobel
__ 1! 22 f 8(K)
Dres(z) - = Zﬂ'— €xp (— ";;'j m dk ) (59)

Aus (5.6), (5:8) und (5.9) ergibt sich:

$in 8, 5($) 20 8ealp) )]’
res = | = m—m—— e g d 510
g (P) [ P exp( - ; Pr(sz _ pZ) P ( )

Mit (5.8), (5.9) und (5.10) haben wir den Resonanzanteil der Off-Shell Streumatrix.
Um fiir ¢,,, ebenfalls eine separable Off-Shell Fortsetzung zu finden, behandeln
wir zuerst £,,,. Es ist nach (5.7):

\ dmr : .
tkorr(k! k» k? + 1'6) = "]:' exp[zS,m"(k)] sm 6lmﬂ'(k) (51 1)

Ohne auf weitere Einzelheiten einzugehen, wollen wir annehmen, daB #..($,9;5)
sich in folgender Form darstellen 148t :

Fron(p. 4;9)
bore($,4; 8) = ———— (5.12)
y Dkorr (S)
mit
28 i Skorr(k’) ' |
D orr = —— | ==k X
k (S) exp( ar p kr(krz _ S) ) (5 3)

Dabei soll F,,,, fiir positive  und ¢ keine Singularititen fiir Res < 0 haben. Diese
Darstellungsméglichkeit fiir £,.,.(p,q;s) besteht fiir eine groBe Klasse von Potentialen
(s. z.B. [2], [18]).2) Wegen der einfachen analytischen Eigenschaften von Fy,, und in
Ermangelung besserer Kenntnis der s-Abhingigkeit setzen wir an:

‘ [ n qz n
R sl p2+u P Zo (Pzw ) (qzwz) 19

3)  Es ist stets zu beachten, daB wir das Coulombpotential bei endlicher Reichweite R ‘ab-
schneiden’. Die in diesem Abschnitt verwandten Phasen hingen also noch von R ab. In der
Bezeichnungsweise haben wir das nicht zum Ausdruck gebracht.
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Eine eventuelle s-Abhingigkeit der Koeffizienten C, ist vernachlissigt. Zur niheren
Begriindung von (5.14) s. z.B. [18]. Wir mochten noch einmal ausdriicklich betonen,
daB F,,. nur in das Korrekturglied eingeht und deshalb die genaue Form von F,,
numerisch keine groBe Rolle spielen sollte. Der Parameter p hat einen numerischen
Wert, welcher etwa der Reichweite der Wechselwirkung entspricht. Aus (5.11), (5.12),
(5.13) ergibt sich nun

47 sin S, 28 [ Seonl®) ..
Fronlk ks B2 +1€) = — 2 el XP(_ ‘n"gafk e ))dk) (5.15)

k ’ ( kl 2 _ kz
o
Die C, und w ermittelt man durch Einsetzen von (5.14) in (5.15) : Mit der Methode der
kleinstein Quadrate werden diese Parameter an die bekannte Phase 8,,,,(k) angepaBt.
Nachdem wirin (5.12), (5.13), (5.14) nun eineseparable Entwicklungfiir ¢, haben,
miissen wir eine solche auch fiir &, (s. (5.7)) angeben. Mit dem Ansatz

(P 5)Pa(g;9)

N
tone($,4:8) = 2 C, (5.16)
" =0 b korr(s)

kann man das erreichen, wenn die ¢, folgende Bedingungen erfiillen:

a)  @u(k; k?) = exp[id;cs()] ga(k) (5-17)
1 k2 n ‘

(R) & 5.18
&n(k)= k2+2(k2+#) (5.18)

b) @u(%;s) ist reell fiir s < 0.
c) @u(k;s)istals Funktion vonsanalytisch bisauf einen Schnitt entlang der positiven,
reellen Halbachse.

a)—c) kann man durch folgenden Ansatz erfiillen:

fp'zzng,.(p)[ et

n 8(’08

@n(p:s) = exp[@aresfp)lgn(j’) Pz e Ptg —s

(5.19)

(6.16) und (5.19) geben die separable Entwicklung des Korrekturterms. Damit haben
wir nach (5.5) die angestrebte separable Entwicklung von ¢:

o Bres(P) &res@) <O @a(B39) 0ald:9)
Up.g39) == —5= = +;c,, - (5.20)

Mit (5.20) kann (3.8) ermittelt und (3.7) gelost werden.

9.3. Numerische Ergebnisse

In Tabelle 4 sind zum Vergleich neben der mit dem Ansatz (5.20) errechneten
12C-Bindungsenergien noch einmal die entsprechenden Werte fiir das Benn-Scharf-
Potential — bester Kandidat unter den lokalen Potentialen — ohne Hard-core aufgetra-
gen. Wie man sieht, ist die Ubereinstimmung recht gut. Wir werden im SchluBkapitel
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darauf zuriickkommen. Im iibrigen rechtfertigen die Resultate die Annahme, daB der

Hauptbeitrag zur Bindungsenergie, wenn man vom Hard-core Anteil absieht, vom
Resonanzterm herriihrt.

Tabelle 4

Theoretische !2C-Bindungsenergie ohne Vorgabe eines lokalen Potentials in Abhingigkeit des
Coulombabschneideradius R undd er Anzahl N + 1 beriicksichtigter Terme in der Entwicklung
(6.20) (Hard-core subtrahiert)

Eg [MeV] Eg [MeV) Eg [MeV] Ep [MeV] Ep [MeV]
R [F] ohne ¢/ . N=0 N=1 N=2 B-S-Potential
11 2,7 2,0 29 2,2 2,46
13 2,6 2,0 2,1 2,2 2,45
15 2,6 1,9 2,2 2,2 2,45

Ferner geht aus der Tabelle die schwache Abhingigkeit von der Wahl des Ab-
schneideradius R hervor, sofern dieser nur groB genug gewihlt ist.

6. Zusammenfassung und Diskussion der Resultate

Die Verdffentlichungen zur Frage der Bindungsenergie des 12C-Kerns ergeben
ein widerspriichliches Bild (s. Tabelle 5). Die Ergebnisse differieren derart, daB die
Frage ungeklirt erscheint, ob das 3-a-Modell eine einigermaBen brauchbare Beschrei-
bung des 2C-Kerns liefert oder nicht.

Vergleicht man in Tabelle 5 Input und Bindungsenergie, ergibt sich folgender
Zusammenhang:

separables Potential 1 Term: Egz a7 MeV
separables Potential 2 Terme: E; ~ 1 MeV
lokales Potential: 0<Eg<1MeV
Elastische Streuphase: 0<Eg<1MeV

Aus den Resultaten der vorliegenden Arbeit kann man die folgenden Schliisse ziehen:

1. Das 3-a-Modell des !2C-Kerns, welches ein lokales phinomenologisches o-a-
Potential annimmt, ergibt eine Bindung fiir den !2C-Kern. Die so berechnete
Bindungsenergie ist aber um eine GréBenordnung kleiner als die gemessene.

2. Die Resultate von Abschnitt 5 mit einem potentialunabhidngigen Ansatz fiir die
Off-Shell-Streuamplitude dringen den SchluB auf, daB auch durch eine allge-
meinere a—o-Wechselwirkung die experimentelle 2C-Grundzustandsenergie nicht
mit der elastischen a-a-Streuphase in Ubereinstimmung zu bringen ist. Die
Erweiterung der T-Matrix iiber die Energieschale hinaus ist zwar nicht eindeutig,
und der Ansatz (5.18) ist nur einer von vielen méglichen. Die Ubereinstimmung mit
den Ergebnissen von Abschnitt 4 ist aber so gut, daB es ausgeschlossen erscheint,
eine mit den Analytizititseigenschaften der Streuamplitude vertrigliche Abinde-
rung zu finden, welche eine viel gréBere Bindungsenergie ergibt. Dasbedeutet, dal3
der 2C-Kern durch das &-«-Teilchen Modell nicht zu beschreiben ist.

3. Die von einigen Autoren errechnete Ubereinstimmung von Experiment und 3-a-
Teilchenmodell beruht im wesentlichen darauf, daB die von diesen Autoren
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Tabelle 5

Theoretisch errechnete 2C-Bindungsenergien relativ zu 3 freien «-Teilchen unter Zugrundelegung

des 3-a-Modells

Autor Jahr Ref. Input Methode Eg[MeV]

Harrington 1966 8 sep. Potential Faddejev 7.4
Yamaguchi +
Coulomb klassisch

Duck 1966 16 sep. Potential Faddejev kein Bindung
Yamaguchi + Hard-
core

Hebach, Henneberg 1968 10 2 Term sep. Potential Faddejev 1,6
+ 1 Term {. d-Welle
Coulomb als Stérung

Fulco, Wong 1968 12 lokales Potential Faddejev 2,8
Darriulat

Leung, Park 1969 9 sep. Potential Wellen- 5,4
Tabakin + Coulomb  Funktion
klassisch

Abdul-Magd 1969 19 lokales Potential Variation -1 < Ey
Spuy-Piennar

Osman 1970 25 sep. Potential Faddejev 6.08
Yamaguchi +
Coulomb klassisch

Noble 1970 20 lokales Potential Variation 0,9< Eg<3,0
Kenmode

Lim 1970 21 lokales Potential Ali, Variation 1< Eg
Bodmer

Diese Arbeit 1974 lokales Potential Faddejev 1,1
Heafner

Diese Arbeit lokales Potential Faddejev 0,1
Darriulat

Diese Arbeit lokales Potential Faddejev 0,30
Benn-Scharf inkl.
Hard-core

Diese Arbeit elastische — Streu- Faddejev 2.2

phase (ohne Hard-
core)

verwendeten separablen Potentiale nur einen anziehenden Term enthalten und
die sicher vorhandene AbstoBung fiir kleine Abstiande gar nicht beriicksichtigen.
Die Ergebnisse von Abschnitt 4 erlauben eine Aufteilung der 3-«-Bindungsenergie
auf die 3 verschiedenen Potential-Anteile Kernpotential, Coulombpotential und
Hard-core. Diese Aufteilung ergibt:

fiir Kernpotential ohne Coulomb, ohne Hard-core: E; = 7,3 MeV

fiir Kernpotential ohne Coulomb, mit Hard-core: Eg=4,5 MeV

fiir Kernpotential mit Coulomb, ohne Hard-core: Egz= 2,45 MeV

fiir Kernpotential mit Coulomb, mit Hard-core: Egz=0,30 MeV
Alle Resultate legen den SchluB nahe, daB im Grundzustand des 2C-Kerns der
mittlere Abstand der 3 «-Teilchen so klein ist, daBB zusitzliche Austauscheffekte
ein recht starkes, scheinbares 3-a-Potential erzeugen. Das bedeutet: der Grund-
zustand des !?C-Kerns ist ein Gebilde, welches kaum Ahnlichkeit mit einem System
von drei strukturlosen «-Teilchen hat.
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ANHANG

Numerische Methoden

Alle numerischen Rechnungen in dieser Arbeit wurden auf der IBM-360 bzw.
IBM-370 des Rechenzentrums der Universitit Ziirich durchgefiihrt. In diesem Anhang
werden einige der dabei angewendeten Methoden kurz erlautert.

Zur Berechnung der Coulomb-Wellen-Funktion (s. Abschnitt 2) wurde die in [26]
(S. 538, Gleichungen 14.1.3 bis 14.1.23) angegebene Reihen-Entwicklung verwendet.

Die Reihe erweist sich gut brauchbar im Gebiet :

pn<10
p < 20. (AI)
mit
p=RR
0,276
=0 (A2)

ist (Al) erfiillt fir R<15Fund k< 1,3 F1,

Die Reihe konvergiert allerdings sehr verschieden schnell je nach dem Wert von
p*m. Fiir p-n 3 5 braucht man ca. 40 Terme, um die Funktion besser als auf 1%, anzu-
nihern.

Fiir p > 20 und 7 < 0,6 kann man die asymptotische Entwicklung (s. [26] S. 540
Gleichungen 14.5.1 bis 14.5.8) verwenden.

Alle Integrale wurden nach der Methode von Gauss-Legendre berechnet. Die
Integralgleichungen wurden mit der Gauss-Legendre-Methode in algebraische Gleich-
ungen verwandelt und diese mit Standardmethoden gelost.

Die Stabilitit der Losungen gegeniiber einer Anderung der Schrittlingen wurde
in typischen Fillen gepriift. Am kritischsten erweist sich dabei die Losung der Inte-
gralgleichung (4.8).

Einerseits erfordert die genaue Ermittlung der Eigenfunktionen kleine Schritt-
lingen (s. Figur4). Zum anderen erhdht sich durch eine Vermehrung der Stiitzpunkte die.
Rechenzeit sehr stark.

In einem typischen Fall (Darriulat-Potential, R=11 F, N* =1, N~ =0) ergibt
sich folgende Abhingigkeit der errechneten Bindungsenergie von der Anzahl Stiitz-
punkte:

Anzahl Stiitzpunkte = 16 E5 = 1,19 MeV
' =24 E5;=1,278 MeV
=32 Ez = 1,282 MeV
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Die Ergebnisse in Tabelle 2 sind alle mit 32 Stiitzpunkten berechnet, diejenigen in
Tabelle 3 mit 24.

Zur Loésung der Gleichung (3.7) haben sich in allen Fillen 12 Stiitzpunkte als
hinreichend erwiesen. Versuchsweise Erh6hung auf 16 Stiitzpunkte ergab Abweich-
ungen von weniger als 1%,.
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