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Helvetica Physica Acta
Vol. 47, 1974. Birkhäuser Verlag Basel

Berechnung der Grundzustandsenergie des 3-Alpha-Teilchen-
Systems (12C-Kern) mit Hilfe der Faddejev-Gleichungen

von Walter Jaisli1

Institut für Theoretische Physik der Universität Schönberggasse 9, CH-8001 Zürich

(21. I. 74)

Abstract. The quantum mechanical three-body theory is applied to the three-alpha cluster
model of l2C to explain the experimental ground-state energy. A detailed comparison of the results
with the work of other authors is presented. It turns out, that the cluster model does not describe
the physical reality of the 12C ground-state adequately.

1. Einleitung

Die Arbeiten von Faddejev [1] und Lovelace [2] zum quantenmechanischen
Dreikörperproblem sind bisher insbesondere auf das Drei-Nukleon System und das

Drei-Alpha System angewandt worden. Während im ersten Falle unter anderem die
Berechnung der Bindungsenergie des 3H aus der Nukleon-Nukleon Wechselwirkung
möglich sein sollte, handelt es sich im zweiten Falle hauptsächlich um die Ermittlung
der Bindungsenergie des 12C aus der Wechselwirkung zweier Alpha-Teilchen. Leider
ergeben sich in beiden physikalischen Systemen Schwierigkeiten: Im Drei-Nukleon
System hat man algebraische Komplikationen wegen des Spins der beteiligten
Nukleonen; im Drei-Alpha System dagegen hat man es zwar mit identischen spinlosen
Teilchen zu tun ; sie sind jedoch geladen und man hat die langreichweitige Coulomb-
abstoßung zu berücksichtigen.

In der vorliegenden Arbeit soll das Drei-Alpha System ausführlich untersucht
werden. Auszugehen ist dabei von der durch Benn et al. [3] genau gemessenen 8Be-
Resonanz des Zwei-Alpha Systems, sowie den übrigen Streudaten zweier Alphateilchen
aneinander (s. z.B. [4]). Benn et al. [5] haben aus diesen Daten ein zuverlässiges
phänomenologisches Alpha-Alpha Potential berechnet. Die Frage lautet also: Reichen die
Daten der elastischen Alpha-Alpha Streuung aus, um die gemessene Bindungsenergie
-Eexp ,7,3 MeV des 12C Grundzustandes gegenüber drei 4He Kernen zu erklären?
Anders ausgedrückt : Ist das Clustermodell, welches das 12C als aus drei strukturlosen
4He Kernen bestehend beschreibt, eine gute Näherung für die Berechnung der
Grundzustandsenergie

In die Faddejev-Gleichungen geht das Zweiteilchenpotential nicht direkt ein,
sondern nur die Off-Shell Streumatrix.2) Diese ist durch die Zweiteilchenstreuexperimente

nur aufder Energieschale (On-Shell) bestimmt. Um die Off-Shell Fortsetzung zu

*) Jetzt: Fachsektion Physik, Universität, D28 Bremen.
2) Relativistische Effekte und eventuelle Dreiteilchenkräfte werden in der vorliegenden Arbeit

durchgehend vernachlässigt.
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ermitteln, gibt es zwei Wege : Entweder nimmt man ein die Zweiteilchenstreuung gut
beschreibendes Potential und berechnet damit die Off-Shell Streumatrix; oder man
stellt das allgemeine analytische Verhalten der Off-Shell Streumatrix durch einen
Näherungsausdruck dar, dessen Parameter durch die Forderung bestimmt sind, daß
die Streuexperimente gut beschrieben werden. Mit dem Resultat einer der beiden
Methoden löst man dann die Faddejev-Gleichungen für das Dreikörperproblem.

Im folgenden wird stets vorausgesetzt, daß nur der Zustand mit relativem
Bahndrehimpuls 1 0 (s-Welle) zur Zweiteilchenstreuung wesentlich beiträgt. Dies ist bei
identischen spinlosen Bosonen deshalb eine gute Näherung, weil sowieso nur
geradzahlige Drehimpulse vorkommen dürfen. Die Faddejev-Gleichungen für einen gebundenen

Zustand des aus drei identischen spinlosen Bosonen bestehenden Systems können
dann als Integralgleichung in zwei Variablen geschrieben werden. Da dieses Problem
nur mit extrem aufwendigen Methoden gelöst werden kann (s. z.B. [6]) ist es zweckmäßig,

eine weitere Vereinfachung zu machen: Man entwickelt die Zweiteilchenstreumatrix

in eine Summe von separablenTermen und nimmt an, daß von der Entwicklung
nur die ersten Terme einen wesentlichen Beitrag leisten. Berücksichtigt man nur einen
Term, d.h. legt man ein separables Potential zugrunde (s. z.B. [7]), kann die Faddejev-
Gleichung als Integralgleichung in einer Variablen geschrieben werden, die überdies vom
Fredholmschen Typ ist und mit numerischen Standardmethoden gelöst werden kann.
Berücksichtigt man mehrere Glieder der Entwicklung, erhält man ein gekoppeltes
System von Integralgleichungen, dessen Lösung ebenfalls keine prinzipiellen Schwierigkeiten

bietet.
Lovelace [2] hat gezeigt, daß die Verwendung separabler Potentiale oder

Streuoperatoren in der Kernphysik gerechtfertigt ist, wenn das Zweikörpersystem durch
einen gebundenen Zustand oder eine enge niederenergetische Resonanz beherrscht
wird. Diese Bedingung ist im a-a-System mit der 8Be-Resonanz näherungsweise erfüllt.

Harrington [8] hat die erwähnte Integralgleichung mit einer Zweiteilchenstreuamplitude

gelöst, die einem separablen Potential vom Yamaguchi-Typ entspricht. Die
Parameter des Potentials wurden so angepaßt, daß Streulänge und effective-range der
a-a-Streuung richtig wiedergegeben werden. Dabei wurde die genannte Coulombabsto-
ßung in der a-a-Streuphase abgespalten. Als Resultat gibt Harrington eine 12C-

Bindungsenergie von 12,8 MeV an. Die Coulombabstoßung im 12C schätzt er
nachträglich klassisch auf -5 MeV ab, so daß die mit Eexp 7,3 MeV zu vergleichende Zahl
7,8 MeV ist. Einen angeregten Zustand des 12C fand Harrington nicht. Die Grund-
zustandsenergie würde also durch ein 3a-Teilchenmodell befriedigend wiedergegeben.

Leung und Park [9] haben mit einer Wellenfunktionsmethode u.a. auch für ein
Yamaguchi-Potential das 12C behandelt. Sie zeigten allgemein, daß ihre Methode mit
der von [8] identisch ist. Sie erhalten die gleiche Grundzustandsenergie für 12C wie in
[8], finden aber zusätzlich noch einen angeregten Zustand. Die Diskrepanz führen sie
auf Ungenauigkeiten in der numerischen Rechnung zurück. Die gute Übereinstimmung
des Resultates von [8] und [9] für die Grundzustandsenergie des 12C mit dem
experimentellen Wert beruht darauf, daß der Ansatz für das verwendete Yamaguchi-Potential

nur den anziehenden Teil der a-a Wechselwirkung, nicht aber den abstoßenden
Hard-core berücksichtigt. Ein in dieser Hinsicht verbesserter Ansatz [10] für das
Potential führt dann auch zu einer theoretischen Grundzustandsenergie von 1,48 MeV im
Gegensatz zum Experiment.

Einen anderen Weg haben Ball et al. [11] und Fulco et al. [12] beschritten: Mit
Hilfe eines Potentials berechneten sie die Off-Shell T-Matrix und entwickelten das
Resultat in eine Summe separabler Terme nach Lippmann-Schwinger Eigenfunktionen
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(s. Weinberg [13]). Lösung der Faddejev-Gleichung ergibt dann eine Bindungsenergie
für 12C von ca. 2,2 MeV. Fuda [14,15] hat die Weinbergentwicklung auch auf Potentiale
mit einem Hard-core angewandt, ohne jedoch ein konkretes Beispiel durchzurechnen.
Da nicht das Potential direkt, sondern nur die Off-Shell T-Matrix in die Faddejev-
Gleichung eingeht, bietet der Hard-core keine grundsätzlichen Schwierigkeiten.

Ohne den Umweg über ein Potential hat Duck [16] direkt eine spezielle Form für
die der a-a-Streuung angepaßte Off-Shell T-Matrix in die Faddejev-Gleichung eingesetzt.

Damit findet er keine Bindung für den 12C-Kern.
In Anbetracht dieser Situation ist es gerechtfertigt, die bereits vorliegenden

numerischen Untersuchungen zur Bindungsenergie des 12C mit Hilfe der Faddejev-Gleichungen

zu ergänzen und zu vervollständigen. Dabei soll insbesondere das Problem der
Coulombabstoßung zwischen den a-Teilchen konsequenter als bisher berücksichtigt
werden. Das geschieht dadurch, daß bei einem großen Abschneideradius von ca.
12 • IO-13 cm die a-a-Streuphase auf endliche Reichweite des Potentials umgerechnet
wird: das äußere Ende des Coulombpotentials wird abgeschnitten. Dieses Verfahren
wird in Abschnitt 2 kurz erläutert und der Einfluß des Abschneidens auf die 8Be

Resonanzparameter angegeben. In Abschnitt 3 wird der Faddejev-Formalismus für
die Zwecke dieser Arbeit kurz beschrieben. Abschnitt 4 behandelt die Lösung der
Faddejev-Gleichungen für verschiedene lokale Potentiale mit Hilfe der Weinberg-
Entwicklung. Die ausführlichsten Rechnungen werden mit dem Benn-Scharf Potential
[5] durchgeführt. Damit wird insbesondere der Hard-core Einfluß auf die Bindungsenergie

des 12C zum ersten Mal genau ermittelt. Zu Vergleichszwecken werden auch das
Haefner-Potential (s. z.B. [17]) sowie das in [12] verwendete Darriulat-Potential
herangezogen. Beide besitzen einen Soft-core. Dies gibt Anlaß zu einer Kritik der Resultate
von [12]. In Abschnitt 5 wird die Faddejev-Gleichung mit einer Reihenentwicklung für
die Off-Shell T-Matrix gelöst, welche nur die a-a Streuphase sowie die analytischen
Eigenschaften der Off-Shell Amplitude zur Voraussetzung hat; es wird also kein
Potential benutzt. Dies ist eine Verbesserung und Verallgemeinerung der von Wong und
Zambotti [18] angegebenen Methode. In Abschnitt 6 werden die Resultate diskutiert.
Die angewandten numerischen Methoden werden in einem Anhang kurz erläutert.

Als wesentliches Ergebnis der Arbeit stellt sich heraus, daß der Grundzustand des
12C nicht durch die Zweiteilchenwechselwirkung von drei strukturlosen a-Teilchen
beschrieben werden kann. Die aus den elastischen a-a Streudaten folgende Bindungsenergie

liegt für alle behandelten derartigen Modelle zwischen 0 MeV und 1 MeV
gegenüber einem gemessenen Wert Eap 7,3 MeV. Dieses Ergebnis stimmt mit den

Rechnungen überein, welche die Grundzustandsenergie des 12C mit Hilfe von Variationsmethoden

ermittelten [19, 20, 21].

2. Die a-a Streuphase

2.1. Numerik

Wir wollen die numerischen Werte der a-a-Streuphase (es bezieht sich alles auf
die s-Welle, d.h. 1 0) kurz erläutern und den Einfluß der Umrechnung auf endliche
Reichweite des Coulombpotentials diskutieren. Dabei wird als Längeneinheit 1 F
IO-13 cm genommen und die anderen Einheiten werden so gewählt, daß

h Mx=l
(Ma Masse des a-Teilchens). Die Energieeinheit ist dann 10,42 MeV.
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Nach [3] und [4] ist die a-a-Streuphase insbesondere im niederenergetischen
Bereich gut bekannt. Rasche [22] hat gezeigt, daß sie unterhalb 1 MeV durch eine
Effective-range-Entwicklung mit Einschluß des Shape-Parameters gut wiedergegeben
werden kann. Bezeichnet man den Coulombparameter mit

2e2 0,27605'¦r— (21)

una definiert

h(rf) Rer-^±\-logn (2.2)
P(-v>i)

so gilt für die Phase 8Jft) (k Wellenzahl der Relativbewegung) :

h(n) +
g,Ctg 8c{k)

A + B-k2 + C-k\ (2.3)
exp(277-r;) — 1

Die beste Annäherung an die gemessene Phase erreicht man mit :

A= 0,778 -IO"3

B 1,012 F2

C 0,8 F4

Die davon abweichenden Werte in [22] enthalten numerische Fehler.
Oberhalb 1 MeV ist die Effective-range-Entwicklung nicht mehr brauchbar.

Die Meßpunkte liegen hier aber so dicht, daß man sie z.B. durch eine geglättete Kurve
verbinden kann (s. [5], Fig. 2). 8C ist die durch die KernWechselwirkung relativ zu den
Coulombwellen entstehende Phase. Da die im folgenden Abschnitt benutzten Formeln
auf der Annahme eines endlichen Zweiteilchenpotentials beruhen, schneiden wir das

Coulombpotential bei einer endlichen Reichweite R ab. Das ist folgendermaßen zu
verstehen: Wir nehmen an, daß die Kernwechselwirkung zwischen den beiden a-
Teilchen eine Reichweite von weniger als 5 F hat. Für größere Abstände wirkt dann
nur noch das Coulombpotential. Wir berechnen unter dieser Voraussetzung die Phase
80(k;R) die bei gleichem Kernpotential, jedoch mit einem elektrostatischen Potential
endlicher Reichweite R (>bF) relativ zu freien Wellen entsteht.

Das elektrostatische Potential für Abstände <R soll mit dem Coulombpotential
übereinstimmen. Die Abhängigkeit der 12C-Bindungsenergie von der Wahl des
Parameters R muß natürlich untersucht werden.

Eine wohlbekannte elementare Rechnung (s. z.B. [5]) liefert:

l + A(k;R)ctg(kR)
ctg80(k;R) D.

(2.4)
ctg(kR) - A(k;R)

wobei

Gp(y ; kR) + F0(r, ; kR) ctg 8Jk)
' ' GJr, ; kR) + F0(V ; kR) ctg 8Jk) ' '

G0(rj;p) bzw. F0(-q;p) sind die irreguläre bzw. reguläre Coulombwellenfunktion für
die s-Welle. Der Punkt bedeutet Ableitung nach dem Argument p.
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Figur 1 zeigt, wie sich die Streuphase 80(k;R) als Funktion des Parameters R
verhält. Offensichtlich hängen auch die Parameter der 8Be-Resonanz von R ah.
Bezeichnen wir die zur Resonanz gehörige Wellenzahl mit kc und die Resonanzbreite

1 «.(0)
100

11 F

60-

R 15F40^

20 H

0.02 RjZOF

» 0,12 0,14 0.16 0.18 020 022 0,24
k (F-1)-20

-60-

Figur 1

Totale Streuphase hJk,R).

mit rc und mit k0(R) undTo(Ä) die dem abgeschnittenen Coulombpotential entsprechenden

Werte, so wird (s. z.B. [5]) :

lim k&R) - k2 (0,8824 ± 0,0005) • 10"2 F"

lim r0(R) rc (0,65 ± 0,16) -HT6 F~2

(2.6)

(2.7)

r0(R)

k20(R) k2 +

F(r!c,kcR) + F2(ric,kcR)

G(r,c,kcR)
_

F(Vc,kcR) rc

k
F(r,c, kcR) F(Vc, kcR)[F2(Vc, kcR) + F2(Vc, kcR)]\ 2

Für k > 1,1 F_1 geht 80(k;R) in die reine Hard-core-Phase über:

80(k,R)~-kRHC

RHC x 1,2 F

Im folgenden arbeiten wir mit der Phase

8(k,R)^80(k,R) + kRHC

(2.8)

(2.9)

(2.10)

(2.11)

Dies ist deshalb notwendig, weil in den folgenden Abschnitten Formeln benutzt
werden, die nur gelten, wenn die Streuphase als Funktion der Wellenzehl k im Unendlichen

beschränkt bleibt. Wegen der Subtraktion der reinen Hard-core-Phase von 80(k;
R) muß der Einfluß des Hard-core auf die Bindungsenergie gesondert behandelt werden
(s. Abschnitt 4).
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Die durch die Subtraktion der Hard-core-Phase hervorgerufene Änderung der
Resonanzparameter kc und 1 'c ist so klein, daß sie numerisch nicht ins Gewicht fällt.

Die Parametrisierung (2.3) in Verbindung mit (2.4), (2.5) und (2.11) wird für
0,11 F_1 < k < 0,32 F_1 benützt. In [5] wurde gezeigt, daß bei sehr kleinen Energien
die folgende Darstellung zweckmäßiger ist :

k
p

8(k, R) -kR + arctg ^t^- + arctg -^ (2.12)
F0(v, kR) kl - k2

(2.12) hat den Vorteil, daß die beiden ersten Terme allein durch das abgeschnittene
Coulombpotential verursacht werden, während der dritte von der zusätzlichen
nuklearen Wechselwirkung herrührt.

Tabelle 1

Resonanzparameter nach Abschneiden
der Coulomb-Wechselwirkung

Ä[F] kl [IO"3 F"2] r„ [io-3 f-2]

11 5,907 6,856
12 6,956 4,785
13 7,608 3,393
14 8,020 2,441
15 8,287 1,780
16 8,461 1,313
17 8,577 0.980
18 8,654 0.739
19 8,707 0,562

Tabelle 1 zeigt die numerische Änderung der Resonanzparameter mit R. Das
Abschneiden des Coulombpotentials hat zur Folge, daß die Resonanzenergie kleiner
und die Resonanz breiter wird. Will man die Dominanz der Resonanz erhalten, darf
man R also nicht zu klein wählen.

2.2. Bemerkungen zur Off-Shell-Amplitude

In die Faddejev-Gleichungen geht die Off-Shell-Zweiteilchenstreumatrix
<jq\ T(z) \q'y ein. Dafür gilt die Partialwellenentwicklung

<<7| T(z) \q'} t(q, q';z) + f (21 + 1) t,(q, q' ; z) P, (q ¦ q') (2A3)
1=2

Da wir nur die s-Welle berücksichtigen wollen, lassen wir in (2.13) die höheren Terme
weg:

<7q\T(z)\q')=t(q,q',z) (2.14)

Durch die aus dem Experiment bekannte Phase 8(k ; R) wird nur die On-Shell Amplitude
bestimmt :

4tt
t(k,k;k2 + i€)=-— e"> sin 8 (2.15)

Rr
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Im übrigen verweisen wir bezüglich theoretischer Einzelheiten auf [22]. Das Problem
der Ermittlung von (2.14) aus dem direkt bekannten (2.15) wird uns im folgenden immer
wieder beschäftigen.

3. Die Faddejev-Gleichung

Die Faddejev-Gleichung für einen gebundenen Zustand aus drei identischen
Bosonen mit Spin 0 lautet im Schwerpu'nktsystem (s. z.B. [22]).

*&$•') tA-3 T-JT2 \d3Kq\T(s-ip2)\k + ipyY(j> + Ak,k;s) (3.1)
(2tt)3 s-q2-ip2J

Dabei ist <<7| T(s) \q'} die in (2.13) definierte Off-Shell-Streuamplitude. Gesucht sind die
negativen reellen Werte s für welche (3.1) Lösungen hat. Diese s-Werte sind die Energien

der gebundenen Zuständen des Dreiteilchensystems. W(q,p;s) hängt eng mit
der Wellenfunktion des Dreiteilchensystems zusammen [22]. Wir brauchen jedoch
darauf hier nicht weiter einzugehen.

Wir beschränken uns in der Partialwellenzerlegung der Off-Shell-Streuamplitude
auf den Zustand mit Drehimpuls 0 (s. Einleitung). Es ist also (s. auch 2.14)

<q\T(s-ip2)\k + ip> t(q,\k' + ip\;S-$p2) (3.2)

Dann ist es konsequent, sich bei der Suche nach gebundenen Zuständen des
Dreiteilchensystems auf solche Konfigurationen zu beschränken, in denen der relative
Bahndrehimpuls von zwei Teilchen sowie der Drehimpuls der Relativbewegung des dritten
Teilchens bezüglich des Schwerpunktes der beiden andern Teilchen verschwindet.
Daraus folgt, daß der Gesamtdrehimpuls ebenfalls verschwindet (s. z.B. [22]). Whängt
dann nur noch von den Beträgen der Impulse ab :

mp;s)=P(q,p;s) (3.3)

Einsetzen von (3.3) und (3.2) in (3.1) gibt mit einer elementaren Variablentransformation:

P+ik

lt„*.<\ 2 * fut f t(q,Vy2 + j(k2-p2);s-ip2)Hg,P,s) -jjkdk jydy s_{y2 + m toM
(3.4)

Gleichung (3.4) ist eine Integralgleichung in zwei Variablen, welche nur mit großem
numerischen Aufwand und für ein einfaches Potential gelöst wurde [6]. Man benutzt
deshalb zweckmäßigerweise die Tatsache, daß nach Meetz [23] und Weinberg [13] die
Funktion t(q,p;s) für s < 0 in eine Summe separabler Terme entwickelt werden kann:

t(q,p; s) 2 in(s) gjq; *) -gn(p ; *) (3.5)
n-l

Für ein separables Zweiteilchen-Potential bleibt von der Summe (3.5) nur der erste
Term übrig. Dasselbe gilt, wie Lovelace [2] gezeigt hat, wenn die Streuphase nur in der
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Nähe einer Resonanz wichtig ist. Diese Tatsache hat verschiedene Autoren, insbesondere

Harrington veranlaßt, das 12C versuchsweise mit einem separablen Yamaguchi-
Potential zu lösen. Dies ist aber nicht gerechtfertigt; denn obschon die s-Welle der
a-a-Streuung von der 8Be-Resonanz bei ca. 92 keV beherrscht wird, ist doch der genaue
Verlauf der Streuphase bei höheren Energien für die Berechnung der Bindungsenergie
des l2C wichtig. Insbesondere wird durch Harringtons Ansatz der Hard-core überhaupt
nicht berücksichtigt. Andererseits besteht jedoch die berechtigte Hoffnung, daß die
Reihe (3.5) rasch konvergiert, so daß die Berücksichtigung eines zweiten Summanden
schon eine bedeutend bessere Näherung ist.

Entsprechen (3.5) macht man für p(q,p;s) den Ansatz:

l *
>P(q,p;s) -^rJs-ip2)gJq;s-ip2)fH(p;s) (3.6)

n=l

Mit (3.5) und (3.6) wird (3.4) ein gekoppeltes System von Integralgleichungen in einer
Variablen für die Funktionen fjp)

/-tf:«) |ij \ dkKnn-iP.k;s)-fn-(k;S) (3.7)

mit

P+ik

v f gnjVy2A-î(k2-p2);s-jp2) Tn,(s-$k2)-gH.(y;s-}k2)
Knn'(P,k;s)= I ydy

Ip-itl s-(y2 + $k2)

(3.8)

Die Gleichungen (3.7) und (3.8) bilden die Grundlage für alle weiteren Rechnungen. Die
Information aus den a-a-Streuexperimenten geht in die Funktionen tJs) und gJp;s)
ein. Dabei sind nun zwei verschiedene Wege möglich :

1) Man nimmt für die a-a-Wechselwirkung ein lokales Potential an, welches die
Streudaten möglichst gut wiedergibt. Dadurch ist die Off-Shell-Streuamplitude
bestimmt und damit auch die Entwicklung (3.8). Diese Methode wird in Abschnitt
4 benutzt.

2) Man sucht aus der bekannten On-Shell-Streuphase direkt eine Off-Shell-Ent¬
wicklung (3.8). Diesen Weg behandelt Abschnitt 5.

4. Benutzung vorgegebener, lokaler Potentiale

Die in diesem Abschnitt angewandten Methoden erweitern und verbessern die
Arbeiten [11], [12], [14] und [15]. Soweit sich die Ausführungen auf die a-a-Streuung
beziehen, beschränken wir uns stets auf die s-Welle (1 0).

4.1. Die verwendeten Potentiale

Es wurden das Haefner-Potential, das Darriulat-Potential, sowie das Benn-
Scharf-Potential benutzt. In unserer Rechnung müssen diese Potentiale natürlich
bei r R abgeschnitten werden.
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Das Haefner-Potential VH(r) wird von Experimentalphysikern bevorzugt, weil
es sich teilweise analytisch behandeln läßt.

VH(r)
10,42

g2 - D r<r0

Ae2

V„(r)= — r>r0 (4.1)

Die gemessene s-Wellen-Resonanz läßt sich durch folgende Wahl der Parameter
wiedergeben:

g2 30 D 27,08 MeV r0 4,5F (4.2)

Das in [12] benutzte Darriulat-Potential VD(r) hat folgende Form

Ae2
VD UX{1 + exp([r - rjjaj}-1 - U2{1 + exp([r - rjjaj}'1 + — (4.3)

r
Die gemessene a-a-Streuung läßt sich durch folgende Wahl der Parameter wiedergeben.

•7! 150 MeV «1 0,1 F rx 1,65 F

C72=9,2MeV a2 0,4F r2 3,72F (4.4)

Das von Benn und Scharf [5] durch Lösen des 'Umkehrproblems' berechnete
phänomenologische Potential VB(r) läßt sich nicht in geschlossener Form angeben. Da es
ohne Rückgriff auf einen willkürlichen Ansatz zustande kommt, halten wir es für das
verläßlichste Potential. Es zeigt einen Hard-core, welcher den anderen Potentialen
fehlt. Den Einfluß des Hard-core werden wir ausführlich untersuchen.

Figur 2 gibt eine Vorstellung vom Verlauf der Potentiale mit der angegebenen Wahl
der Parameter.

V[MeVl
20 - VB VD V„

16

12

8

4

0 1

1
"TT 1—T\ 3 \i $ 5 6 7

r-—
8

r[Fl

Figur 2
Haefner-Potential (V„), Darriulat-Potential (VD) und Benn-Scharf-Potential (VJ.
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4.2. Entwicklung von t(p,q; s) nach Sturm'sehen Funktionenfür Potentiale ohne Hard-core

Bei gegebenem Zweiteilchenpotential V(r) definiert man

V(p, p') ^AL[dr V(r) sin(pr) sin(p'r) (4.5)
PP' J

o

dann gilt für t(p,q;s) folgende Integralgleichung (s. z.B. [22]).

HJ. \ via ^
l ï j,A'2ViPA)tiP',q;s)t(p,q;s) V(p,q) - — dp' — : (4.6)

2tt2 J p2 -s-te
o

Für s < 0 und Potentiale endlicher Reichweite ohne Hard-core ist der Kern der
Integralgleichung (4.6) vom Hilbert-Schmidt-Typ. Man kann dann t(p,q;s) in eine Summe
von separablen Termen entwickeln. Das Resultat ist (s. z.B. [22]).

t(P,q;s) yTZjV%icpn(p;s)cpn(q;s) (AA)

In (4.7) sind die Eigenfunktionen der homogenen Lippmann-Schwinger-Gleichung
und A„ die zugehörigen Eigenwerte :

1 r P'2V(P>P')
K(s)cpn(P•s)=-2^)dP' pi2_s

¦ <P*iP'->s) (4-8)

o

und es wurde folgende Normierung gewählt.

CO

Mit (4.7) hat man die in (3.5) gegebene Entwicklung explizit, wenn ein lokales Potential
vorgegeben ist.

Für rein anziehende Potentiale ist A„(s) > 0. Der Punkt 0 tritt dabei als Häufungspunkt

auf. In unserem Fall, d.h. keine gebundenen Zweiteilchenzustände, ist ferner
XJs) < 1 und absteigende Werte von XJs) liefern in der Entwicklung (4.7) offensichtlich

immer kleinere Beiträge. In [11] wurde gezeigt, daß für übliche Potentiale bereits 2
bis 3 Terme eine gute Näherung liefern.

Hat das Potential einen abstoßenden Teil, kommen auch negative Eigenwerte
vor. Eine Entwicklung nach absteigenden Werten von XJs) wird dann nicht gut sein,
da dadurch gerade die großen negativen Eigenwerte vernachlässigt würden. Der in [12]
angegebene Wert für die mithilfe von VD berechnete Bindungsenergie des 12C ist
deshalb unrichtig, da in der Rechnung gerade die großen negativen Beiträge in der
Entwicklung verfehlt wurden.
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1

4-

3-y
2- \ A% i?W
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Figur 3
(+)

l-\c->(s)
<+) für das Darriulat-Potential.
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0.8
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-0.6-
-0,8-
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1.2-

Figur 4
Eigenfunktion <pjp;s), s -1,2 MeV, R 11,0 F, Darriulat-Potential.

Um die Trennung in positive und negative Eigenwerte XJs) explizit zu machen,
schreiben wir (4.7) in folgender Form:

A</>(s) At'(»)t(p,q;s)=-y \ll.y»(P;s)<pï\q;s) + ,"'ynAp,s)cPnAq.s)
fzi 1 - Av^s) 1 + A1« '(s)

A<r)(s)<0<A<1+><l

(4.10)

(4.11)

Die Figuren 3 und 4 zeigen typische numerische Ergebnisse für die Eigenwerte und
Eigenfunktionen der homogenen Lippmann-Schwinger-Gleichung für F„.

4.3. Berücksichtigung des Hard-core

Wie bereits (4.5) zeigt, gilt die Herleitung von (4.10) nur für Potentiale V(r), die
für r-*0 nicht zu schnell wachsen. Für Potentiale mit Hard-core müssen deshalb die
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Gleichungen modifiziert werden. Auch für Potentiale mit Hard-core existiert die
Streumatrix und kann in eine Summe separabler Terme entwickelt werden. Allerdings
wird die numerische Behandlung ganz erheblich kompliziert. Im folgenden geben wir die
Ergebnisse von Fuda [14], [15] an, welche für numerische Rechnungen besonders geeignet

sind.
Sei VHC(r) ein 'reines Hard-core Potential', d.h.

^hcM °° r < ÄHC

FHC(r)=0 r>Rlic (4.12)

Den zugehörigen Anteil der s-Welle an der Streumatrix (s. z.B. (2.14)) bezeichnen wir
mit tHC(p,q;s). Nach [15] läßt sich tHC in folgende Summe separabler Terme entwickeln
(n.b. s < 0!)

¦s/js|exp(\/îs|J?Hc) sin(^-i?Hc)sin(i7-igHc)
^(P.q.s)- *«eM_^Rncs)_eMVrIlRHc. p

-

» Azjs) sin2 zjs)
+ ArrRHC 2 gn(P IS) gjq\ s) [z2(s) - sR^] -

2z„(s) — sin2z„(s)

(4.13)

wobei

/j. d n n/Tl ¦ i*.r> >exP(-"v/FlÄHc)+exp(v/is]i?Hc)
p-cos(p¦ RHC) + V\s\ sm(pRHC) — ^exp(-V|i1 RHC) - exp(V\s\RHC)

P(z2(s)-P2RIc)

zn sind die positiven, reellen Lösungen der Gleichung

,^p exp(-V^1 i?Hc) + exp(yq7i RHC)
z„ctgzn -V\s\RHC :—7f=nr-; /nD : (*-16)

exp(-v/|s|/?Hc( - expV>|i?Hc)

Wie in [15] gezeigt wird, dürften im allgemeinen 2 bis 3 Terme dieser Entwicklung
genügen, um eine für numerische Anwendungen genügende Genauigkeit zu erreichen.

Es sei nun

V=VHC+V0 (4.16)

und der s-Wellenanteil der zu V gehörigen Streumatrix sei t(p,q;s). In [14] wurde
gezeigt, daß sich auch t — tHC in eine Summe separabler Terme entwickeln läßt.

A<+) Ä Al.

-^W(P)W(q)-y
¦=1 " n-l

t(P,q;s) -^(p.q.s) =- y^A^pw^pc^q) _ ^y-^^W !,->(?)

(4.17)
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wobei

(+) (+)
Pn-\P)=C0S(PRHC) (PnAPIS)

+
2 sin(pRc)

CO

J dp'p'2cpc-\p';s)——
P \i" 'P

f <+> 1 1

+ &\dp'p'2cp?ip;s)-—— (4.18)

In (4.17) und (4.18) sind A„ und cp„ die Eigenwerte bzw. Eigenfunktionen derhomogenen
Lippmann-Schwinger-Gleichung für das ins Zentrum verschobene äußere Potential
V0(r + Rue). Die Summation über positive bzw. negative Eigenwerte wurde wie in
(4.10) wieder getrennt ausgeführt. Für ÄHC 0 geht (4.17) mit (4.18) selbstverständlich
in (4.10) über.

In (4.13) und (4.17) haben wir die für die weitere Rechnung benutzte separable
Entwicklung von t(p,q;s).

4.4. Numerische Ergebnisse

In der Tabelle 2 sind die errechneten Bindungsenergien für die beiden Potentiale
ohne Hard-core sowie für das Benn-Scharf-Potential nach Abzug des Hard-core
zusammengestellt. Tabelle 3 zeigt die entsprechenden Werte für das Benn-Scharf-
Potential mit Hard-core.

Tabelle 2
Theoretische Bindungsenergie für das Haefner-, das Darriulat- und das Benn-Scharf-Potential
ohne Hard-core in Abhängigkeit von der Anzahl berücksichtigter positiver (N+) und negativer
(N-) Terme in (4.10) sowie des Coulombabschneideradius R

EB [MeV] En [MeV] - EB [MeV] EB [MeV]
R [F] AT<+> 1 JV<-> 1 itfl+> 1 AT<-> 1 iV<+> 2 AT<~> 0 jV<+> 2 AT<-> 1

Vn Vu vB vH vD vB vD vB vD V»
11 2,1 1,28 2,53 1,0 0,06 2,44 1,29 2,53 0,07 2,45
13 2,1 1,28 2,53 1,0 0,05 2,44 1,28 2,53 0,07 2,45
15 2,1 1,28 2,53 1,0 0,05 2,44 1,28 2,53 0,07 2,45

Es ist zu beachten, daß nur der s-Wellen-Anteil der a-a-Streuung berücksichtigt
wurde. Die Berücksichtigung der d-Welle ergibt offensichtlich eine Erhöhung der
Bindungsenergie, wie man aus [12] entnehmen kann. Der dort angegebene Beitrag von
0,59 MeV ist jedoch sicherlich zu groß, und zwar aus demselben Grund wie der s-
Wellen-Beitrag zu groß ist. Nimmt man realistischerweise die Hälfte, bekommt man
für die Bindungsenergie des 12C einen Wert von 0,6 MeV. Die Beiträge mit l > 2 dürften
völlig zu vernachlässigen sein. Schätzt man den Einfluß aller gemachter Näherungen
pessimistisch ein, ist doch zweifellos die folgende Aussage richtig:

3 strukturlose a-Teilchen, die nur via lokale Zweiteilchenpotentiale wechselwirken,
haben einen gebundenen Zustand, dessen Bindungsenergien kleiner als 1 MeV ist.

Es dürfte interessant sein, die Resultate für das Benn-Scharf-Potential mit und
ohne Hard-core zu vergleichen. (6. Spalte in Tabelle 2 und 5. Spalte in Tabelle 3). Aus
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diesem Vergleich sieht man, daß der harte a-Kern die 3-a-Bindungsenergie um ca.
2 MeV verringert.

Tabelle 3
Theoretische Bindungsenergie für das Benn-Scharf-Potential mit Hard-core in Abhängigkeit
von der Anzahl berücksichtigter Terme in (4,13) (NHC) und (4.17) (Nr) sowie des
Coulombanschneideradius R

EB [MeV] EB [MeV] EB [MeV] EB [MeV] EB [MeV]
AT« 1 JVJ+> 1 2V<+> 1 Ar<+>=1

'
JV<±> 1

Np~» 0 NC,-'» 0 NC,-» 0 Np-» 1 NÇr» 1

fi[F] WHC 0 ATHC=1 ATHC 2 NHC 2 N„c 3

11 1,84 0,60 0,58 0,30 0,30
13 1,84 0,60 0,58 0,30 0,30
15 1,84 0,60 0,58 0,30 0,30

Ein weiteres Resultat von Interesse erhält man, wenn man vom Benn-Scharf-
Potential den Coulombanteil subtrahiert. Für das so bestimmte reine Kern-Potential
finden wir:

EB —4,5 MeV mit Hard-core
EB —7,3 MeV ohne Hard-core

Für die Coulombabstoßung ergibt sich somit

4,2 MeV mit Hard-core
4,9 MeV ohne Hard-core

5. Off-Shell Zweiteilchenstreumatrix ohne Potentialmodell

5.1. Einleitung

Im vorigen Abschnitt wurde die einschränkende Annahme gemacht, daß sich die
a-a-Wechselwirkung durch ein lokales Potential beschreiben läßt. Es ist jedoch
wünschenswert, eine Methode zur Lösung der Faddejev-Gleichungen zu haben,
welche vom Potentialbegriff unabhängig ist.

Die in diesem Abschnitt hergeleitete Reihenentwicklung für die T-Matrix
verwendet nur die bekannten analytischen Eigenschaften sowie zusätzlich die Tatsache,
daß die niederenergetische Streuung von einer scharfen Resonanz dominiert wird.

Bekanntlich kann man für jede gemessene Streuphase eine ganze Klasse 'elastisch
äquivalenter Potentiale' finden, von denen im allgemeinen jedes zu einer anderen Off-
Shell Fortsetzung führt. Es ist deshalb von vornherein klar, daß durch die gemessene
Streuphase die Off-Shell Fortsetzung nicht eindeutig bestimmt ist. Auch die Methoden
dieses Abschnittes sind deshalb in gewisser Weise willkürlich. An Stelle der Lokalität
des Potentials müssen andere Annahmen gemacht werden. Diese werden im Abschnitt
5.2 eingehend beschrieben. Die in Gleichung (5.20) angegebene Entwicklung ist
trotzdem aus zwei Gründen nützlich :

Erstens ermittelt man mit ihrer Hilfe die 12C-Bindungsenergie auf einem ganz
anderen Wege als in Abschnitt 4 und erhält somit einen Hinweis über den Einfluß,
welchen die Voraussetzung spezieller Potentiale auf die Bindungsenergie hat.
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Zweitens kann (5.20) auf alle Dreikörpersysteme angewandt werden, deren -
als bekannt vorausgesetzte - Streuphasen von einer niederenergetischen Resonanz
beherrscht werden. Letzteres ist aber keine besondere Einschränkung, da sonst ein
gebundener Dreikörperzustand gar nicht zu erwarten ist.

Es sei noch erwähnt, daß im Gegensatz zu einer in [18] angegebenen Entwicklung
die in der vorliegenden Arbeit hergeleitete Gleichung (5.18) auch anwendbar ist, wenn
man sich für die Parametrisierung der Streuphase nicht auf die Effective-range-
Näherung beschränkt.

Der Hard-core Anteil der Phase wird im folgenden weggelassen (s. 2.11)). Dies ist
notwendig, da die Rechnungen nur für Phasen gelten, welche für k -> œ endlich bleiben.
Die nachträgliche Berücksichtigung des Hard-core bietet keine grundsätzlichen
Schwierigkeiten, erhöht den numerischen Aufwand aber erheblich. Wir führen dies
deshalb nicht explizit durch, sondern entnehmen den numerischen Wert des Hard-core
Anteils der 12C-Bindungsenergie den Ergebnissen von Abschnitt 4.

Im übrigen bezieht sich alles wiederum auf die s-Welle der Zweiteilchenstreuung.

5.2. Herleitung der Entwicklung für die Streuamplitude

Die Streuphase kann (nach Abspaltung des Hard-core Anteils) entsprechend (2.12)
folgendermaßen geschrieben werden :

k

F0(r,,kR) F&2kc
8(k, R) -kR + arctg

° '' + arctg —-A- + A(k, R) (5.1)
F0(n, kR) k02 - k2

In (5.1) kann A(k,R) für sehr kleine Energien vernachlässigt werden (s. z.B. [5])
Oberhalb 200 keV trägt er aber merklich bei.

Im folgenden werden wir von der Hypothese ausgehen, daß der Resonanzanteil
der Phase den Hauptanteil zur Bindungsenergie liefert und der Rest als Korrektur
betrachtet werden kann. Als Resonanzphase definieren wir:

r± M°2k 2%
S«.(*) arctg_1_ arctg—; (5.2)

Durch den zweiten Term in (5.2) wird erreicht, daß lim 8TeJk) — 0. Der erste Term allein
A-*-co

strebt bekanntlich in diesem Grenzfall gegen tt. f1 und k sind in gewissen Grenzen frei
wählbar, jedoch müssen folgende Bedingungen erfüllt sein:

a) Für Energien unterhalb 200 keV soll der zweite Term in (5.2) nicht wesentlich
beitragen, damit das reine Resonanzverhalten gewahrt bleibt.

b) ^res(^) S°A als Funktion von k bei einigen F_1 bereits sehr klein werden.
c) Die Kausalitätsbedingung für Potentiale mit endlicher Reichweite D soll erfüllt

sein (s. z.B. [24] S. 353) :

d8«JQ>
dk -K)
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a)-c) sind erfüllt mit der Wahl :

% 0,7 VA

~ Ak

D + ik
Definieren wir ferner die Korrekturphase durch

M
F0(r>,kR) 2k

8km(k) -kR + arctg „ ^ + A(k, R) + arctg,
F0(r,,kR)

so wird

8(k) 8IeJk) + 8kOTt(k)

Figur 5 zeigt das Verhalten beider Summanden.

k2-k2

A
?2-"f
+1-

0-

-1-

J NAestk)

Nai 0,2 03
i l i i i i _0,4 0,5 0,6 0,7 0,8—0,9 -Ir- ,1 12

klF"1]
Äor(k)

-2J y
-3-

(5.3)

(5.4)

Figur 5
Resonanzphase 8res(A) und Korrekturphase 8korr(Ä). R 15 F, k 0,7 F_1.

Der Aufteilung (5.4) der Streuphase entspricht eine Aufteilung der Streuamplitude
auf der Energieschale :

t(k,k;k2 + ie)= exp[i8(k)] sin8(k) tm(k,k;k2 + ie) + tko„(k,k;k2 + ie)
k

mit

47T

t„Jk, k;k2 + ie) ^- — exp[i8teJk)] sin 8nJk)
k

tUrJk, k;k2 + ie) =f-— exp[2i8tcJk) + i8ko„(k)] sin 8k0„(k)

^exp[2i8nJk)]tko„(k,k;k2 + ie)

'korr (k, k;k2 + ie) ist also die zu SkotJk) gehörige Streuamplitude.

(5.5)

(5.6)

(5.7)



Vol. 47, 1974 Berechnung der Grundzustandsenergie des 3-Alpha-Teilchen-Systems 205

Der Übergang zur Off-Shell-Amplitude geschieht im folgenden für beide Anteile
getrennt. Nach [2] kann man ties(p,q;k2 + ie) folgendermaßen faktorisieren:

tm(p,q;k2 + ie)
g,ts(P) -gre.(g)

Dm(k2 + ie)

wobei

D«8(,)=_-exP^-j^F_)^j

(5.8)

(5.9)

Aus (5.6), (5.8) und (5.9) ergibt sich:

sin8tcs(p)
gr-s(P) -expL*,? M?) ;

l ir )P'(P'2-P2)y
1/2

(5.10)

Mit (5.8), (5.9) und (5.10) haben wir den Resonanzanteil der Off-Shell Streumatrix.
Um für tko„ ebenfalls eine separable Off-Shell Fortsetzung zu finden, behandeln

wir zuerst tko„. Es ist nach (5.7) :

tkm(k,k;k2 + ie)
An

exp[»8korr(£)]sinSkorr(Ä) (5.11)

Ohne auf weitere Einzelheiten einzugehen, wollen wir annehmen, daß tko„(p,q;s)
sich in folgender Form darstellen läßt :

kn„(p,q;s)
pk0rr(p,q;s)

Dko„ (s)

mit

£>korr(s) exp
2S fjkorr^
TT

J k'(k'2 -
)_

(k'2-s)
dk'

(5.12)

(5.13)

Dabei soll Fkorr für positive p und q keine Singularitäten für Res < 0 haben. Diese
Darstellungsmöglichkeit für tko„(p,q;s) besteht für eine große Klasse von Potentialen
(s. z.B. [2], [18]).2) Wegen der einfachen analytischen Eigenschaften von Fko„ und in
Ermangelung besserer Kenntnis der s-Abhängigkeit setzen wir an :

pk0r,(P,q;s)
p2 + p2 q2 + p2nA0

1 °°

^2< P2 + p2) \q2 + pJ
(5.14)

3) Es ist stets zu beachten, daß wir das Coulombpotential bei endlicher Reichweite R 'ab¬
schneiden'. Die in diesem Abschnitt verwandten Phasen hängen also noch von R ab. In der
Bezeichnungsweise haben wir das nicht zum Ausdruck gebracht.
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Eine eventuelle s-Abhängigkeit der Koeffizienten C„ ist vernachlässigt. Zur näheren
Begründung von (5.14) s. z.B. [18]. Wir möchten noch einmal ausdrücklich betonen,
daß Fkorr nur in das Korrekturglied eingeht und deshalb die genaue Form von Fko„
numerisch keine große Rolle spielen sollte. Der Parameter p hat einen numerischen
Wert, welcher etwa der Reichweite der Wechselwirkung entspricht. Aus (5.11), (5.12),
(5.13) ergibt sich nun

i? tu u ui ¦ n
A-rr sin 8km(k)

Fko„(k,k;k2 + ie)= exp
» o '

Die C„ und p ermittelt man durch Einsetzen von (5.14) in (5.15) : Mit der Methode der
kleinstein Quadrate werden diese Parameter an die bekannte Phase 8k0CJk) angepaßt.

Nachdem wir in (5.12), (5.13), (5.14) nun eine separable Entwicklung für tk0TI haben,
müssen wir eine solche auch für tko„ (s. (5.7)) angeben. Mit dem Ansatz

/' <j.n-A v^ cPn(P;s)cpJq;s)
tkm(p, q,s) 2cn —-——— (5-16)

-° Dko„(s)

kann man das erreichen, wenn die cpn folgende Bedingungen erfüllen :

a) 9n(k;k2)=exp[i8„Jk)]gJk) (5.17)

gn(k)^—^lr^—2\ (5-18)
k2 + p2 \k2 + p

b) epjk ; s) ist reell für s < 0.
c) <p„(k ; s) ist als Funktion von s analytisch bis auf einen Schnitt entlang der positiven,

reellen Halbachse.

a)-c) kann man durch folgenden Ansatz erfüllen :

cpjp;s) exp[»S„.^)]gjp) - - sm8'"{p) L>2dp<gn(p'
ir p J

1 1

p'2_p2_i€ p'2_s

(5.19)

(5.16) und (5.19) geben die separable Entwicklung des Korrekturterms. Damit haben
wir nach (5.5) die angestrebte separable Entwicklung von t:

t{pq.s)
e->iP)g~M +f 9n(P;s)9jq;s)

Ö«.(S) tAo ök.rr(s)

Mit (5.20) kann (3.8) ermittelt und (3.7) gelöst werden.

5.3. Numerische Ergebnisse

In Tabelle 4 sind zum Vergleich neben der mit dem Ansatz (5.20) errechneten
12C-Bindungsenergien noch einmal die entsprechenden Werte für das Benn-Scharf-
Potential - bester Kandidat unter den lokalen Potentialen - ohne Hard-core aufgetragen.

Wie man sieht, ist die Übereinstimmung recht gut. Wir werden im Schlußkapitel
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darauf zurückkommen. Im übrigen rechtfertigen die Resultate die Annahme, daß der
Hauptbeitrag zur Bindungsenergie, wenn man vom Hard-core Anteil absieht, vom
Resonanzterm herrührt.

Tabelle 4
Theoretische 12C-Bindungsenergie ohne Vorgabe eines lokalen Potentials in Abhängigkeit des
Coulombabschneideradius R undd er Anzahl N+1 berücksichtigter Terme in der Entwicklung
(5.20) (Hard-core subtrahiert)

£B[MeV] £B[MeV] EB [MeV] EB [MeV] EB [MeV]
R [F] ohne <k'„„ N 0 N 1 N 2 B-S-Potential

11 2,7 2,0 2,2 2,2 2,45
13 2,6 2,0 2,1 2,2 2,45
15 2,6 1,9 2,2 2,2 2,45

Ferner geht aus der Tabelle die schwache Abhängigkeit von der Wahl des
Abschneideradius R hervor, sofern dieser nur groß genug gewählt ist.

6. Zusammenfassung und Diskussion der Resultate

Die Veröffentlichungen zur Frage der Bindungsenergie des 12C-Kerns ergeben
ein widersprüchliches Bild (s. Tabelle 5). Die Ergebnisse differieren derart, daß die
Frage ungeklärt erscheint, ob das 3-a-Modell eine einigermaßen brauchbare Beschreibung

des 12C-Kerns liefert oder nicht.
Vergleicht man in Tabelle 5 Input und Bindungsenergie, ergibt sich folgender

Zusammenhang :

separables Potential 1 Term : EB « 7 MeV
separables Potential 2 Terme: EB « 1 MeV
lokales Potential: 0 < EB < 1 MeV
Elastische Streuphase : 0 < EB < 1 MeV

Aus den Resultaten der vorliegenden Arbeit kann man die folgenden Schlüsse ziehen :

1. Das 3-a-Modell des 12C-Kerns, welches ein lokales phänomenologisches a-a-
Potential annimmt, ergibt eine Bindung für den 12C-Kern. Die so berechnete
Bindungsenergie ist aber um eine Größenordnung kleiner als die gemessene.

2. Die Resultate von Abschnitt 5 mit einem potentialunabhängigen Ansatz für die
Off-Shell-Streuamplitude drängen den Schluß auf, daß auch durch eine
allgemeinere a-a-Wechselwirkung die experimentelle 12C-Grundzustandsenergie nicht
mit der elastischen a-a-Streuphase in Übereinstimmung zu bringen ist. Die
Erweiterung der T-Matrix über die Energieschale hinaus ist zwar nicht eindeutig,
und derAnsatz (5.18) ist nur einer von vielen möglichen. Die Übereinstimmung mit
den Ergebnissen von Abschnitt 4 ist aber so gut, daß es ausgeschlossen erscheint,
eine mit den Analytizitätseigenschaften der Streuamplitude verträgliche Abänderung

zu finden, welche eine viel größere Bindungsenergie ergibt. Das bedeutet, daß
der 12C-Kern durch das 3-a-Teilchen Modell nicht zu beschreiben ist.

3. Die von einigen Autoren errechnete Übereinstimmung von Experiment und 3-a-
Teilchenmodell beruht im wesentlichen darauf, daß die von diesen Autoren
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Tabelle 5

Theoretisch errechnete 12C

des 3-a-Modells

Walter Jaisü H.P.A.

¦Bindungsenergien relativ zu 3 freien a-Teilchen unter Zugrundelegung

Autor Jahr Ref. Input Methode Eb [MeV]

Harrington 1966 8 sep. Potential
Yamaguchi +
Coulomb klassisch

Faddejev 7,4

Duck 1966 16 sep. Potential
Yamaguchi + Hardcore

Faddejev kein Bindung

Hebach, Henneberg 1968 10 2 Term sep. Potential
+ 1 Term f. d-Welle
Coulomb als Störung

Faddejev 1,5

Eulco, Wong 1968 12 lokales Potential
Darriulat

Faddejev 2,8

Leung, Park 1969 9 sep. Potential
Tabakin + Coulomb
klassisch

Wellen-
Funktion

5,4

Abdul-Magd 1969 19 lokales Potential
Spuy-Piennar

Variation -1<£„
Osman 1970 25 sep. Potential

Yamaguchi +
Coulomb klassisch

Faddejev 6.08

Noble 1970 20 lokales Potential
Kenmode

Variation 0,9 < £B < 3.0

Lim 1970 21 lokales Potential Ali,
Bodmer

Variation -1<£B

Diese Arbeit 1974 lokales Potential
Heafner

Faddejev 1,1

Diese Arbeit lokales Potential
Darriulat

Faddejev 0,1

Diese Arbeit lokales Potential
Benn-Scharf inkl.
Hard-core

Faddejev 0,30

Diese Arbeit elastische - Streu¬
phase (ohne Hardcore)

Faddejev 2,2

verwendeten separablen Potentiale nur einen anziehenden Term enthalten und
die sicher vorhandene Abstoßung für kleine Abstände gar nicht berücksichtigen.

4. Die Ergebnisse von Abschnitt 4 erlauben eine Aufteilung der 3-a-Bindungsenergie
auf die 3 verschiedenen Potential-Anteile Kernpotential, Coulombpotential und
Hard-core. Diese Aufteilung ergibt :

für Kernpotential ohne Coulomb, ohne Hard-core: EB 7,3 MeV
für Kernpotential ohne Coulomb, mit Hard-core : EB 4,5 MeV
für Kernpotential mit Coulomb, ohne Hard-core : EB 2,45 MeV
für Kernpotential mit Coulomb, mit Hard-core : EB 0,30 MeV

5. Alle Resultate legen den Schluß nahe, daß im Grundzustand des 12C-Kerns der
mittlere Abstand der 3 a-Teilchen so klein ist, daß zusätzliche Austauscheffekte
ein recht starkes, scheinbares 3-a-Potential erzeugen. Das bedeutet : der
Grundzustand des 12C-Kerns ist ein Gebilde, welches kaum Ähnlichkeit mit einem System
von drei strukturlosen a-Teilchen hat.



Vol. 47, 1974 Berechnung der Grundzustandsenergie des 3-Alpha-Teilchen-Systems 209

Verdankung

Ich bin Herrn Prof. Rasche von Institut für Theoretische Physik der Universität
Zürich zu großem Dank verpflichtet. Ohne seine Anregungen und seine Hilfestellungen
wäre diese Arbeit nicht entstanden. Im weiteren möchte ich Fräulein Carmen Niemeyer
von der Universität Bremen für die mühsame Arbeit des Manuskript-Schreibens danken.
Finanziell wurde die Arbeit durch den Schweizerischen Nationalfonds ermöglicht.

ANHANG

Numerische Methoden

Alle numerischen Rechnungen in dieser Arbeit wurden auf der IBM-360 bzw.
IBM-370 des Rechenzentrums der Universität Zürich durchgeführt In diesem Anhang
werden einige der dabei angewendeten Methoden kurz erläutert.

Zur Berechnung der Coulomb-Wellen-Funktion (s. Abschnitt 2) wurde die in [26]
(S. 538, Gleichungen 14.1.3 bis 14.1.23) angegebene Reihen-Entwicklung verwendet.

Die Reihe erweist sich gut brauchbar im Gebiet :

p-r, ^10.

p < 20. (AI)
mit

P kR

0,276
(A2)

ist (AI) erfüllt für R < 15 F und k < 1,3 F"1.
Die Reihe konvergiert allerdings sehr verschieden schnell je nach dem Wert von

p ¦ v. Für p •
-q > 5 braucht man ca. 40 Terme, um die Funktion besser als auf 1%0

anzunähern.

Für p > 20 und n < 0,5 kann man die asymptotische Entwicklung (s. [26] S. 540
Gleichungen 14.5.1 bis 14.5.8) verwenden.

Alle Integrale wurden nach der Methode von Gauss-Legendre berechnet. Die
Integralgleichungen wurden mit der Gauss-Legendre-Methode in algebraische Gleichungen

verwandelt und diese mit Standardmethoden gelöst.
Die Stabilität der Lösungen gegenüber einer Änderung der Schrittlängen wurde

in typischen Fällen geprüft. Am kritischsten erweist sich dabei die Lösung der
Integralgleichung (4.8).

Einerseits erfordert die genaue Ermittlung der Eigenfunktionen kleine Schrittlängen

(s. Figur 4). Zum anderen erhöht sich durch eine Vermehrung der Stützpunkte die.
Rechenzeit sehr stark.

In einem typischen Fall (Darriulat-Potential, R 11 F, N+ 1, N~ 0) ergibt
sich folgende Abhängigkeit der errechneten Bindungsenergie von der Anzahl
Stützpunkte :

Anzahl Stützpunkte 16 EB 1,19 MeV
24 EB 1,278 MeV
32 EB 1,282 MeV
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Die Ergebnisse in Tabelle 2 sind alle mit 32 Stützpunkten berechnet, diejenigen in
Tabelle 3 mit 24.

Zur Lösung der Gleichung (3.7) haben sich in allen Fällen 12 Stützpunkte als
hinreichend erwiesen. Versuchsweise Erhöhung auf 16 Stützpunkte ergab Abweichungen

von weniger als 1%0.
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