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On the Absolutely Continuous Subspace of a Self-Adjoint
Operator

by Karl Gustafson
University of Colorado, Boulder, Colorado

and Guy Johnson

Syracuse University, Syracuse, New York

(30. X. 73)

Abstract'). The absolutely continuous subspace H, (T), an object of interest in the scattering
theory of quantum mechanics and in other applications involving the spectral analysis of a self-
adjoint operator T, is characterized exactly as the closure, in the given Hilbert space H, of the sub-
space of vectors ¢ satisfying the resolvent growth condition on individual vectors: |R,(T)¢| =
O(y~1?), y = Imz—O*.

One of the underlying mathematical problems occurring in the scattering theory
of quantum mechanics (e.g., see Kato [1]) is to determine the closed subspace H,.(T)
of H, where T is a self-adjoint operator with spectral family {E(A)}, H is a complex
Hilbert space, and H,.(T) = {p € H|(E(A) g, ) is absolutely continuous, —w < A < «©}.
For this purpose, and also for other applications, the following characterization of
H, (T) is perhaps of interest, inasmuch as it involves only estimates on the resolvent
R,(T) = (T — 2)7! near the real axis.

Theorem :

Ho(T) = {p € H|| R,(T) ¢ = 0(y~*%), y =Im z—>0"}.

That is, the theorem states that a sufficient condition for ¢ to be in H, (7)) is that
there exists a constant M, which may depend on ¢, such that |R,(T)¢| < M,/v/y
forallz=x + 4y, y > 0; and that if ¢ is in H,,(T’), then necessarily g is the limit of such
functions. An equivalent characterization holds with y —O~. Thus in showing an opera-
tor T, or a part of T, to be absolutely continuous, one cannot avoid establishing, either
directly or indirectly, the existence of a dense subspace of vectors ¢ satisfying the in-
dividual growth rates specified in the theorem.

We will make use of the following lemma on L! boundary-values of positive
harmonic functions; since the results in this lemma are all known or knowable from the
existing lore, we omit the proof. In the following, let v,(x) denote v(x,y) for y fixed,
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z=x+1y, L'= LY(R) the real space L'(—w, o), du a positive measure for which
2, A2+ D)t du) < o

Lemma: Let v(x,y) be a positive harmonic function on the half-plane y = Imz > 0.
Then:

a) v has a Poisson representation

[+

v(x,y) = “Jc; P,(A—x)du@), P,A—2x)=7"" [(T_—;g:?]

with [Z, du(A) < « if and only if v,(x) € L'(R) for some y >0, and then [, du(}) =
v 2 for all y > O;

b) v has such a representation with du(X) = g(A) dA with g e LY(R) and g > 0 if and
only if v, converges in L!(R) as y— O*, and then v,— g in L! as y— O*%;

c) v has representation v(x,y) = ay + [>, P,(A — x)du(A) with p(d) absolutely
continuous on the open interval (a,0), —© < a < b < oo, if and only if the functions v,
restricted to (a,b) converge in L,oc(a b) as y—>0“", and then (letting g denote the limit

function, v, —g) one has u(A,) — = [}2g(A)dAfora <Ay <A, < b.Iff 2o Ape(A)
then in the case a = —oo one has ,u,()\) il ‘w g(t)dt for A < b, and in the case b = o,
= [T dp(t) — J5 &

Proof of the theorem: For z=x+1y, y>0, let v=yv(x,y) =y7 | R(T)g|*=
7 Im(R,(T) @, @) = [Z, Py(A—x)d(E(N) @, ), using the resolvent equation R, —
R, = (z— %) R, R, and the spectral representation of R,(7); v is then a positive har-
monic function on the upper half-plane.

If | R (T)e| is O(y~/%) as y — O*, then 0 < v(z) < ' M7, By the Fatou boundary
limit theorem v,(x) = v(x,y) converges as y—0*fora.e. real 7. Thus by the dominated
convergence theorem v, converges in L,[A,,A,] on each finite interval [A, A,]. Hence by
the lemma (c) applied to the interval (—w, ), the function w(A) = (E(A) ¢, ) in the
representation above is absolutely continuous.

Conversely, suppose ¢ € Hac, then since the measure is finite, ,p) = _ffa,
g(%) dx for some g € L,(R), and v(x j'_ x)g(A)dA. By the lemma (b) v,—>g
in L,(R) as y— O*. On the other hand letting H @ae 4 H ,be thespectral representa-
tion (see Dunford and Schwartz [2, p. 1209]) of H with respect to the operator T, U the
unitary mapping U:H — @gc 4 L2(pra) given by x = @Pacaba(T)a—>§ = Do ua and
V the operator UTU™1in @ .. 4 L,(ps), where u,(A) = (E(A) a a) we have by the func-
tional calclulus

v(x,y) =7 Im(R(T) @, @) = m H{UR,(T) U1 §,§)
=7 Im(R,(V) ¢, € == (Im R,(V) £, §)
=1 Z ([Im Rz(V) ﬂas fa)a

aeA

—a1S (Im (A= 2L &), £),

acAd

=3 me 2) €20 2 dpsa()

acAd _
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Each function v*(x,y) = [, P,(A — %) |£,() |*dug()) is positive and harmonic. Also
v%(x) converges as y ->~ O* for a. e x € R. Moreover, by the Vitali convergence theorem
(e.g., see [2, p. 150]), the L1(R) convergence of v,, and the inequalities 0 < v2 < v,, v§
convergesin L'(R) asy—0, so that by the lemma (a), (c), v%(x, ) is the Poisson integral
of a finite absolutely continuous measure. Thus by the lemma (b), v2 —+ g, € L*(R), and
|€a(A) |2 @pa(A) = g4(A) dA.

From the g,(A) we now construct an approximating sequence ¢, € H,.(T) for ¢;
that is, a sequence g, satisfying the resolvent growth condition of the theorem. Since the

non-zero £, form a countable set we may index them £,,7=1,2, 3, .... Let E,, =
{A] |g4(A) | < %}, and define
o0
=@ &,
i=1

where €5, = Xgan&q, if ¢ < m, &2, = 0if n < 4. Letting v,(x,y) = 7 1y||R,(V) &,|?, we have,
as above, for Imz > 0,

o

v(5,y) =7 Im(R(V) €Y = 5 [ P\~ 2)[£2, (N[ dpaa, (Y

11_“,

©

[ P = ) Ixe, ) £, () dpse, )

1_%

]
[\/]::

i

f ¥ XEai,.(A)ga, (A) d/\ -<, nz.

Il
ll M:

Thus, for " = U~1£", we have on Imz > 0
[R(T) ¢"| = || RAV) €| = 72 y™ 12 0,(2) < Mya[V/Y,

where M = '/>n?. Hence the ¢" are in H,,(T) and satisfy the characterizing order
estimate of the theorem.

It remains to show that the ¢" approximate the given functlon @. By Parseval’s
relation

0

lp =gz =& — &2 =3 [ 165,00 — &,00 % dpea, N

i=1 —

I
Ma

i=1 _

fle,t" ) = 1210 WP e + 3 jlfai )2 dpa, (A)

i=n+1 _%

Il
M=

[ aaar+ 3 Jg,2.

i 9a;(A)>n i=nt1

1

Notingthat0 < v&+ ... + v;"{ v,onImz > 0, and recalling that it was concluded above
that v,—>g and v¢ —g,in L}(R) as y—O0*, we obtain (a.e.inx) 0 < g, + ... + &4, < &
so that {A]g,(A) > n} = {Alg(A) > n} for all 7 and #. Thus the estimate above becomes

lo"—el?< | emar+ 3 &1

g(>n t=n+1
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hence by the Fourier representation and the fact that g € L*(R), the right-hand side
tends to zero as # -, and hence ¢, —>¢ in H.

Remark 1: Some elements of the characterization above, in less explicit form, have
been observed previously at various points in the mathematical and physical literat-
ures of scattering theory and of boundary values of analytic functions, but without
precise statement and proof of the required resolvent growth rate on individual vectors.
Additionally, the specific emphasis placed herein on L! boundary values, and, in part-
icular, for just the imaginary part of the matrix elements, is apparently new; it may
be formalized in context as follows.

Corollary: H,.(T) consists exactly of those @ for which Im{R, ¢, ¢} attains L1(—co,
) boundary values.

Remark 2: One may similarly characterize the absolutely continuous subspace
H,.(T,Z) corresponding to an open subset 2 of R; here H, (7T ,2) is the intersection
of the subspaces H, (T, («,8)) over all sub-intervals («, 8) in 2, where

H, (T, («,B) = {p € H|(E(A) ¢, ¢) is absolutely continuous on («,f8)}

or, equivalently,

Hac(T:(“: B)) = Hac(T|E(cz,B)H)'
Let

QAL ) ={z=x+1y]A, <x <A,y > 0};
then H, (T (e,B)) is the closure of the subspace
fp € H| |RAT) ¢ < M(p, 20, M)y, foralla <X, <Xy < B},

Remark 3: For an alternate proof of the necessity of the theorem as related to the
Kato-Rosenbloom Lemma, and in terms of the spectral family {£(A)} rather than the
resolvent R,, for other scattering subspaces related to H ., and for further references, see

[3].

Remark 4: Inasmuch as the above characterization of H,(7T) is independent of
both the spectral family {E(A)} and the group "7, it defines an ‘absolutely continuous’
subspace for certain types of non-self-adjoint operators T (e.g., spectral operators with
spectrum on an arc, or dissipative operators with spectrum on a half-plane).
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