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The Connections between the Schrödinger Group and the
Conformai Group

by U. Niederer

Institut für Theoretische Physik der Universität Zürich, 8001 Zürich, Switzerland1)

(5. XI. 73)

A bstract. The Schrödinger group is generalized to the maximal set of coordinate transformations
which leave invariant the Schrödinger equation up to the mass. These generalized Schrödinger
transformations do not form a group but contain the Schrödinger group as a subset. It is shown
that the non-relativistic limit of the conformai group, which is interpreted as the maximal invariance
group up to the mass of the massive Klein-Gordon equation, is a subset of the generalized
Schrödinger transformations which, when modified by additional transformations, contains the
Schrödinger group.

1. Introduction

The Schrödinger group [1], the maximal kinematical invariance group of the free
Schrödinger equation, is a 12-parameter group containing the Galilei group, the
dilations and a group of projective transformations. The conformai group [2], originally
introduced as invariance group of the Maxwell equations, may also be considered as
the maximal kinematical invariance group of the massless Klein-Gordon equation. It
consists of the Poincaré group, the dilations and the 4-parameter group of special
conformai transformations. The nature of these two groups, and the way they both
arise from simple wave equations, naturally lead to the question whether there are
any connections between them and, in particular, whether the Schrödinger group is
in some sense the non-relativistic limit of the conformai group. The present paper is
devoted to an analysis of this question.

The non-relativistic limit of the conformai group has also been studied in a recent
paper [3] where it is shown that twelve of the parameters of the conformai group, after
some modification, indeed lead to the Schrödinger group while three parameters are
not connected with coordinate transformations leaving invariant the Schrödinger
equation. It is in the treatment and interpretation of these three parameters that we
deviate from [3].

The Schrödinger equation is the non-relativistic limit not of the massless but of
the massive Klein-Gordon equation, hence, to compare the two groups, we first have
to interpret the conformai group in terms of the massive Klein-Gordon equation.
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This is done by showing that the conformai transformations send the massive Klein-
Gordon equation into a similar equation with a possibly different mass. Since we
eventually want to analyse the limit of conformai transformations, we may have to
enlarge the framework of the Schrödinger group and consider generalized Schrödinger
transformations, i.e. transformations which change the mass of the Schrödinger
equation.

In Section 2 we determine the full set of generalized Schrödinger transformations
which leave invariant the Schrödinger equation up to the mass, and we point out that
the set of these transformations does not form a group. In Section 3 the conformai
group is interpreted in the context of the massive Klein-Gordon equation and it is
shown that, contrary to the Schrödinger group, the conformai group remains maximal,
i.e. any transformation leaving invariant the Klein-Gordon equation up to the mass
is already contained in the conformai group. Because it is easier to discuss the non-
relativistic limit for the generators of transformations rather than for the transformations

themselves, we derive the invariance condition for the generators in both cases.
The non-relativistic limit of the conformai transformations is discussed in

Section 4. The limit is not simply a Wigner-Inönü contraction [4] : it is taken in such
a way that the conformai invariance condition goes into the Schrödinger invariance
condition. The result is a set of fifteen generators of generalized Schrödinger
transformations. Finally, it is shown that for two of the five types of transformations which
change the mass, this change can be compensated by additional generalized Schrödinger
transformations, and we thus obtain the Schrödinger group. The remaining three
parameters are still generalized Schrödinger transformations but they definitely
change the mass and they cannot be combined with the Schrödinger group to form
a group.

2. The Generalized Schrödinger Transformations

The Schrödinger group is the largest group of coordinate transformations leaving
invariant the Schrödinger equation (2imdt + A)p(t,x) =0. In addition to these
transformations, there may exist coordinate transformations which do not leave
invariant the Schrödinger equation but send it into a similar equation with different
mass. For reasons of generality, we allow the mass parameter to be a (real) function
of (t,x) and we write p(t,x) instead of m. Thus a generalized Schrödinger transformation
is defined as a coordinate transformation

g:(t,x)-*g(t,x), (2.1)

which has the property that there exist companion functions fjt,x) and Fg(t,x) such
that the mappings

P -> Tgp, (Tgp) (t,x) =fg[gAt,x)]i(>A1it,x)], (2-2)

P^Qgp, (Qgp) (M F,[g-1(t,x)]li[r%x)] (2-3)

send any solution p of the equation

(2ip(t, x) d, + A) P(t, x)=0 (2.4)
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into a solution Tgp of the equation

(2i(Qgp) (t, x) d, + A) (Tg P) (t, x) 0. (2.5)

There may be coordinate transformations which only exist for a certain set of mass
functions p(t,x) and we restrict ourselves to those transformations which exist for
p constant.

The problem of finding all generalized Schrödinger transformations is solved in
the appendix. The result is that there are four types of transformations :

I) Any transformation of time alone:

g(t,x) (t',x), fg cst., FJt)=dt'jdt. (2.6)

II) Rotations, translations and dilations :

g(t,x)=[p2(t + b), p(Rx + n)], /9 cst., Fg l, (2.7)

where p e U, b e U, a e U3, R e 0(3).

Ill) Special conformai transformations of U3 :

f x + cx2\
g(t,x)= t,

1 fjx) a1'2, FJx) a2, (2.8)

o- 1 +2cx + c2x2, ceR3.

IV) Boosts and projective transformations for p cst. :

s I t x + vA
^x) (rT^ïT^)' '--1- (2-9)

fjt,x) (1 + oct)3'2 exp[-A_ip(l + odA^x2 - 2vx - v2t)],

where neR.veR3.

Note that there are no conditions on p(t,x) for the types I, II, III, but that the
transformations of type IV only exist for constant mass. This has the important consequence
that the set of all transformations I-IV does not form a group : e.g. boosts and special
conformai transformations (III) cannot be combined into a group because after a
special conformai transformation the mass function (Qgp) (t,x) is no longer constant.
For constant p m the transformations of type II and IV combine to give the
Schrödinger group and it can be seen that this is the largest set of transformations
which do not affect the mass, i.e. which have Fg 1.

Turning to infinitesimal transformations, we now want to derive the condition
that a first-order differential operator G(t,x) generates a generalized Schrödinger
transformation g. Let the mappings Tg and Qg be given infinitesimally by

TgP=(l+ieG)p, Qgp=(l + ieG)p. (2.10)
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From (2.4), (2.5) we obtain the condition

(2ip d, + A)Gp + 2i(Gp) d,p 0. (2.11)

Subtracting G(2ipdt + A)p 0 and using the fact that the only second-order
annihilator of an arbitrary solution p of (2.4) is a multiple of 2ip dt + A we obtain the
(/(-independent invariance condition

[2ip d, + A, G] + 2i(Gp) dt iy(2ip dt + A), (2.12)

where (Gp) is the result of applying the operator G to the function p and where

y y(t, x) may be any function.
It is easy to check that all of the previously defined generalized Schrödinger

transformations satisfy (2.12) ; the corresponding generators G, G and the functions y
are given as follows :

G G - ir(t) y 0

J=J y=0
^0 ^0 r °

P=P y=0
S S-(3/2)i y 2

C C — 3ix y —Ax

IV) oc: A=-i(t2dt + tx-V+^t)-$px2 A=A + \it + \px2 y -2t

v: K i(V + px K K-px y 0

(2.13)

where r(t) is an arbitrary function. Note that the generators in (2.13) do not form a
Lie algebra: a simple counter-example is provided by [K,ir(t) dt] r(t) V for t ^ 0.
This is the Lie algebra analogon of the fact that the generalized Schrödinger
transformations do not form a group.

3. The Massive Interpretation of the Conformai Group

The conformai group is the set of coordinate transformations

(xv + cv x2
A* —- + a"

u(x)
(31)

u(x) 1 + 2c ¦ x + c2 x2,

where peU, a", c" e U4, AllyeSO(3, 1), c-x c°x° -c-x. Together with the
transformations

cp(x) -> (Tgcp) (x) =fg[g-1(x)] rtg-Jx)], fjx) =-u(x), (3.2)

I) G ir(t) d,

II) R: J=-»'xxV
b: P0 id,

a: P -iV
p es: S i(2td, + x-V + 3l2)

III) c: C -i(2xx-V - x2V + x]
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they form the maximal kinematical invariance group of the massless Klein-Gordon
equation, i.e.

D<P 0^ D(7»=0. (3.3)

We now wish to interpret this group in the context of the massive Klein-Gordon
equation + c2p2(x))cp(x) =0 (Â=l), where, for generality, we have allowed the
mass p to depend on x. Transforming the mass function in the same way as the
solutions cp in (3.2), one can show that the transformations (3.1) send the massive
Klein-Gordon equation into another Klein-Gordon equation with a different mass, i.e.

(D + c2p2(x)) cp(x) 0 => (D + c2(Tgp)2(x)) (T„ep) (x) 0. (3.4)

The proof is simple if one uses the relation

(3.5)
1 A

D' u2 D—(f + ctxPid,,
p2 u

for x' =g(x). (3.4) holds independent of the special form of the mass function p(x),
hence, unlike the generalized Schrödinger transformations of Section 2, the conformai
transformations do form a group. We refer to this group as the massive conformai
group but it should be noted that it is the same group as the conformai group but
looked upon from a different interpretation.

Next we want to find the conditions satisfied by the generators of the massive
conformai group. With the notation

Tg 1 + ieG (3.6)

for infinitesimal transformations we obtain from (3.4), using the same argumentation
as in Section 2, the cp-independent invariance condition

[D + c2p2, G] + 2c2p(Gp) iy(U + c2p2), (3.7)

where y y(x) is an arbitrary function. The generators of the massive conformai
group, together with the functions y, are given by

a": P» id„ y 0

Ar- Mllv i(xlldv- xydj y 0
(3.8)

p e": S i(x-d + l) y 2

C : C„ -i(2x„ x-d-x2du + 2xJ y -Ax„.

Finally, we want to show that the massive conformai group already exhausts all
coordinate transformations which send the massive Klein-Gordon equation into a
similar equation with different mass. The condition for such a transformation is (3.4)
except that we now replace Tgp by the more general

(Qgp) (x) FJg-^x)] p[g-l(x)], (3.9)
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where Fg need not be equal to/9 as in (3.4). The invariance condition similar to (3.7)
is then

[D + c2p2,G] + 2c2p(Gp) iy(U + c2p2), (3.10)

where Qg=l+ieG. We now show that (3.10) is equivalent to the conditions

[U,G]=iyU, Go \iy, (3.11)

where G0 is the non-derivative part of G. Since the first of the equations (3.11) is the
condition that G generates a symmetry of the massless Klein-Gordon equation and
hence belongs to the Lie algebra of the conformai group, we have then proved the
assertion that the massive conformai group is maximal.

To prove the equivalence of (3.10) and (3.11) we first write (3.10) in the form

[D, G] + 2c2 p2 G0 iy(U + c2p2), (3.12)

where we used the fact that G is a first-order differential operator and that the
derivative parts of G and G coincide. G and G are of the form

G i(a"(x)dll + b(x)), G i(au(x)du +e(x)), (3.13)

and the condition that (3.11) and (3.12) be equivalent is clearly y 2e. Now, inserting
(3.13) into (3.12), we obtain the independent conditions

au,v + <*v,u gv,V- 2b „+ D«„ 0; Ub + 2c2p2e c2p2y. (3.14)

We first prove [Jy 0; From (3.14) we obtain

C^u, vp + C*v, ap gp.v Y, P'

Subtracting this equation from the two cyclically permuted equations we have

ap, «v iigp»Y, v + gpvY,ß- (?«vY, p)•

and inserting this into the relation aPi „/ aPi /y we obtain

gyp Dy - 2y vp

and hence Dy 0. It then follows from (3.14) that

ne ^n«„," -Dy 0,

hence 2e y, and we have proved that (3.12) implies (3.11).

4. The Non-relativistic Limit of the Conformai Group

As we have seen, the main difference between the transformations of Sections 2

and 3 is that the transformations of the massive conformai group form a group and
the generalized Schrödinger transformations do not form a group. In the latter case,
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this is due to the appearance of the mass in the generators K and A which, in turn, is

responsible for the mass dependence of the corresponding companion functions fg. In
the conformai group, the generators and the companion functions are independent
of the mass. The ultimate reason for this behaviour is the fact that in the non-
relativistic case we are dealing with a projective representation of the Galilei group
and the projectivity is governed by the mass.

In this section we want to derive the non-relativistic limit of the conformai
transformations. Since we wish the boosts to be included in the non-relativistic
transformations, and since boosts are only permissible for constant mass, we confine
ourselves to constant mass throughout this section, writing m instead of ju¬

in going to the limit c -> œ we have to put

x° ct, d0 c-1dt — imc. (4.1)

The second of these equations is motivated by the fact that the relativistic energy
contains the rest energy mc2 which is not counted in the non-relativistic energy. From
(4.1) we obtain

U + m2c2 -(2imdt + A)+c-2d2, (4.2)

thus the massive Klein-Gordon equation goes into the Schrödinger equation. Before
we take the limit of the generators (3.8) we are free to multiply them by powers of c;
this merely amounts to a redefinition of the corresponding group parameters and is
well known under the name of contraction [4]. However, it should be noted that what
we do here is not equivalent to a Wigner-Inönü contraction and it cannot be equivalent
because a contraction of the conformai group would again be a group while the set of
generalized Schrödinger transformations is not a group. We are not so much interested
in the limit of the generators themselves, but in the limit of the invariance condition
(3.7), and it is in this sense that the term 'non-relativistic limit' is used. The hope is
that the power of c a generator is multiplied with can be chosen in such a way that
not only does the limit of (3.7) exist but that it is of the form of the invariance condition
(2.12). If this is the case, we may then extract from this limit a generator of a generalized
Schrödinger transformation.

The limiting procedure for the Poincaré group is well known [5] and the resulting
Galilei generators are the quantities J, P0, P, K of (2.13) which we know to satisfy
(2.12). The remaining five generators of the conformai group present a more interesting
case and we now treat them in turn.
S : The generator

S i(td, + x-V + 3/2) +mc2t- \i
satisfies (3.7) in the form

[ D + m2 c2, S] + 2im2 c2 2i( + m2 c2).

Hence with (4.2) we obtain

[2imdt + A,i(tdt + x-V + 3/2)] -2mdt 2i(2imdt + A) + o(c~2)-
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Note that the terms ~c2 have cancelled each other. In the limit c -> oo we now
obtain equation (2.12), satisfied by the generator

S' i(td, + x-V + 3J2), S' i, y 2, (4.3)

where the derivative part of S' is dropped because the mass is assumed to be
constant. The constant term in S' is not determined by the limit procedure and
has been chosen for convenience. Note that, if trivial non-derivative generators
are excluded, a non-relativistic limit of the generator S itself does not exist.

C°: We have

C° -ic(t2 d, + 2tx-V + 3t- imx2) + id - mc312 - ic'1 x2 d,

and

[? + m2c2,C°] - Aictm2c2 -Aict([J + m2 c2).

With (4.2) we obtain the equation

c[2im dt + A, -i(t2 dt + 2tx¦ V + 3t - imx2)]

+ Amct dt —Aict(2im dt + A) + ofc'1)-

Hence to define a limit c -> oo we have to multiply C° by c_1 and then again the
invariance condition (2.12) is satisfied for the generator

A' -i(t2dt + 2tx-V + 3t-imx2), Â' -2it, y -At. (AA)

C : This is the most interesting case and it is here where we deviate from the procedure
of [3]. Consider the generators

C (C\C2,C3) -*(2xx-V - x2V + x) - «(2*3, + 1)

+ c2(-it2V -2mxt). (4.5)

Unlike the cases of S and C° there exists a non-trivial limit of the generators C,

namely the limit c~2C -> —it2V — 2mxt and it is these operators which are chosen
in [3] ; however, it is easy to check that they do not satisfy (2.12). The generators
C satisfy (3.7) in the form

[? + m2c2, C] - Aixm2c2 Aix(U + m2c2), (4.6)

and using (4.2) the terms ~c2 cancel and we obtain

[2imdt + A,-i(2xx-^ - x2V + x)]

+ 8mx d, -Aix(2im dt + A) + o(c~2), (4.7)

which, in the limit, is (2.12) with the generators

C' -*'(2xx-V-x2V + x), C' -Aix, y -Ax. (4.8)

We stress once more that the generators S', A', C are not directly the limits of
the relativistic generators S, C°, C but they are generators obtained by the requirement
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that the limit of the conformai invariance condition (3.7) is the Schrödinger invariance
condition (2.12).

Of the fifteen generators resulting from the limit procedure, thirteen are generators
included in the set (2.13). The remaining two generalized Schrödinger generators, S'
of (4.3) and A' of (4.4), are not directly contained in (2.13). However, since (2.12) also
admits the generators of pure time transformations (type I in (2.13)), and since (2.12)
is linear in (G,G,y), we may modify the generators S', A' by adding type I generators
which, in particular, can be chosen in such a way that the resulting generators do not
change the mass, i.e. have vanishing G. We thus define

S S' + X i(2td, + x-V + 3/2), S 0, y 2,

A=i(A'+Y)=-i(t2dt + tx-V+±t)-$mx2, Â 0, y -2t, (4-9)

where

X itd„ X -i, y 0
(4-10)

Y -it2d„ Y 2it, y 0

are type I generators. By this manipulation the transformation of the mass has been
transferred to a transformation of the time-coordinate. The two generators (4.9) are
precisely the generators 5, A of (2.13) and we have now recovered the twelve generators
of the Schrödinger group and the three generators C of the special conformai
transformations. However, as already mentioned in Section 2, the special conformai
transformations do not combine with the Schrödinger group to form a group. Also
note that the generators C cannot be modified in the same way as the generators S, A
in (4.9) because they multiply the mass by a function of x whereas type I generators
multiply the mass by functions of t alone.

To summarize then: The non-relativistic limit of the conformai group is a 15-

parameter set of generalized Schrödinger transformations which in itself does not form a

group but which, upon combination with additional generalized Schrödinger transformations,

can be made to contain the Schrödinger group.

APPENDIX

To find all generalized Schrödinger transformations g we have to solve the
equation (2.5) or, equivalently, the equation

[2iFJt, x) p(t, x) d't +A'] [fjt, x) P(t, x)] 0, (f, x') g(t, x), (AA)

for the unknowns g, fg, Fg. The analysis of equation (A.l) proceeds partly along the
same lines as a similar analysis in [1] and it is only briefly sketched here. Defining

a(t,x) dtjdt', cjt,x) dtjdx't,
(A.Z)

bjt, x) dxjdt', d,Jt, x) dxjdxj
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we write (A.l) as a differential equation in d„ 9, and, using that p is a solution of (2.4),
we obtain the equations

c, 0, (A.3)

dlrdkr aFg8ik, (A.4)

2aFgdkfg + (dn M« + 2iFgpbk)fg 0, (A.5)

aFg Afg + (d„ dr dk, + 2iFg pbj djg + 2iaFg pfg 0. (A.6)

There exists a set of obvious solutions, namely

t' arbitrary, x' x, fg est., Fg dt'jdt. (A.7)

That (A.7) is a solution is already seen from the relation
dt'

2ip d, + A 2ip—d, + A. (A.8)
dt

We now turn to the equation (A.4). This equation is quite different from the
corresponding equation in [1] because, due to the appearance of the unknown function
Fg(t,x), the right-hand side may now depend on x. With the definition

ocik dx'tldxk (aFJ-1 dki t,(t, x) dk, (A.9)

equation (A.4) takes the form

"rt<Xrk=£8ik. (A. 10)

Equation (A. 10) is the equation occurring in the determination of the conformai
group in U3 and its general solutions [6] are

/ x + cx2 \ 1
x' k lR — +y i K2-, (A.ll)

where a 1 + 2c-x + c2x2 and k e U, c, y e U3, R e 0(3). Thus (A.ll) solves (A.4) and
determines the x-dependence of the coordinate transformations. However, the
parameters k, c, y, R may yet depend on t and to determine the «^-dependence, we
have to solve equations (A.5) and (A.6).

We already know that the transformations of the Schrödinger group [1] are
solutions for p m cst. and we now have to check whether they are also solutions
for arbitrary p. It is easy to see that the rotations, translations and dilations are
solutions for arbitrary p. For the remaining Schrödinger transformations,

/ t x + vt\
(t',x') \ A.12)' \l + ctt 1+ ettj

we obtain from (A.5) and (A.6) the equations

1

V(hi/9) ip -—— (y - ax),
1 + act

i i (A.13)

9'(ln^ ö TT-, t3a - V<ln A " <v - ax)] + **> 7TAA-2 (v - ax)2'
2 1 + ett (1 + cu)
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If the integrability conditions for (A.13) are analysed, it is seen that they can only be
satisfied for constant p.

We now turn back to the transformations (A.ll). The function Fg which is
responsible for a transformation of the mass is given by Fg (at,)-1 o-2(a/c2)-1. Here
we may assume Fg cr2 because aK2 1 may always be achieved through an additional
transformation of the type (A.7). In this case, the parameters k, y, R do not lead to a
change of the mass, hence they belong to the Schrödinger group and have already been
dealt with. We are left with the transformations

x' (x + cx2) a-1, FJt,x) a2, (AAA)

and we have to determine the time-dependence of c. The equations (A.5) and (A.6)
now become

V(ln/„) =iV(lnff) +m(cx2 - 2c-xx),
(A.15)

d, (lnfg) id, (ln a) + 2c • x - £V (ln p) ¦ (cx2 - 2c • xx) + \ip7c2 x4.

For c 0 we obtain the solutions

fB=m oll2(x). (A.16)

There may be other solutions for c ^ 0, but we are only interested in transformations
which are possible for p cst. and in this case the integrability condition for the first
of the equations (A.15) demands c 0. Thus, the solutions with c # 0 are incompatible
with constant mass. (For completeness we write down these additional solutions ; they
are c(t) =K(t)k, K(t) any real function, ke R3, and they demand p(t,x) =K(t)x~4.)

The transformations (A.7), the Schrödinger transformations, and the special
conformai transformations (A. 14) are thus the desired set of generalized Schrödinger
transformations. All of them are compatible with a constant mass, but whereas the
transformations (A.12) demand p cst. the others are compatible with any function
p(t,x).

Finally, let us remark that there is a singular solution of (A. 10), namely the
inversion at the unit sphere,

*'=-2, i \- (A.17)
x2 x*

It has not been treated separately because it can be obtained as a limit of other
transformations.
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