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The Connections between the Schrédinger Group and the
Conformal Group

by U. Niederer
Institut fir Theoretische Physik der Universitat Ziirich, 8001 Ziirich, Switzerland?)

(5. XI. 73)

Abstract. The Schrodinger group is generalized to the maximal set of coordinate transformations
which leave invariant the Schrodinger equation up to the mass. These generalized ‘Schrodmger
transformations do not form a group but contain the Schrédinger group as a subset. It is shown
that the non-relativistic limit of the conformal group, which isinterpreted as the maximal invariance
group up to the mass of the massive Klein—Gordon equation, is a subset of the generalized
Schrédinger transformations which, when modified by additional transformations, contains the
Schrodinger group.

1. Introduction

The Schrédinger group [1], the maximal kinematical invariance group of the free
Schrédinger equation, is a 12-parameter group containing the Galilei group, the
dilations and a group of projective transformations. The conformal group [2], originally
introduced as invariance group of the Maxwell equations, may also be considered as
the maximal kinematical invariance group of the massless Klein-Gordon equation. It
consists of the Poincaré group, the dilations and the 4-parameter group of special
conformal transformations. The nature of these two groups, and the way they both
arise from simple wave equations, naturally lead to the question whether there are
any connections between them and, in particular, whether the Schrédinger group is
in some sense the non-relativistic limit of the conformal group. The present paper is
devoted to an analysis of this question.

The non-relativistic limit of the conformal group has also been studied in a recent
paper [3] where it is shown that twelve of the parameters of the conformal group, after
some modification, indeed lead to the Schrédinger group while three parameters are
not connected with coordinate transformations leaving invariant the Schrédinger
equation. It is in the treatment and interpretation of these three parameters that we
deviate from [3].

The Schrédinger equation is the non-relativistic limit not of the massless but of
the massive Klein-Gordon equation, hence, to compare the two groups, we first have
to interpret the conformal group in terms of the massive Klein—-Gordon equation.

') Work supported by the Swiss National Foundation.



120 U. Niederer H.P.A.

This is done by showing that the conformal transformations send the massive Klein-
Gordon equation into a similar equation with a possibly different mass. Since we
eventually want to analyse the limit of conformal transformations, we may have to
enlarge the framework of the Schrédinger group and consider generalized Schrédinger
transformations, i.e. transformations which change the mass of the Schrédinger
equation.

In Section 2 we determine the full set of generalized Schrédinger transformations
which leave invariant the Schrédinger equation up to the mass, and we point out that
the set of these transformations does not form a group. In Section 3 the conformal
group is interpreted in the context of the massive Klein—-Gordon equation and it is
shown that, contrary to the Schrédinger group, the conformal group remains maximal,
i.e. any transformation leaving invariant the Klein-Gordon equation up to the mass
1s already contained in the conformal group. Because it is easier to discuss the non-
relativistic limit for the generators of transformations rather than for the transforma-
tions themselves, we derive the invariance condition for the generators in both cases.

The non-relativistic limit of the conformal transformations is discussed in
Section 4. The limit is not simply a Wigner—Inénii contraction [4]: it is taken in such
a way that the conformal invariance condition goes into the Schrédinger invariance
condition. The result is a set of fifteen generators of generalized Schrédinger trans-
formations. Finally, it is shown that for two of the five types of transformations which
change the mass, this change can be compensated by additional generalized Schrédinger
transformations, and we thus obtain the Schrédinger group. The remaining three
parameters are still generalized Schrédinger transformations but they definitely
change the mass and they cannot be combined with the Schrodinger group to form
a group.

2. The Generalized Schriédinger Transformations

The Schrédinger group is the largest group of coordinate transformations leaving
invariant the Schrodinger equation (2im 0, + 4)(f,x) =0. In addition to these
transformations, there may exist coordinate transformations which do not leave
invariant the Schrédinger equation but send it into a similar equation with different
mass. For reasons of generality, we allow the mass parameter to be a (real) function
of (¢,x) and we write u(f,x) instead of m. Thus a generalized Schrodinger transformation
is defined as a coordinate transformation

g (t,x) —g(t,x), (2.1)

which has the property that there exist companion functions f,(¢,x) and F(¢,x) such
that the mappings

b Toh, (T,4) (1.%) = folg (6, 0)] g~ (¢ %)), (2.2)

p>Qgp, Qo) (6,%) = Folg™'(t, %)) g™ (¢, x)] (2-3)
send any solution i of the equation

(2¢u(t,x) 0, + 4) (¢, x) =0 (2.4)
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into a solution T’y of the equation

(29(Q, ) (¢,%) 0, + 4) (T, ) (¢, %) = 0. (2.5)

There may be coordinate transformations which only exist for a certain set of mass
functions w(f,x) and we restrict ourselves to those transformations which exist for
@ = constant.

The problem of finding all generalized Schrédinger transformations is solved in
the appendix. The result is that there are four types of transformations:

I) Any transformation of time alone:
git.x) = (¢,x), f,=cst., F,{t)=adt|dL. (2.6)

II) Rotations, translations and dilations:

gt x) =[p*(t+1b), p(Rx+a)], f,=cst., F,=1, (2.7)

where pe R, be R, ae R3 R e 0(3).

III) Special conformal transformations of R>:

X + ex?

glt,x) = (b‘, ) fo®) =a'2, Fy(x) =0 (2.8)

o=1+4+2¢c'x+¢*x2, ceR3.

IV) Boosts and projective transformations for p = cst.:

%) 14 X+ vl F o1 (2.9)
» X) = » ) =1, .
. 1+at 14 af ¢

folt.x) = (1 + af)®? exp[—diu(l + af) ! (ax? — 2v-x — V2¥)],
where ¢ € R, v e R3.

Note that there are no conditions on w(¢,x) for the types I, II, III, but that the trans-
formations of type IV only exist for constant mass. This has the important consequence
that the set of all transformations I-IV does not form a group: e.g. boosts and special
conformal transformations (III) cannot be combined into a group because after a
special conformal transformation the mass function (Q,u) (£,x) is no longer constant.
For constant pu=m the transformations of type II and IV combine to give the
Schrédinger group and it can be seen that this is the largest set of transformations
which do not affect the mass, i.e. which have F,=1.

Turning to infinitesimal transformations, we now want to derive the condition
that a first-order differential operator G(¢,x) generates a generalized Schrédinger
transformation g. Let the mappings T, and Q, be given infinitesimally by

T,p=(14+ieG)h, Q,pu=(1+ ieG) p. (2.10)
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From (2.4), (2.5) we obtain the condition

(26 8, + 4) Gp + 24(Gp) 8,4p = 0. (2.11)

Subtracting G(2¢ud, + 4)y =0 and using the fact that the only second-order
annihilator of an arbitrary solution  of (2.4) is a multiple of 2iu 9, + 4 we obtain the
Y-independent invariance condition

[2u 0, + 4, G) + 2i(Gp) 3, = 1y(2iud, + 4), (2.12)

where (Gu) is the result of applying the operator G to the function w and where
y = (¢, x) may be any function.

It is easy to check that all of the previously defined generalized Schrédinger
transformations satisfy (2.12); the corresponding generators G, G and the functions y
are given as follows:

I) G=1ir(t) 9, G =G —iil) y=0
II) R: J=_—ixxV J=J y=0
b Py=10, P, =P, y=0
a: P=—V P=P y=0
p=e  S=i2t0,+x-V+3/2 S=S5- 3/2) y=2
III) ec: C=—i(2xx-V —x2V +x) C=0C- y=—4x
V) a: A=—i(f8, +tx-V + 3 t) — }ux? A=A+g¢t+%p,x2 y =—2t
v: K =itV + px K=K - ux y=0
| (2.13)

where 7(¢) is an arbitrary function. Note that the generators in (2.13) do not form a
Lie algebra: a simple counter-example is provided by [K,77(¢) 9,] = 7(f)V for + # 0.
This is the Lie algebra analogon of the fact that the generalized Schrodinger trans-
formations do not form a group.

3. The Massive Interpretation of the Conformal Group

The conformal group is the set of coordinate transformations

v VL2
g: [ el —>g(x)u = P(A:‘: i.:t_ii + au),
u{2) (3.1)

w(x) =14 2¢-x + c? %2,
where pe R, a*, c* e R*, A4 eS0(3, 1), ¢c-x =c°x% — c-x. Together with the trans-
formations

1
p(®) = (T,9) ¥) =f,lg7 (W) plg )], folx) = ;%(X), (3-2)
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they form the maximal kinematical invariance group of the massless Klein—Gordon
equation, i.e.

Op=0 = (T,¢) =0. (3.3)

We now wish to interpret this group in the context of the massive Klein-Gordon
equation (] + ¢®>u?(x)) @(x¥) =0 (h=1), where, for generality, we have allowed the
mass u to depend on x. Transforming the mass function in the same way as the
solutions ¢ in (3.2), one can show that the transformations (3.1) send the massive
Klein—-Gordon equation into another Klein-Gordon equation with a different mass, i.e.

(O+cp?(#) @) =0 = (O + (T, w)*(x) (Ty9) (x) = 0. (3.4)

The proof is simple if one uses the relation

1
O ==« [E] —i(c“+czx“) au] (3.5)
p u
for #' = g(x). (3.4) holds independent of the special form of the mass function u(x),
hence, unlike the generalized Schrodinger transformations of Section 2, the conformal
transformations do form a group. We refer to this group as the massive conformal
group but it should be noted that it is the same group as the conformal group but
looked upon from a different interpretation.

Next we want to find the conditions satisfied by the generators of the massive
conformal group. With the notation

T,=1+1eG (3.6)

for infinitesimal transformations we obtain from (3.4), using the same argumentation
as in Section 2, the ¢-independent invariance condition

(O + ¢ p?, G + 262 u(Gp) = iy(0 + c* p?), (3.7)

where y = y(x) is an arbitrary function. The generators of the massive conformal
group, together with the functions y, are given by

a*: P,=1d, y=0
Ay My, =1i(x,9,— x,9,) y=0
' (3.8)
p=ce S=1x-0+1) y=2
" C,=—t(2x,%-0—220, +2x,) y=—4x,.

Finally, we want to show that the massive conformal group already exhausts all
coordinate transformations which send the massive Klein-Gordon equation into a
similar equation with different mass. The condition for such a transformation is (3.4)
except that we now replace T, u by the more general

Qg ) (%) = Folg7 (1) ulg™ ()], (3.9)
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where I, need not be equal to f, as in (3.4). The invariance condition similar to (3.7)
is then

[0+ 622, G] + 262 u(Gp) = iy(0] + ¢ p?), (3.10)
where Q,=1+1¢ G. We now show that (3.10) is equivalent to the conditions
[0, G] =iy, Go=14iy, (3.11)

where G, is the non-derivative part of G. Since the first of the equations (3.11) is the
condition that G generates a symmetry of the massless Klein-Gordon equation and
hence belongs to the Lie algebra of the conformal group, we have then proved the
assertion that the massive conformal group is maximal.

To prove the equivalence of (3.10) and (3.11) we first write (3.10) in the form

[0, G + 262 p2 Go = ip((] + ¢* ), (3.12)

where we used the fact that G is a first-order differential operator and that the
derivative parts of G and G coincide. G and G are of the form

G =i(a"(x) 8, + b(x)), G=1i(a"(x)9d, + e(x)), (3.13)

and the condition that (3.11) and (3.12) be equivalent is clearly y = 2¢. Now, inserting
(3.13) into (3.12), we obtain the independent conditions

Ay v+ ay, ,=8uny: 2b,+0a,=0; [b+2c2u2e=c?*u?y. (3.14)
We first prove [Jy = 0; From (3.14) we obtain

@y vo + B, up = Eur Y, o
Subtracting this equation from the two cyclically permuted equations we have
o, uy =3(Eou ¥V, v+ v Y. u — Ew¥, o)
and inserting this into the relation a, ,* = a, ,*, we obtain
8o LIy == 2y,
and hence [y = 0. It then follows from (3.14) that
0b =—30a,* =~y =0,

hence 2¢ = y, and we have proved that (3.12) implies (3.11).

4. The Non-relativistic Limit of the Conformal Group

As we have seen, the main difference between the transformations of Sections 2
and 3 is that the transformations of the massive conformal group form a group and
the generalized Schrddinger transformations do not form a group. In the latter case,
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this is due to the appearance of the mass in the generators K and 4 which, in turn, is
responsible for the mass dependence of the corresponding companion functions f,. In
the conformal group, the generators and the companion functions are independent
of the mass. The ultimate reason for this behaviour is the fact that in the non-
relativistic case we are dealing with a projective representation of the Galilei group
and the projectivity is governed by the mass.

In this section we want to derive the non-relativistic limit of the conformal
transformations. Since we wish the boosts to be included in the non-relativistic trans-
formations, and since boosts are only permissible for constant mass, we confine our-
selves to constant mass throughout this section, writing # instead of w.

In going to the limit ¢ — <« we have to put

O =ct, 0g=c"10, — imec. (4.1)

The second of these equations is motivated by the fact that the relativistic energy

contains the rest energy mc? which is not counted in the non-relativistic energy. From
(4.1) we obtain

4+ m?c®=—(2imd, + 4) +¢c2 2, (4.2)

thus the massive Klein-Gordon equation goes into the Schrédinger equation. Before
we take the limit of the generators (3.8) we are free to multiply them by powers of ¢;
this merely amounts to a redefinition of the corresponding group parameters and is
well known under the name of contraction [4]. However, it should be noted that what
we do here is not equivalent to a Wigner—Inénii contraction and it cannot be equivalent
because a contraction of the conformal group would again be a group while the set of
generalized Schrédinger transformations is not a group. We are not so much interested
in the limit of the generators themselves, but in the limit of the invariance condition
(3.7), and it is in this sense that the term ‘non-relativistic limit’ is used. The hope is
that the power of ¢ a generator is multiplied with can be chosen in such a way that
not only does the limit of (3.7) exist but that it is of the form of the invariance condition
(2.12). If thisis the case, we may then extract from this limit a generator of a generalized
Schrodinger transformation.

The limiting procedure for the Poincaré group is well known [5] and the resulting
Galilei generators are the quantities J, P,, P, K of (2.13) which we know to satisfy
(2.12). The remaining five generators of the conformal group present a more interesting
case and we now treat them in turn.

S: The generator

S=1itd, +x-V +3/2) + mc?t — 1
satisfies (3.7) in the form
[O +m2c?,S] + 2im?c? = 2¢([] + m? ¢3).

Hence with (4.2) we obtain

[2imd, + 4,i(t0, + x-V + 3/2)] — 2m 3, = 2i(2im 3, + 4) + o(c™?).
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Note that the terms ~¢? have cancelled each other. In the limit ¢ — © we now
obtain equation (2.12), satisfied by the generator

S'=i(td, +x-V+3/2), S=i, y=2 (4.3)

where the derivative part of S’ is dropped because the mass is assumed to be
constant. The constant term in S’ is not determined by the limit procedure and
has been chosen for convenience. Note that, if trivial non-derivative generators

are excluded, a non-relativistic limit of the generator S itself does not exist.
C°: We have

C® = —ic(t? 9, + 2tx-V + 3t — 1mx?) + ict — mc3t> —ic™' x? 9,
and
[ + m? c?,C° — dactm? c? = —dict([] + m? c?).
With (4.2) we obtain the equation
c[2im 0, + 4, —i(t* 0, + 2tx-V + 3t — imx?)]
+ dmet 0, = —dict(2im 0, + 4) + o(c7Y).

Hence to define a limit ¢ — o we have to multiply C° by ¢! and then again the
invariance condition (2.12) is satisfied for the generator

A'=—i(t20, + 2tx-V + 3t — imx?), A’ =-2it, y=—4t. (4.4)

C: Thisis the most interesting case and it is here where we deviate from the procedure
of [3]. Consider the generators

C=(C',C?C% =—i(2xx-V — x*V +x) —ix(2{0, + 1)
+ c2(—i2V — 2mxi). (4.5)

Unlike the cases of S and C° there exists a non-trivial limit of the generators C,
namely the limit ¢~2C — —#2V — 2mx¢ and it is these operators which are chosen
in [3]; however, it is easy to check that they do not satisfy (2.12). The generators
C satisfy (3.7) in the form

[0 + m?c?, €] — 4ixm? c? = dax([] + m2c?), (4.6)
and using (4.2) the terms ~¢? cancel and we obtain

2im 0, + 4,—1(2xx-V — x2V + x)]
+ 8mx 0, = —4ix(2im 3, + 4) + o(c™?), (4.7)

which, in the limit, is (2.12) with the generators
C=—i(2xx'V—x2V +x), ('=—4ix, y=—4x. (4.8)

We stress once more that the generators S’, 4’, €’ are not directly the limits of
the relativistic generators S, C°, C but they are generators obtained by the requirement



Vol. 47, 1974.  The Schrodinger Group and the Conformal Group 127

that the limit of the conformal invariance condition (3.7) is the Schrédinger invariance
condition (2.12).

Of the fifteen generators resulting from the limit procedure, thirteen are generators
included in the set (2.13). The remaining two generalized Schrodinger generators, S’
of (4.3) and A’ of (4.4), are not directly contained in (2.13). However, since (2.12) also
admits the generators of pure time transformations (type I in (2.13)), and since (2.12)
is linear in (G, G,y), we may modify the generators S’, 4’ by adding type I generators
which, in partlcular can be chosen in such a way that the resulting generators do not
change the mass, i.e. have vanishing G. We thus define

S=S"+X=i@20,+xV+3/2), S$S=0, y=2

A=A +Y)=—i(0,+tx-V+ 38) —3mx?, A=0, y=—2t t9)
where

X=‘l'tat, X='—Z, '}I:O

3 4.10
Y=—id, V=2 y=0 .

are type I generators. By this manipulation the transformation of the mass has been
transferred to a transformation of the time-coordinate. The two generators (4.9) are
precisely the generators S, 4 of (2.13) and we have now recovered the twelve generators
of the Schrédinger group and the three generators € of the special conformal trans-
formations. However, as already mentioned in Section 2, the special conformal
transformations do not combine with the Schrédinger group to form a group. Also
note that the generators C cannot be modified in the same way as the generators S, 4
in (4.9) because they multiply the mass by a function of x whereas type I generators
multiply the mass by functions of ¢ alone.

To summarize then: The non-velativistic limit of the conformal group is a 15-
parameler set of generalized Schridinger transformations which in itself does not form a
group but which, upon combination with additional generalized Schrodinger transforma-
tions, can be made to contain the Schrédinger group.

APPENDIX

To find all generalized Schrédinger transformations g we have to solve the
equation (2.5) or, equivalently, the equation

[20F (¢, %) pt, %) 07 + AT [f,(¢, %) (¢, x)] =0, (¢, %) = g(¢,x), (A1)

for the unknowns g, f,, F,. The analysis of equation (A.l) proceeds partly along the
same lines as a similar analysis in [1] and it is only briefly sketched here. Defining

a(t,x) = 0t[ot', c,(¢,x) = ot/ox;, (A.2)

bi(t, x) = 0x;/0t', dy(t x) = 0x,/0x;,
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we write (A.1) as a differential equation in @,, 9; and, using that i is a solution of (2.4),
we obtain the equations

=0, (A.3)

a, dy, = aF, 8, (A.4)

2aF,0,f, + (@4, 0,dy; + 20F, uby) f, =0, (A.5)

aF,Af,+ (d,,0,dy + 20F, ub)) 0, f, + 2iaF, uf, = 0. (A.6)
There exists a set of obvious solutions, namely

t' arbitrary, x'=x, f,=cst., F,=dt'/dt. (A.7)
That (A.7) is a solution is already seen from the relation

2ipnd, + 4 =2z',u.%6,’+d. (A.8)

We now turn to the equation (A.4). This equation is quite different from the
corresponding equation in [1] because, due to the appearance of the unknown function
F,(t,x), the right-hand side may now depend on x. With the definition

ay = 0%;/0%, = (aF )~ dyy = {(¢,%) dy (A.9) |
equation (A.4) takes the form
oty %y = £ Oy (A.10)

Equation (A.10) is the equation occurring in the determination of the conformal
group in R? and its general solutions [6] are

X 4+ ex2 1
x' =R +y|, {=xk2= (A.11)

]
g a2

where o =1+ 2c'x+c?x*>and ke R, ¢,y € R?, R € O(3). Thus (A.11) solves (A.4) and
determines the x-dependence of the coordinate transformations. However, the
parameters «, ¢, y, R may yet depend on ¢ and to determine the {-dependence, we
have to solve equations (A.5) and (A.6).

We already know that the transformations of the Schrddinger group [1] are
solutions for u = m = cst. and we now have to check whether they are also solutions
for arbitrary u. It is easy to see that the rotations, translations and dilations are
solutions for arbitrary u. For the remaining Schrédinger transformations,

14 t

%) =( Ee ) (A1

1+t 1+ o
we obtain from (A.5) and (A.6) the equations

|

Viinf,) = ip (v — ax),
1 1 (A.13)

0, (L =— 3 —V(lnpy):(v— u ———— (Vv — ax)2.

infy =5 e 3= Vi) (v = o)) + s s (7= )
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If the integrability conditions for (A.13) are analysed, it is seen that they can only be
satisfied for constant u.

We now turn back to the transformations (A.11). The function F, which is
responsible for a transformation of the mass is given by F, = (a{)~! = o*(ax?) ™. Here
we may assume I, = o? because ax? = 1 may always be achieved through an additional
transformation of the type (A.7). In this case, the parameters «, y, R do not lead to a
change of the mass, hence they belong to the Schrédinger group and have already been
dealt with. We are left with the transformations

X' =(x+ex?)o7!, F,tx) =0 (A.14)

and we have to determine the time-dependence of e. The equations (A.5) and (A.6)
now become

V(nf) =4V(Ino) + iu(éx? — 26-xx),

(A.15)
0,(Inf,) = 40,(In o) + 2¢-x — 3V (In ) - (x> — 26-xx) + Jipe? x*.

For ¢ = 0 we obtain the solutions
fo=1o(x) = 0'2(x). (A.16)

There may be other solutions for ¢ # 0, but we are only interested in transformations
which are possible for u = cst. and in this case the integrability condition for the first
of the equations (A.15) demands ¢ = 0. Thus, the solutions with € 5 0 are incompatible
with constant mass. (For completeness we write down these additional solutions; they
are ¢(f) = K(f) k, K(#) any real function, k € R3, and they demand p(f,x) = K()x~*.)

The transformations (A.7), the Schrédinger transformations, and the special
conformal transformations (A.14) are thus the desired set of generalized Schrédinger
transformations. All of them are compatible with a constant mass, but whereas the
trzms)formations (A.12) demand u = cst. the others are compatible with any function
m(?, x).

Finally, let us remark that there is a singular solution of (A.10), namely the
inversion at the unit sphere,

LI . (A.17)

s .
X2 x4

It has not been treated separately because it can be obtained as a limit of other
transformations.
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