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Remarks on an Axiomatic Approach to Quantum Gravity’
by M. Flato, J. Simon and D. Sternheimer

Physique Mathématique, Collége de France, 75005 Paris, France

(5. XI. 73)

Abstract. Problems raised by an alternative quantization of gravity in an axiomatic manner
are discussed and clarified. In particular, explicit arguments concerning the spin of the graviton
and the stability of the geometrical light-cone are presented.

In a series of papers [1-3] a new approach to an axiomatic quantization of the
gravitational field was presented. Since this alternative is quite different in concept as
well as in some of its consequences from the usual approaches, it seems important to
us to present in this short note some arguments in favour of the main ideas of these
papers as well as some clarification concerning the problem of spin and local covariance
of the gravitational field.

If one wants to keep to the spirit of general relativity, also in its quantized version,
the most obvious way to do so is [1-3] to postulate that it is the quantized gravitational
field which generates its own background geometry. In turn this geometry should
consist of a well-defined and fixed light-cone field if any meaningful formulation of a
quantum field theory is expected.

Attempts towards a plausible justification for the breaking of the fixed light-cone

field appearing in most of the quantum gravity theories can be mainly divided into
two directions:

1) quantization of space-time itself, and
2) oscillations of the quantized metric-field.

We shall now sum up the main arguments put forward in favour of these two
directions from a critical point of view. In a later part of the present note additional
arguments which support the fixed light-cone field theory will be developed.

1) The problem of quantization of space-time is rather old. It is quite clear that
when passing from classical to quantum theories there is no a priori reason to keep the
structure of space-time completely unchanged. The main reason for not changing the
structure of space-time in quantum theory is that the problem of quantization of
space-time itself is very difficult and not well-defined mathematically. Moreover, the
success of quantum electrodynamics in giving rules for calculating phenomena based

1) Part of this work was done at the Institut de Physique Théorique de I'Université de Genéve.
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on interactions of electrons and photons without quantizing space-time itself made
people less interested in quantization of space-time.

It was claimed by some people [4] that if the underlying space-time is not itself
subject to quantization, it is even not operationally defined. Indeed, according to this
well-known argument, in order to localize the position of a particle in the background
space-time, a high uncertainty in the momentum (and energy) of the test-particle is
mtroduced, which can destroy the whole input structure by pair-creation.

Evidently a more sophisticated construction of position operators of physical
particles, based on imprimitivity systems (and their generalizations), can solve this
kind of paradox.

2) Concerning the problem of oscillation of the quantized metric field [4] two
classical arguments are utilized in favour of this phenomenon. The first argument
states that if the field is induced by a turbulent motion of matter it becomes a kind of
stochastic quantity. This quantity — under the assumption of not too big fluctuations -
can be considered as an average fixed metric plus small perturbative term.

Now, as one would certainly like to begin with a quantization of the gravitational
field in vacuum (before taking into consideration complicated possible cosmological
situations), this argument can be disregarded for our purpose.

The second argument, originally due to Pauli, is that if oscillation of the metric
really takes place in nature it might have an extremely important effect on our under-
standing of quantum field theory. Indeed these fluctuations in the metric might
smear out the singularities, and in particular it might force the famous ultra-violet -
singularities to disappear.

This argument is certainly very beautiful. However, one is not obliged to take it
too seriously, and that because ultra-violet singularities are not the only difficulty we
have in field theory (other difficulties exist which do not have an immediate connection
with the gravitational field) and besides up till now nobody has really proved that
cancellation of ultra-violet divergences takes place if one takes into account fluctua-
tions of the light-cone. On the other hand, if such fluctuations are admitted, we have
to pay a very high price: past and future of a given event are not absolute and
can, in principle, mix up. Space-like separated events in an oscillating cone-field is
also not a well-defined concept, as these events can at the same time (relatively to
another cone within the oscillation domain of uncertainty) manifest a time-like
separation character. Consequently, basic notions like local-commutativity, spectrality,
etc. . . . become obscure, and therefore no serious attempt to formulate a quantum
field theory of gravity without radical conceptual changes can be made.

This is the main philosophy which guided us in our attempt to develop a rigorous
quantization scheme for the gravitational field [1, 3].

In this series of papers, one of the preliminary results was the following: the quan-
tized gravitational field ¢, being a distribution-metric, must be the product of a usual
(scalar) operator-valued distribution A times a classical metric g. This result, however,
does not mean that ‘at each point we get proportional operators’, which one could be
misled to think by using the distribution § as test-function (and considering the
distribution-metric as a function). In fact such a distribution-metric, when smeared
with a test-function, can in general give rise to ten linearly independent operators; we
do have room for ‘ten degrees of freedom’. This can be illustrated by the following
simple example. Suppose A has point-masses at the points x, (¢=1, ... K):
A=K, 8(x — x) Ay + wl, where the 4, and the identity I are linearly independent
operators, and w is an orientation. Then, for any given test-function ¢, we have
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(denoting by C,,, = [ g, w)
guv(q)) = Aguv(@) = zk guv(xk) (P(xk) Ak + Cuv I

If these operators are linearly dependent, we should have, for some {A,,} not all zero,

v Ay (ke L) @) Ay + €, I) =0

and therefore, the 4, and I being independent, (3, , A, 8., (%) (%) = 0 for all x,.

Since we can choose test-functions @ not vanishing at enough points x,, the latter
implies that if K is large enough (K > 10), except for very particular metrics g,,
(conformal to a constant one for example), all A,, vanish. This simple example is
characteristic of the general phenomenon, since the algebraic tensor product of the
space of ordinary distributions by that of operators is dense in the space of operator-
valued distributions. Any operator-valued distribution A is therefore a limit of finite
linear combinations > A, A4, of products of ordinary distributions A, multiplied by
operators A,; if the field has enough singularities, we shall in general have place for
ten operatorial degrees of freedom as limits of the > A.(g,,¢) 4, when smearing with
a test-function ¢.

Of course, like in the usual theories, this number of operatorial degrees of freedom
can be reduced by imposing additional conditions.

The above-mentioned restriction (factorization of &) is related to the geometrical
definition which is given of the isotropic vectors and light-cone field. One could then
be tempted to weaken these definitions and have them depend upon the states, i.e.
define isotropic vectors X relative to states ¢y and ¢’ by (', (X @ X @¢)y) =0, or
only upon the test-function ¢.

The former, however, would have no meaning. Indeed, should we attach to each
state vector (or pair of state vectors) a cone-field, all the construction would be indexed
by state vectors, including, for example, the definition of the local energy-momentum
operator and its expectation values: in this case, for each state, only one matrix element
of the corresponding energy-momentum operator would have a physical sense. One
could have argued (in accordance with the experience we gained in the last years in
quantum-field theory) that since in any case the vacuum-state £2 plays an exceptional
role in field theory it would be reasonable to define the classical metric (and with it the
cone-field) by the equation:

(£2,9,,(x) £) = g, (%)

(e (2,9, = [g,,(x)ex)dx for every test function ¢). However, the usual
Poincaré covariance of the tensor field ¢, and the Poincaré invariance of the vacuum
would then trivially imply the flatness of the classical metric g,,. We would then have
a complete decoupling between the quantum field and its classical background, as well
as a trivial solution to the underlying classical Einstein equations. '

The latter alternative also would not be physically very sensible, and in addition
would turn to be mathematically more or less equivalent to the one we chose. For
a test-function is physically interpreted as a signal sent to measure the field, and,
for example, the notions of separation (time-like, space-like, light-like) should not
depend on such a signal.

Mathematically, let us take two test functions ¢ and ¢’ strictly positive at the
point x on the manifold in which we define the cone-field. We may then, if the support
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of X, is small enough (which we can assume), write ¢’ = ap, with « a positive function,
in this support.

Then ¥*(X , X ,¢') = 4" (a'? X , - o'/2 X ;) and the isotropic vectors defined by ¢’
are proportional to those defined by ¢. This shows that even if one insists on making
the light-cone field depend on g, it is rather implausible that this might constitute a
real mathematical generalization.

As was noticed in Refs. [1-3], as well as, in a similar context, in Ref. [5], one of
the most difficult axioms to satisfy by quantum theory of gravity is the axiom of
(local) covariance.

In Ref. [6] an explicit suggestion is made of a possible modification of this
covariance axiom. If one takes this suggestion seriously, or if one postulates a similar
(but more plausible) new covariance axiom, in which the unitary representation of the
Poincaré group is replaced by that of the semi-direct product of Poincaré by a gauge
group, difficulties still occur connected with some strong conditions which have to be
satisfied by the gauge, with the connection of the latter to the famous problem of the
‘indefinite-metric Hilbert space’, etc. . . .

Besides the problem of indefinite metric itself, other arguments based on the free-
field case exist in favour of the utilization of non-unitary representations of the Poincaré
group in the covariance axiom for the massless case [6]. Indeed, in the massive case
(and for free field), a simple connection exists between S(A) and U(a,/) where (for
flat space and, for example, Dirac field) we denote

Ula, 4) (g) Ula, A)* = S(A™) (A~ (x — a));

the restriction of S(A) on the little group (in this case SU(2)) is the inducing representa-
tion of the restriction of U(a,/1) on the one-particle states. If we want this connection
to hold also in the massless case, the corresponding U(a,/) will be non-unitary.

However, the impossibility of giving the usual full meaning to the covariance
axiom for gravitational field, which was proved in Ref. [3], holds, unfortunately, also
for non-unitary representations of the covariance group. (It should be mentioned also
that if in this case we take O(2) instead of E(2) for the little group, we get a unitary
representation, in general reducible, on the ‘massless one-particle states’.)

In Wightman quantum field theory one takes a different point of view than
above. One ignores any connection which might exist between S(/) and U, and just
imposes in the Haag-Ruelle theory of asymptotic states (which is necessary in order
to define the notion of particle in Wightman theory) on the one-particle states to have
a given spin. One should notice that indeed, in the Wightman theory, one has to impose
this definition of spin. If this is not done, simple examples can show how the definition
of spin in the asymptotic states sense need not coincide with the possible definition via
S(A). (One can start with a covariance axiom for a tensor field having the ‘normal’
connection between S(/) and U, contract with a suitable field of real-valued tensors,
and get after contraction an ‘anomalous connection’ between S(/) and U.) Therefore,
though in our approach we cannot maintain the covariance axiom in the usual sense
[1-3] (a thing which is not astonishing since the notion of spin is different for mass-
less particles from the massive case already in flat space-time theories and causes
difficulties already there), one can still impose in the corresponding Haag—Ruelle
theory of asymptotic states on the one-particle states to have the usual two helicity
states +2. It is also possible, in our framework, to get additional (possibly all) possible
helicity states of the graviton, like in the scalar-tensor theory or in the Rosen theory
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of gravitation, simply by using the appropriate representations (possibly non-unitary
and evenindecomposable) of the Poincaré group. Whether to treat the guantized graviton
as a scalar particle or as a ‘spin-two, massless’ particle in the asymptotic states theory
sense 1s, and will be in the coming decades, an academic question.

We shall end our note with the following two remarks:

1) Unless stated differently (as in the last section) our remarks concern the
wnterpolating gravitational field on which no a priori equations of motion are imposed
and nof the asymptotic gravitational fields which satisfy the Einstein equations.

2) One might argue that since Wightman’s axioms in Minkowski space contain
some elements of quantum measurement theory they are not the best possible frame-
work for quantum gravity, as the gravitational field causes difficulties from the point
of view of observables already on a classical level. The answer to such an objection is
the following:

a) We feel that it is better to have mathematically well-defined set of axioms than
something undefined and arbitrary.

b) The observable character of Wightman theory is an open question already in
Minkowski space. If, for example, a real scalar Wightman field is not a generalized
free field, one does not know in general if such a field is an observable in the
quantum mechanical sense!

c) If by measurement theory for an interpolating field one understands some weak
form of microcausality or the existence of some type of generalized local energy-
momentum operators — which are indeed extremely important for the theory to
have a plausible physical interpretation — then our approach meets these require-
ments. Other properties, like field operators being observables, are not necessary
a priort for the interpolating field — but one would hope to get them as a conse-
quence of the whole set-up. This problem, however, is yet unsolved for the
Minkowski-space case, as mentioned above.
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