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Helvetica Physica Acta
Vol. 46, 1973. Birkhäuser Verlag Basel

Entropy of a Type-II Superconductor Close to the

Critical Temperature

by R. Ehrat1) and L. Rinderer
Institut de Physique Expérimentale de l'Université de Lausanne, Lausanne, Switzerland

(27. VI. 73)

Abstract. The experimental values for the incremental entropy, S, tj>JdSldB)\ r, of vortices
in the mixed state, have been determined for the alloy Nb80Mo20 (K « 4). From specific heat data
for CS(T) in the superconducting state and C„(T) in the normal state, this alloy is shown to behave
as a BCS superconductor. The results for St(B) are compared with theoretical values deduced from
the Abrikosov free energy at high fields, extended to arbitrary temperatures, and from the London
energy at low fields. Integrating S,(B), the experimental entropy curves at constant induction,
S(T)\B, can be constructed and experimental values for CB, the specific heat at constant induction,
are indirectly obtained from graphical differentiation. At the mixed-normal phase transition and
close to Tc, the results suggest that CB is continuous and tends to CS(TC), in contradiction to the
theoretical predictions. This is in thermodynamic agreement with anomalous results for CH already
obtained on the same sample. The consequences of this new information are analysed.

I. Introduction
The equilibrium free energy per unit volume F, for a bulk superconductor of the

second kind, is a function of temperature T and magnetic induction B. All calculations
for F in the mixed state are based on extensions to low temperatures of the Ginzburg-
Landau-Abrikosov-Gorkov theory [1-3] (GLAG), which is valid only close to the critica 1

temperature Tc. These calculations try to cover the whole mixed state, from the first
penetration field HcX to the upper critical field Hc2 [A].

According to calculations within the frame of the GLAG theory, both phase
transitions at HcX and Hc2 are second order [5] for all values of the GL parameter K larger
than the critical value K„ lj-\/2 (type II). The initial penetration of flux occurs under
the form of isolated vortices carrying one flux quantum p0- The second-order nature
[6, 7] of the transition at HcX is a consequence of the repulsive interaction between
vortices [8-10]. However, since this interaction is short range [11], an infinite slope of
the magnetization curve is predicted at HcX (X transition), while the magnetization M
decreases linearly to zero close to Hc2 where the slope shows a finite discontinuity.
If a number of theoretical and experimental works [5] tend to establish the existence at
low temperatures of a first-order transition (finite discontinuity of M) at HcX, in critical
K type-II superconductors (K > l/\/2), it is however admitted that the attractive
interaction implied by such a transition is negligible for T close to Tc, where the
conclusions of the GLAG theory ought to be strictly valid. Concerning superconductors

*) Present address : Zentralinstitut für Tieftemperaturforschung der Bayerischen Akademie der
Wissenschaften, Garching, Germany.
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with K > ljy/2, the transition at HcX ought probably to be second order for any
temperature [12].

Because of experimental difficulties, magnetization measurements are usually
performed for temperatures significantly smaller than Tc only. As extrapolations of the
experimental results to Tc are in good agreement with theoretical predictions [13],
there have been no reasons to doubt the validity of the Abrikosov solution of GL
equations for bulk samples (diameter > 1 mm). Indeed, although this solution is valid
for an infinite and homogeneous medium, a size effect should be expected for such specimens

within a temperature range of the order of 10~8oK of Tc. If the metallurgical
quality of the samples would allow such a size effect to be observed, a detailed study
within such a small temperature range would anyhow remain out of actual experimental
possibilities.

However, our calorimetric measurements on a Nb80Mo20 sample, in fields much
smaller than those used by other authors, have shown near Hc2 and close to Tc a
continuous behaviour of CH, the specific heat in a constant magnetic field, instead of the
discontinuous behaviour predicted by the theory [14]. This anomaly, in respect to the
theoretical predictions, occurred for fields smaller than 100 Oe or t TjT > 0.98.
A detailed analysis showed that trivial explanations involving effects in connection
with non-perfect, 'real' samples could be apparently excluded. Two points could be
examined :

i) Such an effect could be eventually observed on other type-II superconductors.
A partial answer could be given on a Pb98In2 alloy [14], suggesting further experiments.

ii) From thermodynamic considerations, an anomaly of CH should be related to
anomalies of other magnetic or thermal quantities. Measurements on the same
sample (Nb80Mo20) of the incremental entropy of vortices, St, ought to give an
experimental answer to this question. Such results are analysed in this paper.

Unfortunately, experimental values of M and St are not reliable very close to Tc
for reasons which will be discussed in Section III. This is the reason why extrapolated
values of CB, the specific heat at constant induction B, wiU be indirectly determined
from Si measurements at lower temperatures. More generally, the experimental entropy
behaviour will be studied for all fields near Tc, and compared with theoretical predictions.

II. Theoretical Values for the Free Energy in the Mixed State

1. Definitions and thermodynamic relations

When the external magnetic field is increased from zero up to Hc2, F increases from
the pure superconducting value, FJT, 0), in the Meissner state, up to the following
normal state value :

H2(T) H2JT)
F(T, Hc2) FJT, 0) + -AA + -AAA (1)

Ö77 OTT

H2j8ir is the condensation energy for the temperature T and H22I8tt is the field
energy in the normal state. The paramagnetism or diamagnetism of the normal state,
as well as the kinetic energy of surface supercurrents (finite samples), are neglected.
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The thermodynamic critical field Hc is defined by the well-known relation :

H2(T)
FJT, 0) - FJT, 0)

8tt
(2)

The Gibbs energy is introduced by the Legendre transformation: G(T,H)
F(T, B) — (BHJAtt). For fixed H and T, the equilibrium value of B is obtained from the
constitutive relation (equation of states) between the three coordinates (T,H, B) : H
Air(dFjdB)\T. The entropy S and the induction B are first derivatives of energy defined
by the relations

1

dF=-SdT + — HdB
Att

dG -SdT BdH.
477

(3)

M is related to B by B H + AttM (zero demagnetizing factor). S can always take the
form

S(T, B)=SJT)+ AS(T, B),

Ss being the entropy in the pure superconducting state. AS is always positive in the
mixed state. We can alternatively write a AS(T,H) function using the constitutive
relation. We consider the three thermal quantities

C„=T-

C„=T-

dS

dT

dS

dT

CJT) + T
d(AS)

CJT) + T

dT

d(AS)

dT

dS
Si <t">dB- ^0

d(AS)

dB
(4)

CH and St are directly measurable quantities. It can be easily shown that the following
thermodynamic relations hold,

C\ CB=T
St d(A-rrM)

Po dT

or, alternatively, using the Maxwell relation,

(5)

dB

dT
H

d(AS)

dT

¦ Att
dS

dil
T

d(AS

dT
477

B

~d(AS)

dB
T

2
dB

'dli
(6)
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The second member of (6) is essentially positive or zero in the whole mixed state.
This will be of importance in discussing limiting experimental values, at Tc, for CB and
CH.

2. Free energy in the mixed state

A general expression for F cannot be given for all T and B [11, 4]. We must
consider successively the region close to Hc2, the region close to Hcl and the intermediate
region.

a) B x, Hc2
For any temperature and any impurity concentration, the extended GLAG theory

yields [4] :

G(H, T) - GJH, T)
1 i[V2KJT)HJT)-HV

877 ß[2K\(T) - V(T, K)]

Kx and K2 are the temperature-dependent Maki parameters defined by the relations

KJT)=Hc2(T)lV2HJT)
dM

Att
dH

(Hc2) [ß(2K\ - I)]-1. (8)

They both are equal to K (GL) at Tc. For high temperatures and K > 1, we get for the
parameter v(T) introduced by Eilenberger [15]: r)(T) x, 1. The triangular structure,
with ß 1.1596, is probably the most stable structure at any temperature. If we define
y2(T) as

y2(T) l+ß[2K2(T)-l], (9)

the thermodynamic potentials and the constitutive relation take the following form :

F FJT, 0) + — [B2 - y-2\Hc2 - B)2]
o7T

G GJT, 0) - — (H2 + (y2 - l)-1 (Hc2 - H)2]
07T

(10)

B=H-(y2-l)-1(Hc2-H).

Calculating the entropy (y is dyjdT), one obtains:

(H)

S(T,B)=SJT,0)+- (Hc2-B)
A.rry2

H'c2-~(Hc2-B)
2y2

S(T,H) SJT,0) +
1

An(y2 - 1)
(Hc2-H) H-n —

72

2(y2 - 1)
(Hc2-H)

(12)
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we then obtain the thermal quantities defined by (4),

701

S, - 9o dHc2 pg y2
+

Airy2 dT Att y\

Cn C_ — ¦

T IdHr
Arry2 \ dT +

477y2

Ch C„ —
dJP.

Arr(y2 -1)\ dT

(Hc2-B)

(HC2-B)-0B

T

(13)

Arr(y2-1)
(Hc2-H)-cPH.

cPB and 0H axe functions of Hc2, H'c2, H"2, y2, y2, y2 and B (or H). The relations (13) are
valid for all K values (K > l/-\/2). At the mixed-normal phase transition (BxHxHc2),
all terms on the right are zero except the first ones. It can be verified, taking account of
(11), that these simplified relations satisfy the thermodynamic relation (5). The entropy
is continuous at the transition, while CH, CB and St are discontinuous (St is zero in the
normal state), in agreement with the assumption of a second-order phase transition.

b) B x 0 (d > X)

For K>\, F may be calculated by means of the 'London model'. If the lattice
parameter, d (2p0j\/3B)i, is larger than the penetration depth, À, we get

FL FS +
B
Ïtt" HCJT) +

3p0
A2ttX2(T) "\X(T)

(14)

The last term describes the repulsive interaction energy between fluxoids, where the
six nearest neighbours only (triangular case) are considered for the calculation. K0 is the
zero-order Bessel function defined by the equation [16]

d2K0 dK0
2 h x

dx2 dx
x2K0 0 (x djX).

Taking into account the definition of K0, we obtain after two differentiations

AH,
ç _

^°
l~~ 7~Att

ic1 3p0 dX

dT
2

277A3^r\ 2
K0(x)

(15)

(16)

For infinitely large d values, K0 tends to zero. The result,

po dHcX
SJB 0) - ——-,K ' Att dT

was already obtained by Stephen [17].

c) Intermediate region (X > d > ij
When the density, nL Bjp0, of fluxoids increases, the interactions extend to

distant neighbours. So far as d remains much larger than the coherence length, £, the
following expression, Fl, holds for the extended London free energy [11] :

FSA-
B
Ït7

B lnct(dj$)

2
+ cl ln(Xji)

(17)
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The constant, et 0.381, is characteristic of the triangular lattice. From a straightforward

calculation, we get :

Po d9
Si -

9 Hcl j In -

Att dT

XV1

ln\et-\ + P(T)

9?
P -^-fA(xO,l).

9 S

(18)

It was already mentioned [18] that the relation (17) ought to be applied only in the case
of K values larger than 10.

3. Limiting values of CB, CH and St, in the mixed state, for B x Hc2 and T x Tc

We compute the limit, at the mixed-normal state transition and as T goes to Tc,
for the theoretical values (13) as function of Hc and K. Close to Tc, we get

K KJTJ KJTJ= hm Hc2(T)/^2HJT).
T-*TC

Consequently,

„JïïsL ¦/&(«:
r^rc\ dT \dT

since HJTJ 0.

Thus

p0V2K (dHc\^
SJT xTJ=- IS- I -rAr I T.

\A-b CjTaTc a j Jrr

[CH — CJTxTc

Airy \ dT J

Tc 2K2 IdHj2
Att y \ dT

Tc 2K2 UHC

Att y-l\~df
For H 0, the well-known thermodynamic Rutgers [19] relation holds:

Pc (dHA2
ACR [Cs-Cn]T„T=-{—j

(19)

(20)

To compare the limiting values for CB and CH 19), as B or H goes to zero, with the value
of Cs in zero field (20), we compute the ratios :

ßt "m
BXHcï-,0

ß*H= hm
H*Hc2->0

ACR jcB Cn

Tc j
1

T

ACR \cH Cn

Td T

y ß-1A—=ß-!7-
2K2 r 2K2

"-1 A-A2K2 2K'

(21)
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The theoretical ßB and ßH depend on K, and are different from unity in general, involving
a discontinuous behaviour of CB and CH at Tc. The slopes of entropy curves for B (or
H) const, can be also calculated, at T Tc, using (4), (20) and (21) :

lim
d(AS)

BXHc2-*0 dT

d(AS)
lim

HxHr7^0 dT

dH
—-1
ßi4t7 dT

dH

r}?»4t7 dT

(22)

1.5

P —
1.0

0.5
1_/2<P -1)

p 1.1596

Ph =P [l - >'2K2]

p*B p[l-P-Vp-'/2KJ]

01 23456789 10

Figure 1

Values for the ratios ß% and ß% defined by the relations (21), and calculated according to the GLAG
theory as functions of the GL parameter K.

The theoretical curves ß%(K) and ßH(K) are drawn in Figure 1. For any K > lj-\/2, we
get the result ß% > 1, which leads to the following inequalities:

limCB<Cs(Tc) and lim
d(AS)

dT
<0.

On the other hand we remark that

limCH>Cs(Tc) and lim
d(AS)

dT
>0 iorK<

ß

203-1)
1.9.

Our measurements of Cu on a Nb80Mo20 (K xA> 1.9) sample have shown a
continuous behaviour close to Tc (ßH experimental x 1), which is in contradiction with the
theory [14]. We analyse here the entropy curves at constant induction AS(T) \B in the
whole mixed state, close to Tc, and try to extrapolate an experimental value for /3$.
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III. Relation Between the Spatial Distribution of Impurities in a Superconductor
and the Thermal Behaviour at a Phase Transition

All theoretical relations which have been established in the preceding section are
valid for an infinite and homogeneous medium. 'Real' samples, of course, do not satisfy
these requirements and present disturbing effects for values of T and H close to the
critical values, which may make the comparison with theory difficult. For example,
Sj values show a broad and continuous decrease close to Hc2 instead of the expected
sharp discontinuity. It is shown that in the case of the rather 'dirty superconductor'

AV(Mo) =0.5 at»/.

I 1 Nb80 Mo 20

Tc(v) [*K]

C/T
H ;0

8—o—* =vr

C;

T'K)
L 1

1.3

T 3.96°K

H(0e)

100 200 300 400 500 600

Figure 2

Distribution function N of molybdenum concentration v inside the sample, determined by means of
an electron microprobe x-ray analyser (2a). The knowledge of N(v) and TJv) allows one to calculate
the real transition curves, C"(T) and Sy(H), for the specific heat (2b) and the incremental entropy
of vortices (2c).

studied here, such an effect is qualitatively and quantitatively explained by spatial
fluctuations of the impurity concentration inside the sample.

Data have already been given concerning the geometrical and metallurgical
properties of the cylindrical Nb80Mo20 sample studied here [14]. Two pieces were cut from
the ends for electron microprobe X-ray analysis. From more detailed analysis than
previously reported [14], the concentration v of molybdenum was measured at 140
places scaled on seven different diameters. The mean value of these measurements,
v, corresponded to the critical temperature Tc= TC 4.16°K, determined from Hc
measurements [14]. From TJv) values reported by French and Lowell [20], a value for
the slope, dTJdv (20 at.% Mo) x 0.2°K/at.%, has been obtained which allowed us to
estimate the Tc values, inside the sample as ranging between 4.03°K and 4.28°K.
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On dividing this range in intervals of equal magnitude, A v 0.12 at. % (A Tc 0.024°K),
and on counting the number of observations falling inside each interval, a kind of
gaussian distribution function N(v), or N(TJ, is obtained (Fig. 2a). Smaller intervals
cannot be chosen without increasing the total number of measurements, or else the
number of results falling inside a single interval is too small to get reliable statistical
information. For a given T, we denote by ct(t) the ratio of the volume of domains in
which Tc < T, to the total volume of the sample. Integrating N(TJ, we get:

r
(TJdTn

i(p) —

\N(i

JNC(TJdT,
0

The transition curve for the specific heat in zero field, Ctr, may be calculated knowing
the values of CJT) and CJT) in the normal and superconducting states (Fig. 2b, n and
s curves). Applying a superposition principle, we get :

C"(T) etCJT) + (l-et)CJT).

Good agreement is observed between the calorimetric values and the so-calculated
'metallurgical' curve. Calorimetric points have been denoted by circles if obtained with
increasing temperature or field, and by triangles in the opposite case.

Such a calculation explains also the behaviour of St close to the transition to the
normal state (Fig. 2c). The curves Hc2 (T,v) are easily deduced noting that, near Tc,
the slope dHc2jdT does not appreciably depend on T and v. Thus we can write:

IdHA
Hc2(T,v) \—A\ [T-TJv)].

On such a curve, the value of ct is constant and equal to et[TJv)]. For a given T, et(T,H)
is obtained by looking for the Hc2(T,v) curve through the point (T,H), and we get,
since St is zero in the normal state, SV(T,H) [1 — ct(T,H)]S'i. Similar good agreement
is observed in Figure 2c as in Figure 2b. Hc2 is of course defined by the relation,

Hc2 Hc2(T,v).

In conclusion, these results show that, even in the presence of a magnetic field, the total
thermal behaviour observed at the transition is the sum of individual thermal behaviours
of single v domains. There are good reasons to explain the slight discrepancy between
the calculated and measured transition curves by systematic errors in our determination
oiN(TJ. The best experimental approximation for the value of St at Hc2, which would
correspond to the ideal case of the homogeneous sample with concentration v, is ob-
tained_by measuring the vertical distance between the two extrapolated curves, m and
n, at Hc2. Experimental points belonging to the S\r curve (et > 0) must be, of course,
excluded for the determination of the m curve. Consequently, direct comparison of
experimental and theoretical values for St close to Hc2 does not make sense for fields
smaller than ~200 Oe (see Section V). On the other hand, the analysis of CH had been
possible down to fields of the order of ~20 Oe.
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IV. The Normal and Superconducting States of the Alloy Nb80Mo20

From specific heat measurements in zero and above-critical magnetic fields, the
experimental values for CJT) andC„(T) are obtained (see Fig. 3). Suitable integrations
of these data yield the entropy difference

ASsn SJT)-SJT)
and the free energy difference

AF™ FJT,0)-FJT,0)
H2(T)

877

The method of measurements [21], as well as partial results for HJT) near Tc [14],
have been already published. If, in addition, experimental values for 5f are known for

15

10

C/T x 10

-S/T

Nb80 Mo 20

BCS G.-C. Exp.

1

0.170

2.43

1

t/21f=0.159

3

1

0.176 0.007

2.52 t o.oe

1

5 10 15 20

- T2(°K)2

Figure 3

Experimental values for the specific heat in the normal state, C„, and in the superconducting state,
C„ of the alloy Nb80Mo20. The points marked by circles are obtained in increasing temperature,
those marked by triangles in decreasing temperature.

arbitrary fields at different fixed temperatures, the variation of the energy function,
AUSJT) =AQSJT) +AISJT), may be determined experimentally. The calorific
energy AQS„ and the magnetic energy AIsn are the energies necessary to allow the sample
to transform quasistatically from the superconducting to the normal state, but without
the requirement that this transition ought to be reversible [22]. The isothermal
calorimetric method proposed by Otter and Yntema [22], generalized by Hopkins et al. [23],
may then also be used to determine HJT).

The results obtained from both methods are compared in Table I. Very good agreement

is verified for T larger than 3°K, where Alsn < AQsn. The magnetization values
used to calculate AIm have been measured in the middle part of the cylindrical sample
[14]. They ought to be corrected slightly to take into account end effects due to the finite
length of sample. This correction cannot be neglected at lower temperatures, which
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Table I
Experimental values for the thermodynamic critical field H. of the alloy Nb80Mo20 as a function of
temperature (Tc 4.16°K)

______
rt) HJJ Hà) Hc
(UK) (Oe) (Oe) (%)

4.16 0 0 0
4 47.4 47.2 -0.4
3.75 120.2 120.9 +0.6
3.5 190.9 189.9 -0.5
3.25 257.4 256.4 -0.4
3 320.5 321.4 +0.3
2.75 379.8 383.1 +0.9
2.5 435 441 +1.4
2.25 486 494 +1.7
2 532 542 +2.0
1.5 609 — —
1 666 —
0.5 700 — —
0 711 —

f) Temperature, \) results from specific heat measurements,
calorimetry, |j) comparison of results, in per cent.

results from isothermal

explains the slight systematic and increasing discrepancy observed. At very low
temperatures, the fields necessary to reach.r7c2 are toolarge > 3kOe) for our solenoid system.

The parabolic curve, determined by the points [T 0, H HJ0)] and [T
Tc, H 0], is represented by the equation : h*(t) l-t2, with t=TjTc as the reduced

Nb80 Mo 20

+0.01 J- hit) Hclt]

Hc(0)

t. — <2

' ¦ '
1 ¦ ¦

h-(l-t2) "8

-0.01

//
Jl

-0.0 2 - r>
/6

-0.03 -

\\ 7 '

V^O-^ p -Q-

SD-0'

o-eip
-a- BCS

-0.04 -

0.5 1.0

Figure 4

Comparison of experimental results with the theoretical BCS expectations for HJT), the
thermodynamic critical field, as a function of the reduced temperature.
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temperature and h*(t) [HJT) IHJO)] as the reduced field. From the BCS theory [24],
the deviation law, h — h* (h experimental), ought to be universal for weak-coupling
superconductors. Experimental values for (h — h*) at temperatures below Tc are plotted
in Figure 4, as well as BCS values calculated by Muehlschlaegel [25]. Good agreement
is obtained.

From specific heat measurements, we get experimental values for the following
quantities: y (Sommerfeld constant) — (5.12 ±0.05) x IO3 erg.cm_3-0K_1; 9 (Debye
temperature) 276 ± 3°K; Tc (critical temperature) 4.160 ± 0.003°K; H0
(thermodynamic critical field) =HC (T 0°K) 711 ± 5 Oe. A mean molecular weight of
M 93.5 and a specific mass of p 8.93 g.cm-3 have been used for the calculations.
Introducing these experimental data into the BCS relation, Tc 0.8b9exp(—IjNV),
we get the value, NV 0.23, for the product of the density of states, N, with the
electron-electron interaction parameter V. This value is close to the one for tin (0.25),
which shows for HJT) an analogous temperature behaviour. The experimental values
for [CcJTJ]jyTc 2.52 ± 0.08 and yT2jH0 0.176 ± 0.007 are to be compared with
the respective BCS values, 2.43 and 0.170. Finally, the energy gap at 0°K may be
estimated from relations derived by several authors, and compared with the BCS value,
3.53:

2_ 4t7

kF~V3
H2o

8-rryT2
3.45 ± 0.09 (Ref. [26])

2_ 2TC dHc\

w.AAl'3-6'^ ,Re,[27I)

2_
rVP.

¦ 2
CJTJ-CJTC

0.27 -y-Tc

1/3

¦¦ 3.56 ±0.04 (Ref. [28]).

All these numerical results confirm in general the BCS predictions.
From magnetic measurements on a number of Nb-Mo alloys with different

concentrations, it could be deduced [20] that alloying Nb increases the tendency to weak-
coupling behaviour. It is now confirmed that the alloy Nb80Mo20 behaves as a weak-
coupling superconductor.

V. Experimental Values for the Free Energy in the Mixed State

1. Experimental determination of AS(T, B) and AF(T, B)

The incremental entropy of vortices, Sit has been measured as a function of H(0 <
H < 2 kOe) for twelve different temperature values Tx, T2, and so on, ranging between
1.5°K and 4.11°K (method of measurements, see Ref. [21]). After having determined the
constitutive relation B B(H,T) from reversible magnetization curves [14], St
values may be plotted as a function of B (Fig. 7). Errors on B, in interpreting the
experimental magnetization curves, ought not to exceed 1%. Integrating S^B), we get:

AS(T,B)=S(T,B)-SJT) vJSiiT- B) dB ASS

HC2

,-— f Si(T,B)dB.
4>o J

(23)
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At a given temperature, AS may thus be obtained for arbitrary B values. The curves
at constant B, AS(T)\B, may be drawn through the points [Tx, AS(TX, B)], [T2,AS(T2,
B)], etc. (Fig. 9), assuming a continuous behaviour for the slope d(AS)jdT\B.

Nb80 Mo 20
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Figure 5

Experimental and theoretical values, in the mixed state, for the free energy difference, A F F —

Fs, as a function of the induction S at a given temperature. F is the free energy in the mixed state,
Fs the free energy in the superconducting state. The theoretical functions AFL FL — Fs, AF'h
Fi — Fs and A FA FA — Fs are calculated from the free energies in the mixed state according to the
London theory, extended London theory and Abrikosov theory as discussed in Section II.

Values of Zl F for arbitrary T, at a given B, may be obtained integrating the curves
AS(T)\B:

Tc2

AF(T, B) F(T, B) -FJT,0) AFsJTc2) + j" AS(T,B)dT

Hc2 B2
AFm(Tc2) -A^(Tc2) + —.

Ö7T OTT

(24)

The temperature Tc2 is the critical temperature at which the mixed-normal state
transition occurs, for a given and constant B.

Such experimental values for J F have been plotted in Figure 5, as a function of B,
at 3.3°K. The theoretical values for FL, F[ and FA (generalized Abrikosov free energy)
have been drawn as full curves. The agreement is excellent. Surprisingly, the theoretical
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energy Fl accounts for the behaviour in nearly the whole range of B, although it is not
expected that this relation holds for a K of 4 only. Nevertheless, remembering that the
value of B2j8tt is about 98% of the total energy near Hc2, the quantity [AF - (B2j8rr)],
instead of AF, has to be plotted for a detailed comparison.

2. Detailed comparison of the experimental and theoretical values for SJB) and F(B) :

0°K<T< Tc

A number of parameters are implicated in the theoretical relations (10), (14) and
(17) for free energies, the values of which must be estimated, if not measured or calculated.

The experimental values for Hc2 and y2 deduced from specific heat and magnetization

measurements [14], are used. Concerning HcX, it has been shown that the observed

250

200

Nb 80 Mo 20

o Hv exp (H/)

'k

Arp]Harden

Tewordteuma

brk osov

50

K

100

Figure 6

Experimental values for the first critical field determined in increasing field (Hvcl) and decreasing
field (H*,) from magnetization measurements [14], compared with theoretical values. For the
Neumann-Tewordt calculation, see Ref. [30].

first penetration field H"x is not the thermodynamic field HcX. Values of HcX have been
calculated from the Harden and Arp [29] numerical relation HcJHc=f(K), using
calorimetric values for Hc and experimental Kx values (see Fig. 6). A reasonable
agreement is thus found with HcX values deduced in interpreting the magnetization
curves [14]. ^(T) andA(J) are calculated by means of the GL relations Ç(T) (p0j2irHc2)*
and X(T)=K(T)£(T) (Ref. 18, pp. 26, 27, 46), with K(T) approximated as KJT).
The values of derivatives are obtained by graphical differentiation of the curves X(T),
$(T) and 9(T) (see Table II).
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In Figure 7a-d, the experimental and theoretical values for Sf and (AF—
V2j8tt) are plotted as a function of the reduced induction BjHc2 (Hc2 for Hc2, see Section
III). The theoretical expression Fl for the energy, which was shown to hold approximately

in the whole mixed state, depends essentially on the ratios djX and XjÇ, i.e. on
BjHc2, since we get from GLAG theory:

B (Att\(A2 I Att \(X^2
Hc2 \V3j\d) \V3K2)\d

Plotting this quantity on the horizontal axis, a similar behaviour is thus expected, and
observed, for different values of temperature.

Table II
Numerical values used for the parameters in the calculation of the London free energy FL and its
extension FeL

Tt) A§) fil) =8T dT 9 ~
dT

(°K) K(T)t) (cm) (cm) [cmfK)"1] [cm.^K)-1] [Oe.CK)-1] 0 U)

4.11 4.10 8.20-IO-5 2.00- io-5 63.6-10-5 15.7-IO"5 -77.6 0

4.06 4.12 5.48 1.33 30.0 7.4 -75.8 +0.01
3.96 4.16 3.98 0.96 10.3 2.57 -72.3 +0.02
3.84 4.22 3.18 0.76 4.83 1.22 -68.4 +0.04
3.69 4.28 2.65 0.62 2.52 0.65 -63.7 +0.06
3.51 4.36 2.32 0.53 1.49 0.40 -58.5 +0.08
3.30 4.45 2.06 0.46 1.00 0.27 -53.0 +0.12
3.00 4.57 1.82 0.40 0.59 0.17 -45.0 +0.17

f) Temperature, J) GL parameter, §) penetration depth, j1) coherence length, *J) definition of
the functions tp(T) and tfi(T), see Section II.

In the lower part of the figures, the theoretical curves are indicated as full curves
within the region of validity and as dashed curves outside. The corresponding theoretical

curves for S; may be easily identified in the upper part of the figures.
From the first of the relations (13), a linear, slightly decreasing behaviour with B

is predicted at high fields. In the low field region, the theory predicts a minimum for
d x 3X [relation (16)]. This behaviour has evidently no physical meaning and comparison

with theory ought to occur only for BjHc2 < 0.03. Concerning the intermediate
region (d < A, BjHc2 > ~ 0.4), it appears immediately that theory accounts only
qualitatively for experimental results, on a detailed and sensitive scale.

Before concluding on the agreement between theory and experience, the two following

effects included in St measurements have to be discussed :

i) The magnetization is measured with detection coils in the central part of the
specimen (cylinder with rounded ends), while the measured temperature holds for
the whole bulk [14]. Thus, calorimetric measurements are sensitive to penetration
of fluxoids, below H"x, into the ends of the specimen (end effect) while magnetic
measurements are not. Consequently, our S; measurements cannot be used, unless

corrected, for fields H smaller than Ht, with Ht proportional to and about 10%
larger than H"x. Above Hh the corrections on measured AB values become
negligible. This effect is overwhelmed, at high temperatures, by the effect arising
from inhomogeneous impurity concentration.
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Figure 7a-d
Detailed comparison of experimental and theoretical values for the incremental entropy St(BIHc2)
and the free energy F(BjHcl), as a function of the reduced induction, at different temperatures near
Tc. Experimental points obtained with increasing field are denoted by circles, those with decreasing
field by triangles. The interval 2a is correlated to the standard deviation of the distribution
function N of Figure 2.
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ii) A distribution function N[TJv)], for the impurities inside the specimen, has
been analysed in Section III. Let 8TJ= 0.043°K) be the standard deviation of
this assumed gaussian function. The standard deviation of N[Hc2(v)] is given by

dHc
oHc2 8 Tc • x const, x 80 Oe.

Tc

Experimental points, lying within 1 — 2a < BjHc2 < 1, have to be excluded for
comparison with theory, since more than 2 % of the bulk is already in the normal
state (et > 0.02). The same holds for points (not drawn in figures) lying within
0 < (BjHc2) < 2-r, with

c (dHcX\
tHc2 8TC x const, x A Oe.

I dT )Tc

On the other hand, within 2t < BjHc2 < 1 — 2a, results ought to be the same as

if the concentration of impurities would be homogeneous (v v) since St is a
slowly varying function with B. It can be verified that this region becomes more
and more narrow as T goes to Tc.

It is to be noted that the comparison of experimental and theoretical values close to
B x 0 can be done with confidence at low temperatures only (small - values). For the
highest temperature reported here (T 3.96°K), no experimental point could be used
for direct comparison with the theory (2t x 0.02).

Consequently, in the measurable region (2t < BjHc2 < 1 — 2a), an experimental
(full) curve has been drawn as the mean curve through the points obtained with increasing

field (circles), and decreasing field (triangles). The extrapolation of this curve to
B 1 is easy, and gives results in very good agreement with theoretical predictions.
Such an agreement was already verified below T 4.1°K from specific heat measurements

[14]. Close to B 0, the theoretical curve coincides reasonably with the
experimental results. Integrating along this so-defined quasi-experimental curve between
B 0 and B Hc2, values of ASSJT) are obtained which have been found, within
2%, to be in agreement with values obtained from independent specific heat measurements.

3. Comparison of experimental and theoretical values for SJHc2), at any temperature

Experimental values for SJHc2) have been plotted in Figure 8, at thirteen different
temperatures, between 1.5°K (* 0.36) and 3.96°K(2 0.95). For t>3°K(t 0.72),
values are reliable as equilibrium values while for lower temperatures irreversibility
increases as temperature decreases. Thus, the results at low temperature are probably
too small, because measurements could be made with increasing field only, and not
close enough to Hc2 to get good extrapolated values. Such an observed irreversibility
(see for example Fig. 7a) may partially be due to the impulse method of measurements
[21].

The theoretical curve 1 has been calculated from the first of relations (13), using
experimental values for K2 and dHc2jdT deduced from magnetization and specific
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heat measurements [14]. An excellent agreement with experimental results is found for
t > 0.7. On the other hand, there is evidence that the theoretical curve deviates upwards
at low temperature, probably because of uncertainties in determining the magnetic
parameters, at high fields.

The theoretical curve 2 has been calculated, rewriting the relation (13) as follows,

St(Hc2)=-
4>o

A-rryJT) dT
[V2KJT)HJT)l

and using the temperature-dependent KJT) and KJT) values given by Eilenberger
[15], for the experimental K(TJ value 4.1 of our sample. The field Hc is the BCS field,
which has been shown to be practically identical, in our case, with the experimental

J
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Figure 8

Experimental values for the incremental entropy of vortices St, at the mixed-normal state transition,

as a function of the reduced temperature t. Full circles represent mean values between results
of measurements in increasing and decreasing fields, open circles represent results of measurements
in increasing field only. The calculation of theoretical curves 1 and 2 is described in the text. The
hypothetical behaviour close to Tc (dashed curve) results from deductions of Section VII.

Hc (Section IV). It is surprising that curve 2 accounts for equilibrium experimental
results probably in the whole temperature range, though the theoretical temperature
dependence for Kx and K2 was found to be too small [14],

The theoretical value for S JO) is zero, in agreement with the third principle of
thermodynamics. Admitting that the theoretical relation (7) holds at any temperature,
this implies that (dHc2jdT)T=0 0, consequently (dKJdT)T_0 0, provided that K2
does not diverge near 0CK. The dashed curve, noted by a question mark, characterizes
an eventual behaviour of S(, close to Tc, resulting from assumptions and deductions
developed in Section VII.

VI. Entropy in the Mixed State Close to the Critical Temperature

The curve ASsJt) SJT) — SJT) is a bell-shaped curve, the two branches
of which go to zero, the left branch at 0°K and the right branch at Tc. For Hc strictly
parabolic, the maximum occurs at T= TJyJ3 [31]. In the case of Nb80Mo20 (BCS
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superconductor) we get Cs C„ for T 2.21°K, instead of TJy/3 2.40°K. The part
of the right branch of ASSJT), close to Tc, is shown in Figure 9. Points on this curve are
representative for all normal states, at T < Tc. Points on the horizontal axis (0 < T <
Tc, AS 0) are representative for all pure superconducting states [T < TC,H < HcX (T)].
In the space between, we find values for the entropy in the mixed state. Points outside
are not representative for any state, except those lying on the horizontal axis, for the
normal state (T > TJ.

From any point on the ASm(T) curve, a B curve AS(T)\B (Section V.l), and a H
curve, _IS(T) \H, may be drawn. All B curves converge to zero at 0°K, while H curves

(aS=S-Ss)10
•Kerg • cm

1500

Nb80 Mo20

1000

s„-s

500

200
150

100

GLAGH 11 0
B»0

___. I:llz ^
30 4.0 Tc

Figure 9

Entropy difference, AS S — Ss, between the superconducting and the mixed-normal state
respectively, for the alloy Nb80Mo20 (K k 4), in the region near Tc. The full curves join the
experimental points (circles) with constant induction B. The theoretical curves at constant induction
AS(T)\B, calculated by means of relation (12) of Section II, are shown as dashed curves.

reach the horizontal axis for T > 0°K as long as H < Hcl (0). Experimental B curves
have been traced for B 25, 50,100,150, 200, 300 G, and so on. The uncertainty on the
vertical position of an individual experimental point, at a given temperature T,
ought not to exceed 2% of ASSJT) (Section V.2). In an analogous way, we get H curves
from suitable integration of specific heat measurements in a constant magnetic field.
Only one H curve has been drawn (H 110 Oe) for sake of legibility. The points for
which B 100 G, 80 G and 50 G and belonging to this H curve have been indicated as

triangles. They ought also to lie on the respective B curves, which was found to be true
in general only for points lying not too far away from Tc, because of increasing
uncertainties as T decreases.
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The theoretical B curves have been drawn as dashed curves. They have been
calculated from the first of the relations (12), using a mean K(T) value which is identical
to the experimental KJT) and KJT) for T > 3.6°K. For clarity, the calculation was
done within a large temperature range at low B, although the theoretical relation is not
expected to hold far away from Tc2.

The following remarks should be made :

a) For T < 3.6°K (73 > 1000 G), bad agreement is found between experimental and
theoretical curves, even close to Tc2. Better agreement would be found using the
suitable K2 parameter for the calculation. However, experimental points are too
few and not so reliable at high fields, to draw conclusions.

b) For 3.6°K < T < 4.1°K (100 G < B < 1000 G), both slopes at Tc2 are in excellent
agreement. Moreover, an optimal agreement is observed for B 500 G, where both
curves are identical within a temperature interval as large as 0.6°K.

c) For T > 4.1°K (B < 100 G), an apparent increasing disagreement is observed as
B goes to zero. Indeed, as a result of a natural interpolation of experimental B
curves between T 4.06°K and Tc2, we conclude that the slope d(AS)jdT\B
is vanishingly small as Tc2 goes to Tc (ß% 1). On the other hand, the theory
predicts at the limit a finite negative slope (Section 11.3).

These results, close to Tc, have evidently to be compared with the anomalous
results for CH, which were observed on the same sample in the same region of field and
temperature (Section I).

VII. Discussion

Specific heat results on the Nb80Mo20 sample studied here have been discussed

already [14]. The possibility of the occurrence of size and fluctuation effects to explain
the anomalous results close to Tc have been briefly examined and found unlikely.
Effects from the physical inhomogeneities could not be discarded but where estimated
less probable than an effect resulting from a fundamental modification of the vortex
structure.

As an example for such a structure, a suggestion was made about the existence close
to Tc of a composite of mixed state domains and Meissner domains. This implies in
fact the occurrence of an attractive interaction between vortices for large values of the
lattice constant. It is to be noted however that such structures have been observed
in critical K superconductors with non-zero demagnetizing coefficients only [32].
Simple considerations show that assuming a constant value d0 of the vortex lattice
parameter for B < 100 G leads to the observed specific heat results, close to Tc. Furthermore,

the order of magnitude (d0 x 0.5 p) is in agreement with values of d0 measured
on critical K superconductors, in low fields and at T < Tc, by means of decoration
technique or neutron diffraction [32, 33]. We now examine what complementary or
additional information may be obtained from CB measurements.

A question which arises in discussing Figure 9, where the results are summarized,
is the following: is the flat behaviour observed for curves AS(T)\B, close to /3 0,
really in contradiction with a negative slope d(AS)jdT\B at the limit Tc2->TJ Indeed,
away from Tc, the theoretical curve which has been drawn for B x 0 cannot be valid.
Because of the continuity of the Gibbs energy at a phase transition, the point PM
ought to be identical with Ps, since no finite entropy difference can correspond, at the
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transition, to a vanishingly small induction difference, according to the Clapeyron
equation :

dHci S(PM)-S(PS)
——- 477 (25)
dT B(PS)-B(PM)

Such a continuous behaviour for entropy is quite in agreement with the theoretical
expression for the free energy (14), which implies a A transition at HcX. Consequently,
the domain of validity, close to Tc2, for the theoretical relation (12) has to become
vanishingly small as Tc2 goes to Tc. This is effectively observed. As our conclusion on
the limiting slope, d(AS)jdT\B at Tc, results from an interpolation procedure, it may be
argued that if sensitive and direct measurements would be possible, such a negative
value for the slope could eventually be detected.

Our conclusion however finds a confirmation in the following way. Setting
d(AS)jdT\B equal to zero in relation (6), we get: d(AS)jdT\H ^ 0, i.e. CH ^ Cs. This is
exactly the result which has been observed for CH(Hc2) from direct measurements close
to Tc. Both deviations observed for CH and CB from independent calorimetric measurements

are then in agreement with thermodynamics. Moreover, applying our analysis
of Section III to specific heat results in the case of small fields, it is difficult to find a
reason for the magnitude of the jump to be changed in the sense observed. For example,
errors in extrapolating experimental results to Tc2 would indeed create a deviation of
opposite sign. Nevertheless, these anomalous results ought to be confirmed on other
samples. A definitive and irrefutable proof that the effect is not due to imperfect material

is of course difficult to give, mainly because of the three following reasons :

a) Samples showing a total reversible calorimetric behaviour, near Tc, are difficult
to obtain.

b) The broadening of the transitions due to inhomogeneities of concentration may
be too large for analysis.

c) A high power of resolution is required for measurements.

Having noted these restrictions, we draw consequences from the new feature,

d(AS)
lim

BxHc2-rO dT

or from (22), ßB 1. Together with the previously established result, ß„=l, admitted
as experimental evidence, we deduce from (6) that lim Si(Hc2) =0, since dBjdH\T

Hc2-+0
is always positive in the mixed state. Thus, as for CB and CH, St would take, at the limit,
the value valid in the Meissner state. This behaviour, which is suggested in Figure 8

(decreasing dashed curve close to TJ, cannot be verified from direct St measurements,
which are not meaningful in this temperature region. The similar behaviour with
temperature, implied by the GLAG theory, for curves SJB) (Fig. 7), would no longer be
found very close to Tc. This is plausible, from a thermodynamic point of view, remarking
that a slope d(AS)dT\B uniformly zero for all temperatures, for 73 a; 0, is the simplest
way to satisfy the continuity requirement for the Gibbs energy at HcX, in the case of a
second-order phase transition.



718 R- Ehrat and L. Rinderer H. P. A.

If the predictions of the GLAG theory do not hold at Tc, the possibility of a first-
order phase transition at HcX may be finally considered. The existence of such a transition

is implied by the assumption that an intermediate-mixed state can be found close
to Hc2, which was proposed to explain the specific heat results. Indeed, if the distance
between vortices at Hc2 does not increase beyond a value d0 as Hc2 goes to zero, because
of an attractive interaction between vortices, this effect should be even more observable
close to HcX within the same temperature range. Unfortunately, this assumption
finds little experimental support in our case. The only support for a first-order phase
transition at HcX could be found in specific heat results [14] obtained with increasing
temperature on both our samples (Nb80Mo20 and Pb98In2), which showed an increase
of the height of the peak at the first critical temperature TcX, as Tcl goes to Tc. On the
other hand, our measurements of SJH) cannot contribute to such an interpretation.
Even at Hc2, where the transition has always been interpreted as undoubtedly second
order, a small latent heat could occur without being detected because of spreading due
to inhomogeneities of concentration.

As already mentioned in Section I, these last considerations are not compatible
with calculations within the frame of the GL theory which are valid for the case of an
infinite medium. If these anomalous results near Tc are to be experimentally confirmed,
the GL equations ought to be solved in the presence of a surface before concluding on the
validity of the GL theory applied to finite samples.

VIII. Conclusions

The comparison of experimental values for Sit the incremental entropy of vortices,
with values deduced from the extended Abrikosov free energy, shows very good agreement

at the mixed-normal state phase transition for all temperatures below Tc.
Unfortunately, the experimental results are not meaningful close to Tc, in the region
of field where an anomaly was expected to occur (see Section I). This is due to effects
arising from an inhomogeneous spatial distribution of impurities inside the sample. The
real behaviour of S, close to Hc2 could be qualitatively and quantitatively explained
from an analysis of the alloy concentration fluctuations obtained by means of an
electron microprobe x-ray analyser.

Integrating 5,(73), the entropy curves at constant induction S(T)\B have been
obtained and analysed in the whole mixed state close to Tc. They show that the specific
heat at constant induction CB(Hc2), like the specific heat at constant field CH(Hc2)
[14], tends to the remarkable limit, CS(TJ, for B < 100 G. Both results for CB and CH

are shown to be in thermodynamic agreement, which does not definitely exclude,
however, that this effect could be typical for imperfect material. All type-II superconductors

should be concerned and these experimental results ought to be confirmed or
weakened by measurements on better samples.
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