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Vol. 46, 1973. Birkhauser Verlag Basel

On the Characterization of Bound States and Scattering States
in Quantum Mechanics

by W. O. Amrein and V. Georgescu!)

Department of Theoretical Physics, University of Geneva, Geneva, Switzerland

(1. V. 73)

Abstract. Ruelle’s definition of bound states and scattering states in quantum mechanics in
terms of the position operator is related to the usually accepted definition of these states in terms of
the spectral properties of the Hamiltonian H, viz. the states belonging to the point spectrum or
the continuous spectrum of H. The equivalence of the two ways of defining these states is established
for a large class of #-body Hamiltonians (# < «) including practically all Schrédinger Hamiltonians
of physical interest as well as Dirac Hamiltonians.

I. Introduction

There are two ways of looking at bound states in quantum mechanics, one mathe-
matical and one more intuitive. In the latter a bound state is characterized by the
property that it should be essentially localized in a volume of finite size at all times.
On the other hand, the mathematical approach is based on spectral theory. One defines
H# ,(H) (orinshort 5 ,) to be the closed subspace of the Hilbert space # spanned by the
set of all eigenvectors of the Hamiltonian H, and one easily verifies that every vector
of &, is a bound state in the sense indicated above (precise mathematical statements
will be given later). Furthermore, the Hamiltonians used to describe scattering systems
are expected to have the property that the vectors belonging to the continuous subspace
H . =H# © # , will disappear from any fixed bounded region of space in the course of
their time evolution. These vectors may then be called scatfering states.

It is of some interest to know in what circumstances these two definitions coincide.
In other words: under what conditions can one assert that the states belonging to 5,
are precisely those that remain essentially concentrated in a bounded region in the
course of the evolution? In most presentations of scattering theory, the equivalence of
these two definitions is taken for granted. It is the purpose of our paper to give a proof
of this equivalence for #-body systems (% < «) in infinite space under rather general
conditions which cover practically all cases of physical interest. The essential point in
these conditions is that the Hamiltonian be obtained by perturbing a function of the
momentum operators.

1) Partially supported by the Swiss National Science Foundation.
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It is easy to see that the two definitions will not always coincide by considering the
case where H is a (self-adjoint) function of the position operator Q. One then has for
any vector fe #

[ @2 =]f@]* (xeRY). (1)

Since f(x) is square-integrable, it is essentially localized in a bounded region of R¥; i.e.
given € > 0, there exists a subset 4 of R of finite size with

j[f(x)lszxq.

RN-A

This implies, together with (1), that the state f will be essentially concentrated in 4 at
all times, i.e. it is a bound state in the physical sense, and this result is independent of
any assumption on the spectral type of H = F(Q).

For the Hamiltonians used in standard non-relativistic scattering theory, the
equivalence of the two ways of defining bound states and scattering states was estab-
lished by Ruelle [1] who proved the following result:

T heorem (Ruelle) :

In # = L*(R¥), let Hy=—4 and consider one of the following two classes of
Hamiltonians:

A) H is the Friedrichs extension of the sum of Hyand V on D(H,) N D(V) N CF(RY),
where V' is bounded below and such that there exists 4 = RN of Lebesgue measure
zero with

Fe I‘lzoc(RN - A)

B) H=H,+V, where V' is a sum of pair potentials V;;(x; —x,) such that Ve
L*(R") + L*(R") with v < 3.

Let fe s#. Then

a) fe#,(H) < for each € > 0 there exists R > 0 such that

sup [ a¥a] (e ")) <e. (R1)

tER
| x| =R

b) fe # . (H) < foreach R>0:

Jim — f dt j dN x| (et ) (x) |2 = 0. (R2)

T
0 lx|<R

Ruelle’s proof is based on a characterization of the subspaces #°, and s, obtained
in ergodic theory. This characterization is shown to be applicable under the hypothesis
of the theorem by means of estimates which may be deduced from the particular form
of H, and from the assumptions on V. A more detailed analysis of these estimates shows
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that the same method could be applied for proving (R1) and (R2) under the following
hypotheses:

i) Fgr(Hy+ 1)~ is a compact operator. (Fy denotes the projection operator onto the
subspace of states localized in the sphere |¥| < R.)
ii) H,is bounded below: H, > b with |b| < .
i) Hg+ V defines in a natural way (operator sum, Friedrichs extension) a self-
adjoint operator H.
1v) Forevery finite A, the operator (H, — b)}/2 E(]) is bounded and defined everywhere.
({E(A)} denotes the spectral family of H.)

Condition i) is not very restrictive. In fact, for free Hamiltonians that are functions
of the momenta, ie. if H,= ¢(P), condition i) essentially means that |¢( p)| — ©
whenever | p| — « (see Appendix I for details). Condition ii) excludes free Hamiltonians
that are not semi-bounded, for instance the free Hamiltonian of the Dirac equation.
Condition iv) roughly says that states of finite total energy also have finite kinetic
energy. It excludes interactions whose negative part is large.

Since (R1) and (R2) involve only the total Hamiltonian but not Hy, it does not
really matter that H was obtained by perturbing a particular free Hamiltonian. Indeed
this is not needed and it is possible to prove (R1) and (R2) if in hypothesis i), ii) and iv)
one replaces H, by an arbitrary self-adjoint operator A. This eliminates in particular
the condition that H, be semi-bounded. We state this result here in the form of a proposi-
tion. In fact, our result is even more general since the operator A which replaces Hy is
not required to satisfy hypothesis ii) and need not be self-adjoint. Moreover A may be a
function of the energy A which appears in iv).

Proposition 1:

Let {E(A)} be the spectral family?) of the self-adjoint operator H in # = L3(RM).
For K > 0, denote by Ex = E(K) — E(—K) the spectral projection corresponding to the
interval (—K, K], and let E_ be the projection operator onto .. Suppose that for each
K < o there exists an invertible linear operator Ag in 4 such that

1) AgEgE_is bounded and defined everywhere.
ii) The closure of FgAg!is compact for every R < co.

Then (R1) and (R2) hold.

In order to see that this is a generalization of conditions iv) and i) stated before
the proposition, it suffices to choose Ax = (Hy — 8)'/2 + 7 and to remark that compact-
ness of Fg(H, +1)~" implies compactness of Fg[(H,— b)'/? +1]~" (see Appendix I for
proof).

Since (H — 2)M Ey is bounded and defined everywhere if K < « and M > 0, we
have the following:

Corollary:

Suppose that there is a number M > 0 and a z € p(H) (the resolvent set of H) such
that the operator Fg(H — 2)~™ is compact for every R < . Then (R1) and (R2) hold.

%) We refer to the book by Kato [2] for definitions and results from spectral theory.
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Our method of proof is different from that used by Ruelle. We first investigate the
properties of certain subsets of an abstract Hilbert space which are constructed from a
self-adjoint operator H and a family of projection operators in analogy with the right-
hand sides of (R1) and (R2). This will allow us to prove a theorem which asserts the
validity of relations like (R1) and (R2) under rather general conditions. The proofs are
relatively elementary. This is the content of Section II which will be concluded by
deducing Proposition 1 from the main theorem.

In Section III we apply the main theorem to establish (R1) and (R2) for a large
class of Hamiltonians. The idea is to first prove (R1) and (R2) for functions of the
momentum operators (cf. Proposition 2) and then to use perturbation arguments to
obtain their validity for other Hamiltonians. The essential point in most of these
perturbation arguments is to find an estimate on the domain D(H) of the Hamiltonian
under consideration which allows one to compare D(H) with the domain of a suitable
function of the momentum operators. The most general result of this type is Proposition
5 which can in particular be used to verify (R1) and (R2) for Schrédinger and Dirac
Hamiltonians. For Schrédinger Hamiltonians with two-body interactions V;;, (R1)
and (R2) are shown to be trueifall V,; belong to L% .(R?) or to the Rollnik class. Electric
and magnetic fields and interactions containing hard cores or highly singular attractive
parts will also be treated.

II. The Main Theorem

In this part we give rather general sufficient conditions for the equivalence of the
two ways of looking at bound states and scattering states.

Throughout this section we consider a self-adjoint operator H and a family
{F.}, =1, 2, ..., of orthogonal projections (i.e. F* = F, = I}?) acting in a separable
Hilbert space #. Let # = #, @ # . be the decomposition of # into the subspaces
corresponding to the point spectrum and the continuous spectrum of H, and let
V, = exp(—iH?) be the strongly continuous unitary one-parameter group determined
by H. We also assume that

s—limF,=1 (2)

r-o

and we shall use the following notation: F; = I — F,. (In later applications, H will be
the Hamiltonian and F, the projection operator onto the subspace of states localized
in the sphere |x| < 7. The discreteness of the values of 7 is assumed only for the sake of
convenience of notation.)

In analogy with the right-hand members of (R1) and (R2), we define the following
two subsets of 4 :

Mo={fe #|limsup|(I — F,) V,f|* = 0}
rooteR
T

1
ﬂw={f6f|lim?JdtllFrVrf||2=0 forallr=1,2,...).
T

0

We first establish some properties of these two subsets:
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Lemma 1:

a) #yand A , are closed linear subspaces of J#.
b) .#,is orthogonal to ./ .

c) H,< M,

d #, < H#,.

Before giving the proof, we state the basic inequality which will frequently be used
in the sequel: For f, g € # one has

I/ +&l* < ILf + &I + [1f — &l = 211 /1* + 2llgl> (3)
Proof:
a) 1) Assume f,, f, € # ., and «a,, «, € C. Using (3) we deduce for fixed but arbitrary 7:

T
1
- j A,V (s fr + anfo) |2
0

- T
2|°‘1|

< j HE, V. + 21 f d|F, V. [

0 0

Each term on the right-hand side converges to zero as T — o, which implies that
oy fi+oyfre My, ie M, isalinear manifold in #.

i) Assume f,e #, (n=1,2,...) and f=s — limf,. We use again (3) to deduce that

T T T
1 2 2
- f HIF, V. fIP <= j HIF, VA I+ = f G\, V.
0 0 [4]

2 2 2
Tjdtnf fll j HIF, VSl @

0

Given € > 0, we first choose # such that || f — f,||* < €/4. Since f, € .# , there exists
Ty such that for T > T,

T

2
= [ anr,vosie < e

(0]
Upon inserting these inequalities into (4), we find

1
= f A\ F,V,fl?P<e forall T>T,.

This implies that fe .# .. Hence . , is closed.
iii) The proof that .# is a closed linear subspace is similar and will be omitted.
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b) Assume f € #,, g € M .. By using the unitarity of V, and F¥ = F, we deduce

T T
1 [ 1
ol =7 [ drar-3 [ #w.sv.oP
0 o
1
== | #EVLVQ+ VL F Vo)

0
We now apply (3) (with # = C) and then Schwarz’s inequality:

T T

2 2
V0l < 5 | dEVLVP+ 2 [ dv.sE T

0 0

T T
2 2
<T!Igll2 f a\E V. fII? + T il f a\F, V. gl (5)
0 4]

Let € > 0 be given. Since f € .#,, we may choose » such that
€
F.V.flI?<—— forallt.
IFLVAF <

Since g € # , there exists T such that

€

4|/

T
1
— | d|F,V,¢l*<
Tf \E, Vgl
0

From (5) we can deduce that |(f,£)|? < e. Since € was arbitrary, this implies that f | g
and hence #, | # ..

c) Let f be an eigenvector of H: Hf = Ef. Then
I, VAP = 1E e B fI? = |I( — F,) fII>

For r — o this converges to zero as a consequence of the assumption (2). Hence
fe

By definition, 5, is the closed subspace spanned by the set of all eigenvectors of H.
Since .#, is a closed linear subspace according to part a), the above argument implies
tha.t ‘#p < ./%0.

d) By using first part b) and then part c) of the Lemma, one gets
“ﬂmcﬂécxi=”c n

Remark:

It is not true in general that .#, and .#, are orthogonal complements of each
other. However this will be true in the cases which interest us here. Indeed it is our
purpose to show that #,= 4, and # = #, under suitable conditions on H. We



Vol. 46, 1973 Bound States and Scattering States in Quantum Mechanics 641

remark here that these two identities will be verified as soon as we have shown that
H =M, In fact Lemma 1d then implies #, = .# ., and by combining this with
Lemma 1b one deduces

Mo Mo=HE=5#,,

[s o}

This in turn implies, together with Lemma lc, that /#, = .

For the proof of the inclusion #.< .# , under certain conditions one has to know
a suitable characterization of the subspace of continuity .. We shall use the following
result:

Lemma 2:

If fe ., one has for every e € #

T

o1
1135 dt|(e, V. f)|*=0. (6)
0

In fact the implication given in the Lemma also has a converse:

T

firm Jdt[fV,f| —0=> fe#,

0

(Cf. [3], Section 5.) However we shall not need this in our later proofs.

Proof:
i) Let {E(A)} be the spectral family of H. For g € # and h € 5, consider the integral
T
1
J(T) == J dt (e a(g, ENg) f =4 d(h, E () h). (7)
0 ue R

This multiple integral is absolutely convergent. In fact
7)< [ dig. ENg) [ ah, E(w) h) = gl
R

By Fubini’s Theorem ([4], p. 25), one may interchange the order of integration:

ei().ﬂu)T -1
(D] = f a8 EMg) fd (B ) g
2 sin (* _2“) T
d(g, (h, E ' 8
.[ 6. E .[ W) A== w T ®
We wish to show that

lim | J(T)| =0 )
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by applying the dominated convergence theorem ([4], p. 24). We first remark that
the integrand in the last member of (8) is bounded by 1 for all T and that it con-
verges to zero as T — o« at all points (A, u) € R? with A # u. Thus it suffices to
show that the measure of the line A= u is zero.

For this, we use the hypothesis that 4 € s#,. This means that the function
p > (b, E(u)h) 1s continuous ([2], p. 515). It is even uniformly continuous: given
€>0, choose a so large that (h,E(—a)h) <e€/2 and |&|>— (h, E(a)h) <€/2.
(h, E(w) k) is uniformly continuous on [—a, ], and since it is also monotone increas-
ing and bounded, it cannot vary by more than €/2 on (—w«,—a) and on [4, ),
which implies uniform continuity on R.

It follows that, given any € > 0, we may find & > 0 such that

(B E(u+8) k) — (h, E(u — 8) ) < ¢/||g|l* for all p e R.

Therefore

A+ o
[de EMg | dtEwh <e
R A8

Thus, given any € > 0, there is a set Dy ={(A, u) € R||A — p| < 8} containing the
line A = p and having measure less than e. This shows that the line A =y has
measure Zero.

1) Let fes#, . Ife | #,, one has (¢,V,f) =0 for all £. Hence the Lemma will be
proved once we have established (6) for ¢ € # .. For this we write
T
= [ v
—_— e,
T t
0]
T
1 ,
= — | at [erar B [ e aie, B 1), (10)
r : » Es
In the last integral we replace (¢, E (u) f) by
(&, E() /) = RUE ) (e + NI — |E () (e — NI? — dlE(p)(e + i) + dIE(w) (e — of)|I?
and similarly for (f,E())¢). With these substitutions the right-hand side of (10)
is reduced to a sum of integrals of the type (7), and since ae + Bf € # . for any
«, B € C, each of these integrals converges to zero according to (9). H
We now state and prove our main theorem:
Theorem:

Let H be a self-adjoint operator and {F,}, r=1, 2, ..., a family of orthogonal

projections such that s — lim F, = I. Suppose there exists a family {S,}, n=1, 2, ...,

F—o

of linear operators acting in # such that
i) S,e{H}?3 forallmn.

%)

{H}’ denotes the commutant of H. Thus i) means that each S, commutes with H and belongs
to % (), the set of all linear operators on 5 that are bounded and defined everywhere.
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i) The sequence {S,} converges strongly to an operator S:

s—1limS,=S.

n->ow

ii1) The range of S is dense in J#.
iv) F,S,E._is compact for all 7, n < .

Then #, = Myand # = M .

In the proof we shall use the following characterization of compact operators
([4], p- 200): Every compact operator C is the limit in operator norm of a sequence
of operators of finite rank, i.e. given € > 0, there exists an operator T’y of the form

N
Tnf= 2 (hi.f)g withg, h, € # and N < (11)
i=1
such that
”C - TN” < €.
Proof:

According to the remark following the proof of Lemma 1, it suffices to show that
H. <M, Since M, is closed (Lemma la), it is sufficient to verify the inclusion
D<M, for some set @ which is dense in H#,.

Conditions 1) and ii) imply that S leaves #, and .# invariant. Combining this
with hypothesis iii), one deduces that Si#, is dense in 4# .. We may therefore choose
D =SH..

Let g € 9. Given 7 < «©, we have to show that

T

1
lim? at|\F,V,g|*=0. (12)

Too
0

For this, let € > 0 be given. Choose f € #, such that g = Sf and then # so large that
IS = Sa) 11 < €/6. (13)
Next, in view of hypothesis iv), we may choose an operator Ty of the form (11) such that

€

HFr SnEc wud ”2 < (14)
"
By writing g = (S —S,) f + S,.f and using (3), we deduce
T
1 2
T at|F. Vgl
o
> > [
<z [ aFvis—syse+ 2 [ anr v (15)
0 o
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The first term on the right-hand side is less than ¢/3 as a consequence of (13). Since
f € #.and in view of condition i), we have

Fr VtSnfz FrSnEc th= (FrSnEc - TN) Vrf+ TN th
We insert this into (15) and apply again (3) and then (14):

T
1
— | @\ F.V,gl?
Tf 1. V. gl

T T
4 4
<)+ | HESE~TURWSP+ 3 [ Ty Ve
0 0
T
4
+ = [ @y v e
0

In order to estimate the remaining integral in (16), we substitute Ty from (11) and then
repeatedly apply (3) to the sum over ¢:

i TdtT V -2 Tdt Nk V
= [anra v =2 [ &) Sk.vine
0 0
T
4 N
w23 [ v led )
- .

Let K = rnax|!gi1|2 According to Lemma 2, we may choose T, such that for 7> T,
i=1,...

T

1 € .
5_‘— fdtl(hi,vtf)lz<m fOI'H.Ht=1,...,N.

0

This implies together with (16) and (17) that
1
= f |\ F,V,gl*<e forall T > T,

Thus we have established (12), which completes the proof. [

Remark:

Under the hypotheses of the Theorem the time average in (R2) may be omitted if
the operator H is known to have no singularly continuous spectrum. More precisely,
let # ,(H) = # .. @ H# . be the decomposition of 5 (H) into the subspaces correspon-
ding to the absolutely continuous and the singularly continuous spectrum of H. If the
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hypotheses of the Theorem are verified and # (H) = ¢, then # ,(H)= 4, and
H(H) = H (H) = M, where M _ is now defined as

M, ={f€,}f|1im[|F,V,f||2=O forallr=1,2,... }

t->

For the proof one notices that Lemma 1 remains true with the above definition
of A, 1.e. in particular A <H# = H#,. For the converse inclusion, let g=Sfe
D < H 4. Then it follows as in (15) that

1F, Vegl? < 2 F, V(S — S)fIP + 21F, V. SpfI? < 2II(S — Sp) fIP + 2 F, S, E V. fIP.

The first term on the right-hand side can be made arbitrarily small by choosing #
sufficiently large. For the second term one remarks that f € #,.(H) implies that {V,f}
converges weakly to zero as  — . Since a compact operator maps weakly convergent
sequences into strongly convergent ones ([4], Thm. VI. 11), hypothesis iv) of the
Theorem implies that |F,S,E.V,f||* also converges to zero for { — .

Corollary:

Let Ex = E(K) — E(—K) be the spectral projection of H corresponding to the
interval (—K, K], and suppose that F,E E is compact forall K < wandallr =1, 2, ....
Then # ), = Moand #, = M ..

Proof:
The theorem can be applied with S, = E,, since s —limE, = 1. B

n—o

As a typical application of the theorem, we shall now indicate the proof of
Proposition 1:

Proof of Proposition 1:

Let F, be the projection operator in L*(R") onto the subspace of functions having
support in the sphere |x| <7. We take S, = E, = E(n) — E(—#). Then

F,S,E.=F,A;'A,E,E,= (F,A;Y)" A,E,E,

where B~ denotes the closure of B. Since (F,A;')~ was assumed to be compact and
A, E, E_ bounded and defined everywhere, we have decomposed F,S, E, into a product
of a compact operator and an operator belonging to (). This implies that F E E,
is compact ([2], p. 1568). With this, Proposition 1 follows from the above Corollary. W

III. Applications

In this section we shall consider various classes of #-body Hamiltonians for which
the relations (R1) and (R2) can be proved. For the sake of simplicity we shall usually
consider only spinless*) and non-identical particles.

4)  One can easily adapt our propositions to the case where # = L%(R") ® Cs.
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We start with two general remarks about the interpretation of (R1) and (R2) in
scattering theory:

i) If we consider the case where # = L%(R™) and interpret H as the Hamiltonian of
an n-body system in the centre-of-mass frame (N = 3(z — 1)), the vectors x € R¥
correspond to linearly independent relative positions between the particles. If the
particles form an #-body bound state (i.e. if they are a/l bound together), all these
relative positions will remain small in the course of time, i.e. the corresponding
state will be essentially localized in a bounded volume of R¥. On the other hand,
if the » particles do not form an #-body bound state, one expects them to split up
into at least two independent fragments which will move apart from each other.
Thus at least one relative coordinate will become large in the course of time,
i.e. the corresponding state is expected to disappear from any bounded region of
R¥ as ¢ — +oo.

ii) . , was defined by means of an integral over time from ¢ =0 to ¢ = 7. One could
also introduce a similar subspace .# _ by integrating from ¢t =—7 to ¢ =0. It is
clear that the hypotheses of the Theorem also imply that #,= .# _, since the
replacement of .# _ by .# 7 is equivalent to a replacement of H by —H, and the
conditions i)-iv) of the Theorem as well as the subspaces #, and # . are invariant
under the latter substitution. Hence, under the hypotheses of the Theorem, the
scattering states at negative times are the same as those at positive times.

We now look at the case # = L*(R"). Throughout thissection,Q;(7=1,...,N)
will be the self-adjoint multiplication operator by x; in L?(R"), and P, the corres-
ponding momentum operator, i.e.

[Pj’Qk:l = _iajk’ [Pj’ Pﬂ = [Qj’Qk] =0. (18)

If ¢ is a real or complex valued function defined on R, we shall denote by ¢(p)
the value of ¢ at the point p € R¥ and by ¢(P) the linear operator in # = L?(R")
defined as multiplication by the function ¢(#) on the Fourier transforms f of the
vectors f € L2(RY). Here

~

f(p) = (2w)‘”’2}‘.li.m. dNxe ' f(x) (F=1).
® <M

Kinematics

As a first application we now show that (R1) and (R2) are verified for arbitrary
kinematics.
Proposition 2:

Suppose H is a self-adjoint function of the momentum operators Py, ..., Py. Then
(R1) and (R2) hold.

Proof:

We verify the hypotheses of the Theorem with S, =5 = (|P|¥+1)~* where
Pl =%, P2

S is the resolvent of the self-adjoint operator | P|¥, hence it has dense range. This
verifies condition iii). i) and ii) are trivially true.
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Let F, be the projection operator onto the states localized in the sphere |x| <7.
F .S has finite Hilbert-Schmidt norm:

Z;QVrJ‘dNP’

FSlgs=[a"p [ d¥p'|5.(p -1 T TR
(see Appendix I for notations and more details). Hence F,S is compact, which verifies
condition iv) of the Theorem. H

Hamiltonians satisfying the Asymptotic Condition

The next proposition applies particularly to two-body Hamiltonians for which
existence and completeness of wave operators is known. The argument could be
generalized to #-body systems, but this is of little interest since our subsequent results
are of a much more general nature.

Proposition 3:

Let H, and H, be self-adjoint on L?(R¥) and denote by E{” (7 = 1, 2) the projection
operator onto the corresponding subspace of continuity. Suppose that H,; verifies
(R1) and (R2), that the wave operator

Q(H, H)) =02 =s—lime'tht g~iHit B (19)

t=2>+o00

exists and is complete (i.e. 20Q* = E®). Then H, also satisfies (R1) and (R2).

Proof:

It suffices to show that # . (H,) =« AP (cf. the remark after the proof of Lemma 1).
Let ge o (H,). 20* = E(» means that the range of 2 is # (H,). Hence there exists
f e # (H,) such that g = Qf (in fact f= Q2*g). Using (3) we find

T T T
1 2 T , ) 2 )
= f | F,e g < 2 [ ag|F et @ — emmy f 4 2 [ aglF, e
T T | T
0 0 0
T T
<2 [ a@ — et ety g2 1 2 f dH|F et f2.
T T
0 0]

It suffices to show that both of these integrals converge to zero as T — . For the first
one, this follows from the hypothesis (19) which states that the integrand and a fortior:
its time average converge to zero. The second integral converges to zero because
fe H# (H,) and we assumed # (H,) = MD. |

Remark:

It follows that for the case of a simple scattering system (IV = 3) and H, a function
of the momentum operators, (R1) and (R2) for H, are necessary for the wave operator
to be complete. Note also that the definition of £2 used above differs from the usual one
in which convergence of exp (¢H ,£) exp (—2H , £) is required only on E{P# (the subspace
of absolute continuity of H,).
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Relatively Small Perturbations. Singular Potentials
Proposition 4:

Let ¢(P) be a self-adjoint function of the momentum operators in L?*(R") and
suppose that the function ¢ satisfies lim |¢(p)| = . Let ¥ be such that one of the

|p|->

following conditions is verified:

o) H=¢(P)+ V is self-adjoint with domain D(H) = D(¢(P)) N D(V).

B) The sum of the quadratic forms of ¢(P) and V is the quadratic form of a self-
adjoint operator H.

y)  @(P) + V has a self-adjoint pseudo-Friedrichs extension H.

Then the Hamiltonian H defined by «), ) or y) satisfies (R1) and (R2).

Proof:

Let S,=S = (H +#)~1. Conditions i), ii) and iii) of the Theorem are verified.
The validity of iv) will be established for each of the three cases separately.

o) Since D(¢(P)) > D(H) =range of S, the operator (¢(P) +12)S is defined on
every vector of 5. Since ¢(P) and S are closed and (¢(P) + 7)~! is bounded, (¢(P) +1)S
is also closed ([2], page 164) and hence bounded ([2], page 166). Therefore
(A(P) +1)S € B(H).

Using the fact that F,(¢(P) +7)~! is compact (cf. Appendix I), we may factorize
F S into a product of a compact operator and an operator belonging to #(s#) by means
of the identity

F.S=F,($(P) +1)"($(P) +1)S.

This shows that F,S and hence F,SE, is compact and verifies iv).

B) The quadratic form of a self-adjoint operator 4 with spectral family {E(A)} is
the form f+— [ Ad(f, E(A) f) defined for all f € Q(4) = D(|4|*/?) (the form domain of A4).
Under the hypothesis B we have Q(H) < Q(¢(P)). Since D(H) = D(|H|'/?), this implies
that D(H) <Q(¢ D(|¢(P)|*/?). Therefore (|¢(P)|*/? +¢)(H +1)~* is defined on
every vector of ,%” and one concludes in the same way as above that

(|(P)|2 +14)(H +1)~t € B(H).

We may now write
F,S = F,(|¢(P)|"> +1)7(|$(P)| V2 +4) S.

Since F,(|¢(P)|'/*+14)~! is also compact (cf. Appendix I), it follows again that F,S
and hence F,SE_ is compact.

y) The pseudo-Friedrichs extension H of ¢(P) + V is defined in [2], pp. 341-2.
Its essential property is that D(H) < D(|¢(P)|*/?). This permits us to deduce the
compactness of F,SE_ by the same argument as in case f). |

The essential property of the Hamiltonians treated in the preceding proposition
is that their domain D(H) is contained in that of a suitable (unbounded!) function of
the momentum operators. In many instances one has such information only about a
dense subset & of D(H). If this subset & includes all functions of compact support in
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the spectral representation of H, one can apply Proposition 1 and still conclude that
(R1) and (R2) hold. A different situation which one often encounters is that where &
isa domain of essential self-adjointness of H (this occurs whenever the sum of H, = ¢(P)
and V is only essentially self-adjoint on D(H,) N D(V)). In such cases one cannot
apply the method of proof of Proposition 4, and in fact it is not difficult to find examples
where ¢(P) + V is essentially self-adjoint but the conclusion of Proposition 4 does not
hold (e.g. V =—¢(P) + W(Q) such that the operator W has continuous spectrum).
Nevertheless (R1) and (R2) are expected to hold also in such cases if V' is ‘reasonable’.
This question will be handled in Proposition 5 where we shall also treat cases where
Hy + V 1s only symmetric. It will be seen there that (R1) and (R2) are in fact true for
every self-adjoint extension H of H, + V under suitable conditions on H, and V. Before
doing this, we indicate some situations where the hypotheses of Proposition 4 are
verified.

Condition «) holds for the Hamiltonian describing the relative movement of an
n-body system with H, = 3771, a,; P, P,and V a sum of k-body potentials (k =2, 3, .

n) of the form given in Appendix II if the following conditions hold:

i) the matrix a,; is real, symmetric and positive definite,

i) each k-body potential V; , satisfies

174 P 3(;;—1)7 o(R3(k—1) dje—1)
i,...1, € L°(R ) + LR ) withp>2andp >

(20)

(Nelson [5], pp. 342-3; [2], pp. 302-4). Condition (20) admits in particular two-body
potentlals which are less singular than const -#~*/2 at the origin and which are bounded
in the region |x| > p for some finite p.

Condition B) is more general than «). It allows stronger local singularities and very
large positive parts of V. If H, = ¢(P) and V are positive and self-adjoint, B) is verified
under the only hypothesis that Q(H,) N Q(V) is dense in s ([2], Chap. VI, Thms. 1.31,
2.1, 2.6 and Cor. 2.2). This includes highly singular repulsive potentials and potentials
that are unbounded and positive at |x| — .

If Hy=—4in L?(R3), (B) is verified for potentials V € R + L®(R3) (R denotes the
Rollnik class; cf. Simon [6], p. 3 and Cor. I1.8). The Rollnik class includes L3/3(R3)
((6], Thm. I.1), in particular potentials whose singularities are of the form V() =
const -7~* with & < 2. Condition B) can also be used to establish (R1) and (R2) for non-
relativistic #-body systems with two-body interactions belonging to R+ L*(R3)
((6], Thm. VIIL.1).

Condition v) is verified for a Dirac particle under the influence of the Coulomb
field of a nucleus with atomic number less than 87 ([2], pp. 307-8).

Electric and Magnetic Fields. Singular Potentials at Infinity

The statement of our next proposition involves the notion of a Sobolev space.
For details about these spaces, the reader is referred to [7], pp. 52-64. For our purposes
it is sufficient to know the definition of Hf, (RY) N L*(RY). If G is a complex valued
function defined on R¥, we denote by G(Q) the multiplication operator by G(x) in
L?*(RM). Then a function f € L%(R") belongs to H},(R") iff G(Q)f € D((1 + | P|?)%?) for
all G e C§(RN).
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Proposition 5:

Let H be a densely defined symmetric operator in L?(R") such that the domain of
its adjoint A* belongs to Hj,.(R¥) for some s > 0. Then any self-adjoint extension H
of H satisfies (R1) and (R2).

Proof:
H © H = H* and the fact that A is densely defined imply that H = H*. Thus
D(H) = D(H*) < H;. (RY). (21)

This implies that (1 + | P|%)*2G(Q) (H +14)” ~1is defined everywhere if G € C§(R¥). From
this one deduces in the same way as in the proof of Proposition 4(«) that

1+ |P|2)2G(Q)(H +i)~! € B(#).

Given R < «, we may choose a CQ(R") function Gy such that Gg(x) = 1 for all x
with |#| < R. Then

Fy(H +i)7 = FrGr(Q) (H +1)"
= Fa(l+ | PI=2(1 + | P Go(@) (H +9)*

Since s >0, Fg(1 + | P|?)~%2 is compact (cf. Appendix I). Hence Fg(H + )~ is com-
pact, and we may use the Corollary of Proposition 1 to deduce the validity of (R1)
and (R2). |
In order to apply Proposition 5 to #-body systems, we use the following result due
to Ikebe and Kato [8]:
Let H be the differential operator

_Z (z—-J,-b (x)ajk( )(z——-i—b ( ))+V(x)

Jj,k
with D(H) =Cg(RM) and

1) a;(x), b;(x) and V(x) real,
ii) a; € C*RY), b, e CHRY),
11) there exists « € (0,1] such that

M= [ @y V) —y|

Jx—y|<1

is locally bounded,
iv) the matrix a;,(x) is symmetric and positive-definite for all x € R".

Then D(H*) < H2(R") (8], Lemma 3; cf. also Jorgens [9] and Kalf [10]).

By taking a;,(x) = 8,4, the above conditions are seen to include the case of #» non-
relativistic particles interacting with external magnetic and electric fields of almost
arbitrary nature (IV = 3#).

The results of Ikebe and Kato can also be applied to n-body systems with the
centre-of-mass motion removed (we assume here that there are no external fields).
Let b; =0, a,, independent of x, and suppose for the sake of simplicity that V' is a sum
of translation invariant two-body interactions: V=2, ;. ;<. Vy,- Condition iii) is
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verified for any set of relative coordinates which are linear combinations of the particle
positions if all two-body potentials V;; are locally square-integrable (see Appendix II
for proof). This establishes (R1) and (R2) for two-body potentials that are very singular
at infinity (positive or negative), since only local assumptions are needed.

Of course the conditions i)-iv) given above are by no means sufficient to ensure
essential self-adjointness of H. Sufficient conditions can be found in [8] and [9] and in
a recent report by Kato [11] who proves in particular that under his assumptions
D(H*) < HL (R ([117], Props. 5 and 7).

Relativistic Hamailtonians

The results of this section can also be applied to relativistic Hamiltonians as long
as the projection operators Fy are the spectral projections (corresponding to the sphere
of radius R) of a position operator which satisfies the commutation relations (18).
For relativistic elementary systems (with s > 0) this means that one has to use the
position operator of Newton and Wigner [12] (cf. also Wightman [13]).

In investigations of spectral properties and essential self-adjointness of Dirac
Hamiltonians (e.g. in Kato [2], pp. 305-8, and Schmincke [14]) one encounters a
different position operator, namely the Dirac position operator 0. It also satisfies the
commutation relations (18) but does not commute with the projection operator onto
the positive energy states (Jordan and Mukunda [15]). One then considers Hamiltonians
which are self-adjoint extensions of operators of the form?)

H=a-P+B+V(Q,) D(H) —(CIR)*

In [16] Schmincke showed that under his conditions on the interaction ([16], Thm. 2)
one has D(H*) = (HL(R3)* ([16], remark following the proof of Thm. 2). It follows
from this and an obvious modification of our Proposition 5 that (R1) and (R2) hold
(with respect to the position operator () for every self- ad]omt extension of H. The
conditions of Schmincke include the case of a Dirac particle in the Coulomb field of a
nucleus with atomic number Z less than 137.

Hard Cores

In [17] Hunziker developed the time-dependent scattering theory for the
Schrodinger equation with singular two-body interactions the singular part of which is
bounded below, and he showed in particular how to define the Hamiltonian if these
potentials include hard cores (cf. [17], Section 3). We wish to show that (R1) and (R2),
suitably modified, are true for the Hamiltonians considered in that paper.

We consider the relative motion of an #n-body system under the following
assumptions:

i) Hoy=¢(P)=>0in # = L*(R") (N =3(n — 1)) and lim ¢(p) =

[Pl
ii) There is a Borel set K in R¥ which is forbidden to the variable x € R¥ (e.g. hard
cores for two-body interactions; cf. [17]). We denote by E the complement of
K in RV,

5)  We use the notation of Kato ([2], p. 305).
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iii) Thereisa set 4 in # = L2(E) such that
«) A is dense in 2 ;
B) 4 is contained in D(H,) N D(V);
y) Hofe # forallfed;
y) there exist constants a € (0,1) and ¢ such that for all fe 4:

< a|[VHofI? + (£, V) + ¢(f./). (22)

(Condition y) may be viewed as a restriction on the admissible class of functions ¢.
It is satisfied for instance if 4 = C§(E) and ¢ is a polynomial in Py, ..., Py. Condition
8) means that the negative part of V is small relative to Hy; cf. [17].)°)

We may rewrite (22) in the form

(1 — a)|[VHo /I +IfI2<(f, (Ho+ V + ¢+ 1) f) (23)

(this is the equivalent of equation (7) in [17]).

The Hamiltonian H acting in 42 is defined as follows: H + ¢ + 1 is the Friedrichs
extension of Hy + V + ¢+ 1 on 4 (cf. [2], pp. 325-6).

Let F be the pr0]ect10n operator in # = L2(R") onto the subspace # = L*(E), Fy
the projection operator in # onto the states localized in the sphere |*] <R, and
Fp=FFy,

By reasoning in the same way as in the proof of Lemma 1 in [17], one deduces
from (23) that D(H) = D(V'Hy) N 5. This implies that (VHy + i) (H +4)~' F € B(#).
Next we may write

Fr(H +4) " F= FFa(VHy + i)"Y (VHy +14)(H +1) ' F.

Since Fg( \/f_fz +4)~! is compact in # (cf. Appendix I), it follows that Fr(H + 1)1 F
is compact in # and hence in #.

We may now apply the Theorem with S,=S = (H +4)~" and the projection
operators Fg (interpreted as acting in ). Th1s shows that (R1) and (R2) hold in
# = L*(E) (i.e. the domains of integration in (R1) and (R2) are restricted to their
intersection with F).

Highly Singular Attractive Potentials

By highly singular attractive potentials for the Schrédinger equation we mean
two-body interactions which have attractive local Singularities that do not satisfy
the Rollnik condition. Thus a potential of the form V(x) = A|x|~%(x € R3) is highly
singular if & > 2 (if « = 2 one encounters the same comphcatlons for sufficiently large
negative values of A [18]). Such potentials lead to difficulties in classical scattering
theory ([19], Chapter 5). In quantum mechanics the Hamiltonian turns out to be un-
bounded below and not essentially self-adjoint (cf. the precise definition below). Since
these potentials are very attractive near the origin, it is intuitively not evident that
(R1) and (R2) must hold. One could expect that certain states in the continuous
subspace of the Hamiltonian might not escape from the attractive force near the origin
and thus be captured by the centre of force. In fact for « = 2 Nelson [5] derived a time-
evolution which is non-unitary (absorptive) under conditions which reflect exactly the

6)  §) could also be formulated in terms of Q(H,) and Q(V)
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classical situation. Our own results indicate that for self-adjoint extensions of Hy + V,
(R1) and (R2) will nevertheless be true.

In the following we restrict ourselves to the two-body case and assume that the
potential is highly singular only at the origin. One can then define a symmetric operator
H on C&(R3 —{0}) by (Hf)(x) = —Af(x) + V() f(x). H is in general not essentially self-
adjoint. In order to verify (R1) and (R2) for self-adjoint extensions of H, one could
try to derive suitable estimates on the domain of H* which would allow the application
of Proposition 5 or a modification of it. Another possibility is to use Proposition 3. For
this one has to establish the existence and the completeness of the wave operator
Q(H,H,) between a self-adjoint extension H of H and H,=|P|? The existence of
Q(H,H,) was proved by Kupsch and Sandhas [20] under the assumption that the
restriction of V(x) to any region bounded away from the origin is a suitable short-range
potential. We have investigated the completeness of 2(H,H,) under the following
additional assumptions:

i) V is spherically symmetric: V(x) = V() (r = |#|);

1)) one of the following conditions is verified:
o) Vir)+ r‘zllnrl 1s an increasing function of 7 near » =0,
B) there exists € > 0 such that

V({r) <0 forre(0,e¢)
Jdrr‘2| V)| Y2 < o

and

5 [V (7)]2+ V()
4+ VAP V()P

y) V() = ar~? with « < 0.

f |V ()| | =

(Condltlons 1) and ii) are verified for all potentials of the form V() = or ™ with « <0
and n > 2.) Let A, (resp. Hy,) be therestriction of H (resp. Hy) to the Ith partial-wave
subspace, and let H, be a self-adjoint extension of H;. One can then prove that H, has
no singularly continuous spectrum and that Q2(H,, Hy,) is complete. (This proof and
other results about time-dependent scattering theory and domain properties of
Hamiltonians with highly singular potentials will be communicated in a forthcoming
separate report.) With this one sees that (R1) and (R2) do hold for every self-adjoint

extension H of H of the form H = @ H,, H, being an arbitrary self-adjoint extension
of H £
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APPENDIX I

In this Appendix we prove two results concerning compactness of operators of the
form F,¢(A). With the same notation as in Section III we first show that F,(¢(P) +7)~*
is compact if [(p)| — oo for | p| — oo with the possible exception of certain directions:

Lemma 3:

Let ¢:RY — R be Lebesgue measurable and suppose there exists a subset 4, of
RY with p(4,) < « (u denotes the Lebesgue measure) and such that

lim |$(p)| = w. (24)

P2

Pido
Then F ($(P) + )~! is compact.

Notation:

If 4 is a Borel set of RY, we denote by y, its characteristic function (i.e. y,(x) =1
if x € 4 and y,(x) =0 if x ¢ 4) and by ¥, the Fourier transform of y,. x, denotes the
characteristic function of the sphere |x| <7 and V, = p(|#| <7) its volume. Let Dy
be the projection operator onto the states having momentum in the set 4oy =4 U

{#||p| < K}.

Proof:

Let K < o0 and7 < oo. We first show that F,(¢(P) + #)~* Dok is a compact operator,
In fact it is even a Hilbert-Schmidt operator, since its Hilbert-Schmidt norm ([4],
p. 210) can be estimated in the p-representation as follows:

IF,($(P) + 1) Dol = [ @0 4%/ [3:(p — $) 2/ B(5) + )" Koo (8)
= [@ 0] [ 251 B5) + 7 X (8) < Vi | @8 Kaon2)
=V, u(dox) < Vi [V + p(do)] < @

where we have used the fact that |(4(p") +14)7!| < 1.
Next we notice that

I, ($(P) +4)~" — F($(P) +4)™" Dokl
<(¢(P) + 97 — Dox)ll < Sup | ($(2) +9)7].

By assumption (24), this converges to zero as K — o«. Hence F (¢(P) +1)~! is the
uniform limit of a sequence of compact operators, which means that F,(¢(P) +¢)~*
is itself compact ([4], p. 200). ]

Lemma 4:

Let Be #B(#), A= A* and suppose B(A — z)™ is compact for some z € p(4) and
some M =1, 2, .... Let ¢:R — C be bounded and measurable with respect to the
spectral family {E(A)} of A and suppose lim|#(A)| = 0. Then Be(4) is compact.

Aot
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Proof:
Let E; be the spectral projection of A corresponding to the interval
(-4, 4] (0<A<w).

We have
BE,=B(A—2)™(4A -2)ME,.

Since (4 —2)ME € B(#), BE, is compact. Since ¢(A4) € (), this implies that
BE ,$(A) is compact. Furthermore

1B$(A) — BE 1 ()| < |IBIII( — E,) $(A4)l| < || Bl|sup |$(A)].
[2]>A
We have assumed that the last member of this inequality converges to zero as 4 — .
Thus B¢(A) is the uniform limit of a sequence of compact operators and hence compact.

APPENDIX II

In this Appendix we collect some auxiliary facts about non-relativistic #-body
Hamiltonians.

For a system of # non-relativistic particles interacting between themselves through
translation invariant potentials and such that there are no external fields, the total
Hamiltonian H is known to have absolutely continuous spectrum. The only condition
for this is that H = (1/2M) P2 ® I + I ® H, where P is the momentum operator of
the centre-of-mass and H is the Hamiltonian of the relative movement. It is not very
interesting to apply the main theorem to H. The relative movement is described by a
Hamiltonian of the form

n—1 — —

H= 3 a,;P P;+ 3 2. Vi oy

i, Jj=1 k=2 1<i)1<... <ly<gn

Here P; = —V, , where X}, ..., ¥,_; are linearly independent coordinates describing the
relative movement. A convenient choice is

where 7; (=1, ..., n) denotes the position of the jth particle ([6], pp. 185 and 190 f.)
a;;is a real, symmetric and positive definite matrix, and ¥, ..., is the k-body potential
corresponding to the set of particles {i;, ..., 4,}. V;, ... ;, is a multiplication operator in
the relative coordinates ¥, ..., %,_;. We shall indicate its explicit form only for the
case k£ = 2 and with the choice (25) for the relative coordinates: If

- -

Viry,...r,) = > V(i —7;), then in the relative coordinates:
i1si<jgn
2 V= 3 Viux)+ 2. V(% — %)),
1<i<j<gn 1<i<n—1 I<i<j<n-1

We now wish to prove the following result which was mentioned in Section III:
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Lemma 5:

Suppose V isa sum of translation invariant two-body potentials: V' = >, c;c;<a Vi;
and that V;; e L .(R3) for all {7,7}. Let ¥}, ..., %,_, be linearly independent relative
coordinates Wthh are linear combinations of the partlcle positions 73, ..., 7,. Denote by
V= D Vv, ;1 R¥D 5 R the function V' expressed in the coordmates Wy ey By

Then ¥ € Q, ,.(R3™D) for all « € (0,1).
We have used the following definition: Q, ,.(RY) is the set of all functions
f:RN — C which are such that

M= [ @fO) =y (xeRY) (26)

Ix—y|<1

1s locally bounded.

Proof:

It is an immediate consequence of (26) and the inequality (3) that Q, 1oe(RM) is a
linear vector space. Hence it suffices to show that each V, ; belongs to Q, 1,.(RY),
N =3(n —1). In order to simplify the notation, we shall write U for V;.

i) Let N =3. Then for x € R3:

M@= [ @yUEPl—y™ =< | as|Up)”

|x—y| <1 x—yl<1

since |x —y| <1 and —N + 4 — a > 0. Since U € L} (R3), this shows that M(x) is
bounded by a continuous function of x, which implies that M (x) is locally bounded.

ii)y Let N>3. Then U, ..., #,_,) = U(S!!a;%) with some constants a;. Let
A= (150 et

Let ¢ denote the unit vector along the coordinate axis corresponding to the kth
componentof ¥, (1=1,...,n—1; k=1,2, 3). Let a'® € R3" D be as follows:

atk®) —

M,.

a,e®  (k=1,2,3).

i=1

Since a®-a*) = §,,,, we may choose a new coordinate system in R3"~D such that its
first three basis vectors are e}¥ = a® and such that the new basis {¢;'¥} is obtained
from {e{®} by an orthogonal transformation.

We denote by «” the new coordinates of the point x and we use the abbreviation x,

for the vector (%3, ..., ¥,_;) € R*™ 2. In the new coordinate system we have
Ulx, ... %) =U(4Z%))
and thus

M@= | @y|00)|x—y| e

[x—y|<1

= | vy |\UAm e -y e (27)

Jx"—y"|<1
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We extend the integration in (27) to the larger domain

|y =@y [Z{ =51 <1, % — 4| <1}

Thus
Mw< [ @ylUd)P [ a2y |5 =il + a6 —pel?|
IX—yj1<1 lxi—v2l< 1
1 3 2 N=3, |z L=s ¢ a|2|(~N+a—a)/2
ZE J. dle(_Z))l f 4"y xl—ZZl +1xo—yo| .
|4X{—Z|< 4 lxg—vgl<1 (28)
Let
TR 1 - ' '
s= xl-—;l-z,t= | %6 — v
Then, since —N 4+ 4 — a < 0:
j dN—3y6 |551’ _ Z z | 24 lxé —y6|2 (—N+4—a)/2
Ixg—¥ol <1
1
— const j e o MR
0
1 1
< const J- aiN—4¢~N+4=2 — const f att—e.
0 0
The last integral is finite if « € (0, 1). This implies together with (28) that
M (x) < const f a2 z|U3)|2.
|4%; ~Z1< 4
By the same argument as in (i}, one sees from this that M (x) is locally bounded. [ ]
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