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Analysis of a Non-Resonant Maser Model

by René Weiss
Institut fiir Theoretische Physik, Universitat Ziirich, Switzerland

(5. III. 73)

Abstract. A system of N two-level molecules interacting by dipole coupling with one non-
resonant mode of the radiation field is treated quantum mechanically. First the eigenvalue spectrum
of the Hamiltonian is discussed and asymptotic expressions (for large, but finite N) for the difference
of successive eigenvalues are given. The time behaviour of the mean photon number and its mean
square variance is then derived for various initial states. The time evolution of these quantities

strongly depends on the ratio of the coupling constant and the difference of the field energy and the
transition energy of the molecules.

1. Introduction

For an understariding of the laser phenomenon, a fully quantum mechanical
treatment of the laser-active molecules and the radiation field coupling them is neces-
sary. Such a program is very ambitious. However, in order to understand the basic
mechanism, it is sufficient to consider a model suggested by Dicke[1]: a) the laser-active
molecules are described by two-level molecules, b) only one mode of the radiation field
is of importance, c) the losses of the system are neglected. Assumption a) is justified,
since in a pulsed laser only the levels of the laser transition are important, the pump
levels are necessary only for the preparation of the initial state. The single-mode laser
operation can today be obtained with almost any type of laser [2], and is important for
many applications.

If we describe the interaction of the radiation field with the molecules by the dipole

approximation and make the rotating wave approximation [3], we arrive at the
Hamiltonian

N N
H=73% bbb+ (1+d)ata+ 3 (ga* b, +g,ab}). (L.1)
i=1

i=1
Here the photon operators a, a* satisfy

(&, &%) = L, (1.2)
and for the spin-flip operators &;, b} of the molecules we have

[bi: bJ:I = [b!: bj'-:l = O: ) 7“-_7:
b;b¥ +btb, =1, b2=0. (1.3)
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Furthermore, considering a ring laser, which allows the selection of modes running
in one direction [4], we have

gi=ge'", g>0, foralls, (1.4)

irrespective of the spatial distribution of the molecules in the optical resonator. In the
case of a Pérot-Fabry interferometer, equation (1.4) holds if the molecules are placed
at equal mode positions, or if all molecules are concentrated in a region whose dimensions
are very small compared to the wavelength of the mode in consideration. It is evident
that the transformation

b; — b,e (1.5)
leaves equation (1.3) unchanged. Therefore we will study the Hamiltonian
N N
H=72bfb,+(1+d)a*atg > (a*b, + ab?). (1.6)
i=1 i=1

In the case of dipole coupling, the coupling constant depends on the quantization
volume V' of the radiation field [11]

2 Ci’?;t _ (L.7)
We will consider large V with fixed N/V. Thus we have
g£= . - (T
¢cV'N

In the resonant case 4 = 0, this Hamiltonian has been treated by various authors.
Its spectrum was investigated numerically by M. Tavis and F. Cummings [5], W.
Mallory [6], D. Walls and R. Barakat [7] and G. Scharf [8]; asymptotic expressions (for
large N) for the eigenvalues were given by G. Scharf [8]. The time evolution of the
system was discussed by R. Bonifacio and G. Preparata [9] and G. Scharf [10] by
entirely different methods. '

In the present paper, we are interested in the non-resonant case 4 # 0, and we will
extend the methods of Refs. [8] and [10] to this more general situation. First we investi-
gate the spectrum of the Hamiltonian (1.6) and compute asymptotic expressions (for
large N) for the difference of successive eigenvalues (Section 2). In Sections 3 and 4 the
time behaviour is studied for various initial states.

Let us consider some of the results. For the laser problem, the initial state with all
N molecules in the upper level is very interesting. If at £ = 0,2L additional photonsare
present, we will show that for large N the average photon number is given by

N
(n(t)> =2L + (2L +1) P Il (1.8)
where we have introduced
T =gt (1.9)
In equation (1.8) P(r) denotes the function 4(r) — (E/3), where
E=N+L—-142c2N +1, (1.10)
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and f(7) is Weierstrass’ elliptic function with the invariants

g2 =4E2 4+ 2422 N(L + 1) + 412, (1.11)
g3=— o E*+ 8 EL?2_242c2NE(L +1)
+N@2L +1) + 4>°c2N(2L%2 + 2L +1). (1.12)

If only a few photons are present initially, L < NV, the average photon number oscillates
with a period

262 —-1/2
T=c(1— 4) log N (1.13)

if the laser is ‘weakly detuned’
|4]c < 2. (1.14)

The maximal height of a pulse is found to be

D%

where we assumed L > 1. On the other hand, for a ‘strongly detuned’ laser

|d|ec>2, (1.16)
the period is given by
4 -1/2
T=2n|4%>—-— (1.17)
C2

and the maximal height of a pulse is O(1). We thus see that for increasing |4|c, the height
of the pulse decreases strongly, and is only O(1) for |4|c = 2; the laser action has then
vanished. A similarly drastic change can be noticed considering the periods, equations
(1.13) and (1.17). Such periodic behaviour of the physical quantities is true only for not
too large times. In fact, we will show that in the weakly detuned case, the periodicity
1s destroyed after about 2L1log N periods, whereas in the strongly detuned case O(IV)
oscillations are periodic.

We finally consider the limit NV — «. In the case of the weakly detuned laser, the
function P(7) tends to [25]

P(r) = Esinh~2(VE7), (1.18)
and the average photon number is thus given by

il /1 42
{n(t)) =2L + (2L + 1) (l — ) sinh? (t —-— —) (1.19)
4 ¢z 4

In this case the time evolution becomes aperiodic and the photon number increases to
. For the strongly detuned case we obtain, in a similar way,

(Azcz )—1 . ( A2 1 )
(n(t)> =21 + (2L + 1) —1) sin?|¢,/——=], (1.20)
4 4 2

which means that the photon number remains finite. Equations (1.19) and (1.20) agree
with the corresponding results in the work of K. Hepp and E. Lieb [11].
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2. The Eigenvalue Spectrum

As a first step in the analysis of the Hamiltonian (1.6) we introduce the operators

N N
Se=3b, S.=3 b, S;=1[S.5.]. 2.1)
i=1

i=1

They obey commutation relations of angular momentum operators. Equation (1.6)
now takes the form

H=S;+3N1+(1+4d)ata+ga+S_+aS,). (2.2)

This Hamiltonian commutes with the square of the total angular momentum
S$2=5%+1(S,S_+S_S,). Thus H does not connect states of different eigenvalues
s(s + 1) of the square of the total angular momentum, and we need consider only
subspaces corresponding to one fixed value s. In our analysis, we may assume s = 4N ;
if s < 1N a reduction to the former case is possible?).

In order to reduce the problem to an algebraic form, we choose as a basis the
products |n,m) of the eigenstates |n) and |m) of the photon number operator a*a and
the angular momentum S, respectively. In this basis we have

H}n,m>=(m+%7+(l+d)n)|n,m>

+gmjg(%+1)—m(m—1>|n+1,m~1>

+g\/ﬁ"/g(g+l)—m(m+1)|n—1,m+l>. (2.3)

We see from this equation, that the quantity
N
R=n+m+ 5 (2.4)

is preserved. Physically, this means that the total number of photons and excited
molecules remains constant. Hence a further reduction of the problem is possible: we
need consider only subspaces with one fixed value of R. Furthermore, without loss of
generality, we may assume R > N [10]. In this subspace we introduce as a basic variable
the number of excited molecules

N
x=m+E=R—n, r=0,1, .., (2.5)

In this representation the Hamiltonian (2.3) reads

H, =R8, +4R -8, , +gV(R—x+1) (N —x+1) 8,5,

+EV(R—2) (N —#) (x+ 1) 8y 1ps1 = (R1+ M)yr e (2.6)

. This is achieved by a redefinition of the quantities N and R (see below) entering in equation

(2.6) [10].
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The energy eigenvalues R + € of the Hamiltonian H are determined by the
algebraic eigenvalue problem

Me=ce, e=(ey6q,...,6y5). (2.7)
Following the procedure in Ref. [8], we convert equation (2.7) into a difference equation
(e —d'(R—x))es=(R—x+1)(N—2x+1Del+(x+1)er, (2.8)
where we have introduced
N \1/2
e,’c=ex(—) (R— a1, 2.9)
&
4
et A (2.10)
g g

Equation (2.8) shows that in the resonant case 4" = 0, the eigenvalues lie symmetrically
around 0. For 4’0 this property does not hold any longer. Remembering the
transformation (1.5), we see that it is sufficient to consider either sign of A4’; this
property will be used later in the analysis.

We now transform equation (2.8) into a differential equation using the character-
1stic function

N
f@) =3 e, AN
x==0
Thus we get
#'+/(N+1-R+4'2—2) + f(Re—€) =0, (2.12)

In order to solve the eigenvalue problem, one would have to search for polynomial
solutions of equation (2.12). It is more convenient, however, to perform another
transformation. Defining ¥(z) by

Ar
y(2) =f(z) 2" exp (—%z2 + ?z) (2.13)
where
2l=R-N-1, (2.14)
we arrive at
R e L R VY 47
5" i} ——E—t + =y|N+1+3 ——| 2.15
Y +y ( 1 %3 = - y ( . (2.15)
This is just the Schrédinger equation for a particle moving in the potential
- 2 4 W+l €&€-4a1
Vi, e)=——2—+ + 2.16
(& €) 4 2 2 Z @18
at a fixed energy
2
E=N+1+3 - (2.17)

4
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For z tending to 0, we have ¥(z) ~ z!*1; for large z, §(z) is proportional to exp —4z2.
Thus the eigenfunctions ¥(z) we are looking for are ordinary L?(0, ) eigenfunctions of
the Schrédinger equation (2.15).

A dlscussmn of the potentlal given by equation (2 16) shows that for sufficiently
large positive ' the minimum ¥ of the potential is greater than the fixed energy
(2.17), whereas for decreasing (negative) values of €', the well becomes increasingly
large and deep, hereby we assumed / > 0. Therefore the Schrodinger equation (2.15)
gives an infinite sequence of possible values ¢’. How can we pick the N + 1 eigenvalues
of the laser problem out of this infinite sequence? This question can be answered
remembering the node-theorem [12], which states, that in a one-dimensional potential
the eigenfunction of the #th bound state has # — 1 nodes, if the bound states are ordered
by increasing energy. On the other hand, we see from equations (2.11) and (2.13), that
all N + 1 eigenfunctions y(z) we are looking for have not more than N nodes in the
interval (0, «0). Since the potential decreases monotonously for decreasing €, the energy
eigenvalues of the laser Hamiltonian correspond to the N + 1 largest values € which
lead to L?-solutions of the Schrédinger equation (2.15). Besides, all eigenvalues are
non-degenerate [12].

Now we want to derive asymptotic expressions (for large, but finite N) for the
difference in successive eigenvalues. For this purpose, we apply the WKB-method to
the Schrédinger equation (2.15). As we will see in a moment, we have two positive
classical turning points a, and a,, a, > a,. Therefore the quantization rule determining
the possible eigenvalues €’ gives [13]

]1Efdz/\/E——w—g—,+z%—f—(n+‘}) (2.18)
az
where we have introduced
&€= —-41, (2.19)
and
L2 = (I +3)2 (2.20)
If we differentiate equation (2.18) with respect to &', we arrive at
an
=Ty = f du(—2* + 24" 2 + 4E7> — 48 7 — 41712, 2.21)

Let us discuss this equation first. The integral on the right-hand side may be reduced
to the form pwK(m) [15], where K(m) denotes the complete elliptic integral of the first

kind. In order to perform this reduction, we first have to compute the roots of the
biquadratic form

24— 24" 23 —4E2? 4 48 7+ 412 =0. (2.22)

The normal form of the associated cubic resolvent is [14]
A ’
yi+y (—-}E2 ) & — LZ) + % E®*—3EL?—}&% + 14'E& — 347 L?

= y3 4 3py +2¢ =0. (2.23)
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For the laser problem, the initial state with all molecules in the upper level, the
‘fully excited’ state is very interesting. We will consider this case first. Thisinitial state
lies in the subspace in consideration (s = N/2), and is described by e(t = 0) = (0,0,...,1).
From equation (2.6) we get for the mean value of the energy

CHy=R+4@I+1)=R+e€,,.,, (2.24)
and for its mean square variance
(8H?*y ={(H — {H»)*> =g?N2(I+1). (2.25)
We recall that in the dipole approximation the coupling constant g depends on N,
equation (1.7')
1
£= VN’

The photon number at £ =0 is equal to 2/ 4+ 1. In our analysis we first assume that
I =0(1), i.e. initially only few photons are present; the case / = O(N) will be treated in
Section 4. Therefore we have

(2.26)

€Laser — A(2l + 1) = 0(1), (227)
ie. '
€I’..aser = O(NUZ): (228)
and
2
(BH?y = = (I14+1) = 0(1). (2.29)
c .

Equation (2.29) shows, that only the eigenstates with eigenvalues €' = €] ,; + 8¢,
8¢’ = O(N'/?) contribute strongly to our initial state.

The roots of the cubic resolvent (2.23) are found by standard methods [14]. As we
have just seen, we may limit our consideration to such values of € which are O(N'/3).
In this case, all three roots of equation (2.23) are real, and for the two leading orders in
N we find

1 o~

¥y =—%E — "GN,
E
N 12 '|1/2 .
— | L2 e O(N™Y). 2.30
E\FriE)| O (2.30)

Knowing the roots of equation (2.23), we can compute the roots of the biquadratic form
(2.22) [14]

1~

E

Vo=%1E + % -
3

A A=ypz  1g &a ON-312
y=dE2\ Bt gt Zaye TN,
AE|E +—
4
1&" g’l 1/2
el | BB i O(N-3/2, 2.31
3T2E ¥IE| T (2:31)
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Now it is convenient to distinguish the two cases E > 0 and E < 0. Since we are

considering large values of N, we have |4|c <2 and |4|c > 2 respectively [equation
(2.17)].

a) |4|c < 2. In this case the laser is weakly detuned. From equation (2.31) we have
2 > 2, >0 2> 2, (2.32)

where 2z, and z; are the two positive classical turning points. The integral (2.21) can
therefore be written in the form

J2= pK(m) (2.33)
where [15]
1¢4

=2z, —2.)" V2 (2, —2,) V2 =F-12 (] 4+ =
P (21 — 23) (24 — 2,) ( +8 7

1 A2\V2 [[2 1e2\1/2
——|E+—]| |=+-= O(N-3/2
2E( * 4) (E+4E2) )+ S

_ 12\1/2 »
(23 22)(24“21)=1__2_ E+A7' £f+.1.€_2 1/2+0(N-2)J
(23— 21)(24 — 25) E E 4E?
and K(m) is the complete elliptic integral of the first kind. Using for K(m) the asymp-
totic expansion [16]

m

4

[
K(m) = log4(1 — m)~1/2 + Tm (log4(1 —m)~V2 —1) + ...

we arrive at

din ¢ [N \2
de 27 \E

Considering the leading term only, we have

log8E —3log [N s NS ||+ o[ 18N (2.34)
BT\ E TN | T\ ) |

de 2m 42 ¢?

di c

(log N)=1 + O((log N)~2), (2.35)

i.e. the eigenvalues in consideration are approximately equidistant:

2 4%

€1 — €

p (log N)~! + O((log N)~2). (2.35")

Therefore, over not too large time intervals (see below), the physically relevant
quantities, e.g. the photon number, oscillate with a period

AZ 2\-1/2
T=c(1— : ) log N. (2.36)

We see that the period T is strongly dependent on the ratio of the detuning-constant
4 and the coupling constant g = 1/c4/N. In particular, assuming a fixed coupling
constant 1/c, the period is minimal in the resonant case.
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In equation (2.36) we considered the leading term only. The following term, being
O(logN) smaller, depends on €é?; this accounts for a disturbance of the periodic
behaviour. In order to get an estimate for the aperiodicity, we compare the periods T’y
and T, for €% = €} e, and €2 = €, + (SH?) respectively. From equation (2.34) we find
that after

1

2

T,
T,—
periods, the two considered oscillations differ by half a period; this means that the time
evolution of a physical quantity is periodic only for s periods, where s < 2.

Now let us discuss the eigenvalue spectrum in more detail. By standard trans-
formations [15] we can express the integral (2.18) as follows

= no=2Llog N = O(log N) (2.37)

L 212 4
Ji=p| A+ En =38 — — | Km) + plas—2) | E+ — 23 | [(a,m)

3

2172 2y I
+p (zs —z) | a—,m |+ = A'(25 — 2,)?
2324 % 4
/2
x f d(1 — asin? ¢)=2 (1 — m sin? §)~1/2 (2.38)

(0]
where we have introduced

%1 — 24
a =

(2.39)

’
By —&s

and II(a,m) denotes the complete elliptic integral of the third kind. The remaining
integral in equation (2.38) can be reduced to a sum of complete elliptic integrals of the
first, second and third kind [17]:

/2

f dp(l —asin®¢) ™2 (1 —msin? ¢)~1/2 =[2(1 — a) (m — a)]™!

)

X [(a — m) K(m) — aE(m) + (a®> — 2am — 2a + 3m) I1(a, m)]. (2.40)

Expanding these elliptic integrals for large N, we arrive at [16, 18]

Ac f o A% ( 2 ’ /1( Ac))
Ji=—N ,/1- +a#N |1 —-—-arcsin ,/-|1——
2 4 T 2 2

1 AZ c2 -1 CZ AZ cZ —1\1/2
-1 L2 + —(e—AdD)?*|1— logN +0(1). (2.41
AL (4w £ o, e

From equations (2.24) and (2.41) we may determine the leading order of the WKB

quantum number 7 :
dc
— 2arcsin - — (2.42)

( / A*¢*
#a=N 71'—}-— -

This equation shows where in the spectrum the eigenvalues e = O(1) are situated (see
Fig. 1). In the resonant case 4 = 0, the middle of the spectrum, % = N/2, is important,
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i

N

xrd

-10 -05 0 05 10 AC

Figure 1
The WKB quantum number # as a function of 4¢/2.

whereas for increasing |4, |4|c < 2, the eigenvalues move towards the boundary of the
spectrum.

b) Now let us consider a strongly detuned laser: |4d|c > 2. We first assume 4 >0
or 4" > 0 respectively. The condition that the (fixed) energy E must be bigger than the
minimum of the potential (2.16) yields

4

e <—|dli—|A|(+D /1 - T (2.43)
where the index of e denotes the sign of 4. Recalling equation (2.27), namely
€fater = —|4| (2] + 1), we see that (7)., lies near the upper boundary of the spectrum.

Hence the eigenfunctions corresponding to the eigenvalues under consideration have

only 0, 1, 2, ... nodes, which means that the use of the WKB approximation would be
doubtful [13].

Therefore we now take 4’ > 0 instead, without loss of generality. Equation (2.43)
then reads

4
eM > A+ A1+ 1) '/I_W’ (2.43")

and the eigenfunctions have N, N — 1, N — 2, ... nodes. In this case, equation (2.31)
gives

2> 2,>0>2,> 2, (2.44)

1.e. we again have two positive classical turning points.

The evaluation of the integral J, in equation (2.21) runs along similar lines as in
the case a). We arrive at

m_ e (ﬂ)m (1 3€’A’)+0(N‘2). | (2.45)

8 E?
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Considering the leading term only, we have, remembering 4’, ¢’ = O(N'/?), equation
(2.28),

4
Bt = [ A = ], (2.46)
¢

and the period

T =2n (AZ - i)-m (2.47)

cz/

1s independent of NV, in contrast to the weakly detuned case a), where T is proportional
to log NV, equation (2.36). The uncertainty of the period 7" can be estimated as above
(2.37). We find a more stable periodic behaviour: now s oscillations are periodic,
2 < ny, Where s 1s given by

1
N
|4le

Wl

%0_—"‘

(1 _ 162)2 2L +1)-1/2 = O(IV). (2.48)

This result 1s entirely different from the case a), where only O(log N) oscillations are
periodic.

3. The Time Evolution of the Photon Number and its Variance

In order to investigate the time-dependent problem, we return to equation (2.12),
where we replace €' by (¢/g) (9/0¢):

10
igé} flz,8) =z2f"(z,8) + f'(z,8) (N +1 — R+ 4"z — 2*) + Rzf(2,1), (3.1)
here we have introduced the time-dependent characteristic function
N
flz,t) = > ext) 2R~ (3.2)

x=0

In this case, the transformation (2.13), which led to the Schrédinger equation (2.15), 1s
not appropriate, because the operator d/d¢ would enter in the Coulomb term. Instead
we search for a transformation, yielding for y(z,#) an equation of the Schrédinger type
1(0/0f)y = # vy, where the operator # is hermitean. This is achieved by taking

f(z,8) = v(2,8) 2V exp (%zz — %—z) (3.3)
where
L=1R~-N)=I1+1. (3.4)
We in fact arrive at
0 1{ 02 0? P A L
i—;y=—§(za—22y+@zy)+y(z—-—2—zz—zﬂ'+?—I—A'l):%”y, (3.5)

where E is given by equation (2.17), and
T =—gt. (3.6)
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We remark that the transformation (3.3) differs from (2.13) by a factor z!/2, Therefore
the modification (2.20) of the centrifugal potential arises in a very natural way here.
The term 4’7 in equation (3.5) may be dropped, because it only gives rise to a phase
exp(—t4’Ir), which is of no interest.

The transformations made above define an embedding operator T

y(r) = Te(t). (3.7)
The Hamiltonian (3.5) may thus be written in the form
1
H=TMT™, M'=— M. (3-8)

Here T-! denotes the inverse operator on the (N + 1)-dimensional subspace of L?
corresponding to the laser Hilbert space [10], and M is the Hamiltonian given by

equation (2.6). In the matrix representation (2.5), the expectation value of the photon
number operator is given by

N
i)y = (e(t). ne®) = 3 (R—x) |ex(t)| 3.9)
x=0
If we define the photon number operator .« of the transformed problem by
o =TnT 1, 0 (3.10)

equation (3.9) may be written as follows

(n(t)y = (@(0), T~ '™ of e ¥ y), (3.11)
where (equation (3.6))

T=—gt.

From equation (3.10), namely &y, = Tne(0), the explicit form of the operator &/ is
found to be

4’ d
oA =3P ——z2+ L+2—. (3.12)
2 dz
Obviously, this operator is not self-adjoint and therefore does not allow a direct
interpretation as a physical quantity.
As initial state we again take e({ = 0) = (0,0,...,0,1), i.e. all molecules are excited.
The corresponding function y,(z) (3.3) is given by

Yo(2) =¥(z,0) = (2L!)~"2 z exp (—izz + %z) (3.13)

In this case, equation (3.11) shows that we only have to compute the lowest power
(~2') of the expression e'#%.of e=i#7y, This property will be extensively used in the
following analysis.

We now revert to the Schrédinger equation (3.5). Its time-dependent solutions can
be expressed by

y(a) =¥ y(,0) = | 47 K(z,7,7)y(',0), (3.14)
0
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where we have introduced the propagator K(z,2’,7). We will calculate this propagator
by the time-dependent WKB theory. It is shown that the propagator is given by [19]

K(q1,92,7) = (2m1) "2 D2 expiS(gy, ¢,, 7), (3.15)

where S(g,,¢,,7) 1s the action
5192 7) = f Zdr' (3.16)
0

taken along the classical path from ¢, to ¢,, and

0*S
D—— (1,92, 7) ‘ (3.17)

09, 09,
The propagator (3.15) satisfies the Schrédinger equation (3.5) with an additional
‘false term’ [19]

1 9 av/D
i (qz . ) (3.18)

Therefore the approximation is justified if this term can be neglected in comparison
with the potential ¥ (g,), equation (3.5). We will check the consistency of this procedure
once we have found the explicit form of the propagator given by equation (3.15).

As a first step we compute the action S(g,,¢,,7). The classical Hamiltonian
function s (p,q) corresponding to the Hamiltonian (3.5) is

H(p.9) =qp* +V(q) (3.19)
where
4 L?
Vig)=1%4¢>— —92 —Eq+ 7 (3.20)

Because the function 4#( p g) does not depend on the time explicitly, we have

S(q1,¢2 7 qu A/ (€—Vig

=So(ql,qz,f) — &, (3.21)
where the energy & is determined by the equation
Fom 8, (3.22)
o8

In exphclt form, equation (3.22) reads

= J dg(—q* + 24’ ¢ + 4Eq? + 48q — 41?12 = f dg(g(g) 2. (3.22))
g2

This integral, which is very similar to the previous equatlon (2.21), can be inverted using
the formula [20]

1 2 ' 2 ) 2
ﬁ(f)zVg(q)g(q)Jrg,'(qz)Jr glg) | 8'l9) (3.23)

2(q; — 92)? 4(g, —q;) 24
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where 4(7) denotes Weierstrass’ s-function with the invariants
g,=%E*—-24"6 + 4172, (3.24)
g3=—SE*+34'E6+ §EL?>+ 82+ 47 2 (3.25)
We are thus led to a transcendental equation for the energy &

919 4 ,
&= (P— 122) @1+ 9+ 00— [0+ 0. = 24'(q1 + 02)

g3 43 1z
—4E — 4P)12 [4}%11 g+ 2+ L2] (3.26)
where we have introduced
E
Firy =gl — - (3.27)

One might try to compute the action (3.21) in a similar way, however, as we shall see,
this is not necessary.

Let us consider equation (3.11) again. As we have already pointed out, the average
photon number is determined by the coefficient of the lowest power ~¢% of the expression
&HT o oy,

q]"’o

{(n(t)) = lim g7t f dqu dg3 K(q1,92,—7)
0 0

yald 0
X [‘}‘Jg == 5‘92 +L+q, "‘a_] K(q,,93,7) ¥olgs) V (2L)!. (3.28)

2

After an integration by parts, we have

. o Q0 o ) AI a
{n(f)y = quH—I»lO 71 ! dq, J dq3 %9’2“‘2“92 +L-1 —925?!“;

0
X K(q1,92,—7) K(g3, 93, 7) Yolgs) V (2L)!, (3.29)

where the differentiation operates on the first propagator. Because we need consider
this propagator only for ¢, — 0, the analysis will now be considerably simpler.

In order to evaluate expression (3.29), we differentiate the propagator K(g,,¢2,7)
(3.15)

0 4 g L2\
_92aZK(Q1r92:_T) = (7'9’2 (—M% + 392+E +E;_ E)

1 aD

—q,— — | K(94, g5, —7). 3.30
922Daq2) (91,92, —7) ( )
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In the limit g, — 0, we get for the bracket in equation (3.30), using equation (3.23),

a4 & I\ 1 ap,
g, fA}92‘l'_9'2'1‘E‘f‘_—— = g e —

% 4 2D, 0q,
4 \? 1 oD
—ig,|P+E—1g5+— ms e fy 3.31
‘?z( 392 2 92) 72 2D, 34, (3.31)
where we have introduced (equation (3.26))
A7 \1/2
a,~
From equation (3.21) we find
1 98,
Dy=1lm D= — — (3.33)

q,—0 211L 8q2

Now it is very convenient to introduce the energy &, as a variable instead of the
coordinate ¢,. This may be done using a formula resulting from equation (3.22) [20]

By o= iy o VElg) r' +3£'(q) [/ — 258" (q)] + ‘zlzfg(%)gm(%), (3.39)

2[4—2:8"(90)1* — 8(91) g™ (1)

which in our case yields (g; — 0)

1
Pz —
Here P’ denotes the function P differentiated with respect to 7[21]:

Pr=p'= 44— g2 — )"
=(4(P?—L*(E+ P)+24"6,P— 83 — 4% L)1/, (3.36)

Recalling equation (3.31), the bracket (corresponding to the photon number operator)
- In equation (3.29) may be written as
1 1 1

s L —4L(P2— L) (E+ P)—4?L*P—-L
S AL —IA (E+ B) (P-1)

4 id' LP(P— L) + E(iP'(P— L) + 4'(P — L)?)
1 9D,

3P~ D))~ a5 (3.37)
0

s = 5 GLP + 8, P~ L24). (3.35)

In this equation, the energy &, appears explicitly as well as in the invariants g, and
&s; equations (3.24) and (3.25). We now make the following approximation: in the
invariants of the elliptic functions P, the energy &, shall be replaced by the quantum
mechanical expectation value

E={H>=—€] et 1= A" (L +13) (3.38)
(the negative sign of €; ., is due to definition (3.6)), and analogously for

E*=(H#*=N@2L+1)+ 4L+ %> (3.39)
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This means, that in the trajectories of the classical particle described by the Hamiltonian
function (3.19), we take the energy equal to the quantum mechanical expectation value
[10]. The photon number will thus be a strictly periodic function; we recall, that in
Section 2, we have given an estimate of how many periods such an approximation is
valid.

We can easily verify that the real period 2w of the elliptic function P(r) coincides
in fact with the period T found in Section 2. For this purpose we compute the constants
e1, €3, e3 of Weierstrass’ /-function [21], i.e. the roots of the equation

48 —8:6—g3=0. (3.40)

This equation, howe\_f_er, is equivalent to the former cubic resolvent (2.23), where the
substitutions € — —¢&, €2 — &2 have been made. Therefore we havee; =v;,7=1,2,3;
and for the real period, being equal to [22]

2w =2(e; —e;) V2 K(m), m=(e,— ¢s)(e;—es)7, (3.41)

where ¢, > ¢, > ¢;, we get the former result.

We now want to discuss briefly the magnitude of the function P(r) = 4(7) — (E/3)
[23]. In the interval (0,2w), we have the symmetry relation f(w — 7) = f(w +7),
furthermore Weierstrass’ 4-function reaches its minimum ¢, > 0 at r = w. For 7 — +0,
#(7) tends to +co, being monotonously decreasing in the interval (0,w). In the case
E > 0, we get, by exactly the same procedure as in the resonant case [10], the following
estimate for P(r)

PM=0N%, a==2"" 0<r<w. (3.42)

w

In the case E < 0, Weierstrass’ s-function has the e_xpansion [25]

#(x) =—L?+2|El (l—cos(t N 42— i))_14-0(11), (3.43)

c2
ie.
P(r)=0(N), 0<r<w. ' (3.42")

Let us revert to equation (3.29), where we insert equation (3.37). We first compute
D, (equation (3.33)) by implicit differentiation of equation (3.26). A calculation
analogous to Ref. [10], Appendix II, shows, that with the notation of equation (3.42)

1
Dy=—P(1+0(N™), 0<a<l. (3.44)
2L

The terms O(N~%) originate from the differentiation of the invariants, in the resonant

case, these contributions are only O(N~2%). In order to evaluate the integral (3.29), we
have to consider the integral

] l 0 o]
Jim — [ dg, [ 40580 K (@102, —7) K(g2. 5,70 02) VDT (3.45)
1o 0
Recalling the definition (3.15), we have
.0 110D
EK(g1,92,—7) = =0 —K(91,92,—7) + ;= = K(q1, 42, —7)- (3.46)
or 2D or
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Inserting this representation in the integral (3.45), we get from the first term:
& =—-4'(L + 1), equation (3.38). By means of equations (3.36) and (3.44), we find for
the leading term of the contribution of the second term: —VE + P, the other terms
being O(N*) smaller. The integral (3.45) is thus equal to

—A'(L+1) —iVE+ P+ 0N, 0<a<l. (3.45")

By the same procedure, we find

7363 K(91, 92, —7) K(¢2,93, 7) ¥olg3) V (2L)!

ol )
'-.lH
8
B[ =
Ok—?s
N
LQ
Ot___ﬁa

=—2E+P)(L+1)+4d(L+HVE+P+A*L+3)(L+1)
+ 0N, 0<a<l. (3.47)

In a similar way, we see that the contribution of the last term in equation (3.37) is
O(N~2%) for 0 < « < 1. Furthermore, the order of magnitude of the ‘false term’ (3.18) is
found to be O(N~1272%) 0 < « < 1, which is small compared to the potential. This
result checks the consistency of the procedure.

Summing up, in equation (3.27) only the terms independent of &, and ~&,
contribute to the leading term of the average photon number, the other terms being at
least O(NN%) smaller. We thus have

4’
P+E+—
e P+N
)y =1+ @L+1) ———— =1+ 2L+ 1) ——, (3.48)

where P = O(N%), « > 0; i.e. the average photon number is an even elliptic function of
order 2. We point out the remarkable fact, that the detuning constant 4 appears only
in the elliptic function P(7). Hence, the result is almost the same as in the resonant case.
The result (3.48) represents the leading term of a general even elliptic function of
order 2 -

P+ N '
—1+ (2L +1) _Lﬂ, (3.49)

P+

where «,8 = O(1). In order to determine the quantities «, 3, we expand the function
(3.49) in a power series, using for the elliptic function P(r) the expansion [24]

1 E
P(7) = =73 +355 g+ gyt (3.50)
We now compare this result with the exact time evolution for short times given in the
Appendix. If we successively identify the two leading orders of the coefficients, we find
that the corresponding terms ~-r° ~712, ~7% are correct, if we take a ==L + L.
Comparing the terms ~7° and ~78, we see that for & and &> we have to take

&=—A"(L+1), (3.51)

E*=N@2L +1) + 4*(L +1)?, (3.52)
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which means that a slight modification L — L + 1 of our ‘trial’ values (3.38) and (3.39)
1s necessary. Then

P+N+L+1
@@>:h1+@L+l)_;+z+j (3.53)

is the correct elliptic function of order 2 for the average photon number. We have
shown this result for P ~ N%, o > 0, i.e. except for 7 = win the case E > 0. By continuity
in 7, we may now include 7 = w as well.

By the same procedure, the expectation value of the quantity #?(r) can be
computed. The leading term is found to be an even elliptic function of order 4

P+ N

2> =1+ (2L + 1) (P@L —1) +2N(L + 1)). (3.54)

Comparing this result with the expansion given in the Appendix, we see that

P+N+L+1
P+L+1

+(2L+1)(2L+2)(P+N+L+l)(P+N+L+2) (3.55)
(P+L+1)(P+L+2)

gives the two leading orders correctly up to 78, if we again make the substitutions (3.51)

and (3.52). From equations (3.53) and (3.55) we finally obtain for the mean square
variance of the photon number ‘

(a?(8)) = (n*(t)) — {n(t)>?

P—-L P4+N+L+1
=(2L+1)N = . (3.56)
(P+L+1)?* P+L+2

2> =1—3@2L +1)

Here again the constant 4 appears in the function P only.

4. Extension to Other Initial States and Discussion

In the two preceding sections, we considered the initial state with all molecules
excited and few additional photons (L = O(1)). We now investigate the time evolution
in the superradiant case, i.e. the number 2L of photons being present at £ = 0 1s O(IV).
The procedure is the same as in the case L = O(1). Thus, for the leading order of the
average photon number we get

P+N+L

Since this result agrees with equation (3.53) up to corrections O(1) and equation (3.53)
is correctly matched to the exact time evolution for short times, the former result can
be immediately taken over:

P
)y =—1+ @L +1) ;f:i:d. (4.2)
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In the invariants g, and g5, we have to insert again & and &2 given by equations (3.51)
and (3.52). For the quantity (#*(f)> and the mean square variance we also get the
former results (3.55) and (3.56) respectively.

In the superradiant case L = O(N), a general discussion of equation (4.1) is rather
cumbersome ; we therefore confine ourselves to a representative example. Choosing

1% 5=

262

20, 1,=0(1),
4)‘*’1 1 (1)

2L=N(1 _ <1, (4.3)

we find from equations (3.40) and (3.41) for the leading term of the real period

K(m=3) 1,854
T=2w=2 =2

4 A2 2 a 72
Ven [1-— 4° \/2zv/1—"4C

In order to get an estimate for the time interval, over which we expect a periodic
behaviour, we compare the periods Ty, T, for €; = €1 ey aNd €; = €pgqer + V(SH?) =
€raser + V2LN. It results, that after about #, periods, where

N

(4.4)

1
2

T,
T,-T,

4

Az 2 - 1 = O(NIIZ)J A # O! (4‘5)
c

=2V N

%0:

the time evolution has become aperiodic. Whereas in the resonant case 4 = 0 [10], we
have s, = O(N), equation (4.5) shows, that for 4 # 0 we have periodicity only over
n=0(NY2), 2 < n,, periods; in this sense the resonant case is unstable.

In Section 2, we found (equation (2.37)) 2, =2LlogQN, if there are only few
additional photons at ¢ = 0; this means that the periodicity is disturbed much earlier
than in the superradiant case. Furthermore, comparing equations (2.36) and (4.4) for
the period T, we see that in the case L = O(1) T is depending much stronger on 14%¢?
than for L = O(N). The relative change of the period as a function of |4|c is shown in
Figure 2.

Let us now discuss the time evolution of the average photon number given by
equation (4.2). We first assume |4|c < 2. In Ref. [10], graphic representations are given
for the resonant case. In our case 4 # 0, the general shape of the pulsations is the same,
however, as we have just seen, their period is a function of 4. Furthermore, the height
of the pulses also depends strongly on 4. In fact, assuming L < N, we get from equation
(2.30)

7 E

(w) =¢4 3

(L + 1) 4%¢2 L2 9L +1+ 42¢2(L + 1)2 |12
T 2 | T aet e '
1— 4 |1- 41—
4 4 4
If L > 1, equation (4.6) takes the form

Plw) =L (1 + A;CZ) (1 _ Azf')_l, (4.7)

(4.6)
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Figure 2
Maximal height % and period T of the pulsations for the fully excited initial state, ———— L = O(1),
superradiant.
and for the maximal height of the pulse we thus obtain
A2 e
<M@>=N(L— | (4.8)
. def r
In Figure 2 we have depicted the quantity {n(w)> — (#(0) > = . We remark, that this

quantity t
procedure

Plw

~—

and theref
{(n(w)

see Figure
Asin
different f

ends to O(1) for |d|c — 2, i.e. the laser action vanishes. The analogous
in the superradiant case yields

” [(1 B 4262)1/2 B _1_ (1 B Azcz)]’ 4.9)
4 2 4
ore
A2 c2\172
>—O@»=NG— 4) , (4.10)
2

the resonant case, the mean square variance of the photon number is entirely

N?, where

CRUPRE

or L = 0(1) and L = O(N) respectively. If L = O(1), {a?(f)) is proportional to
as in the superradiant case, it is O(N). The general shape of the curves for
the same as for 4 =0 [10]. However, the property that o(w) = 0(1) for
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L = E/3,1i.e. that at 7 = w the photon number is almost sharp, is true only for 4 = 0; in
fact, from equations (3.56) and (4.9), we get

4% c?

{*(w)>=N + 0(1). (4.11)

Let us consider briefly a strongly detuned laser, |d|c>2, with L =0O(l).
Weierstrass’ s-function may then be written

]EI 4 1/2 -1
/z(f)=—-§-+2|E; 1 —cos|t AZ—; )) + O(1)

(equation (3.43)), and for the leading term of the average photon number we obtain

2L +1 (42> \* 4\12
{nlt)y =2L + — ( y —1) (1—cos(t(.42—§) ))+O(N‘1). (4.12)

This means that the height of the pulses is only O(1). Summing up, we see that for
L = 0(1), laser action is possible only if |4|c < 2.

Finally we want to discuss another initial state of interest: the fully depleted state,
where at ¢ =0 all NV molecules are in the lower level and R photons present. This case is
important in non-linear optics.

In the matrix representation, this initial state is described by

e(t=0)=(1,0,...,0), (4.13)

the corresponding function y,(z) has the form
A r
Yole) = (R!)™12 % exp (—%zz % EZ)' (4.14

The method developed in Section 3 can easily be adapted to this problem — we confine
ourselves to a brief outline of the main differences in the procedure. Up to equation
(3.27) the approach is the same, however the photon number is now determined by the
highest power of the expression ¢'#7%.o/e~'#7y,. The average photon number is thus
given by

) Ar ] 0
(n(t)) = lim g7 ®Pexp | i4i— - f dg, j dqs
q;—© 2 o o

r’

0
x K(q1,92,—7) [%9'% — ‘2‘9'2 +dat 9’25} K(q2,93,7) Yo(q3)- (4.15)
2

Having performed the differentiation, we introduce, instead of the variable ¢,,

6,= lim &(g,9,, 7). (4.16)
q,—©

From equation (3.34), the substitution formula is found to be
1iP"+4"P— 6,

=3 a7
P+E+T

(4.17)
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The resulting integrals are evaluated by the method developed in Section 3. For the
leading term of the average photon number one gets

P+4R-N
{nt)y=R A ) . (4.18)
P+3(R+N)
We now match this even elliptic function of order 2 to the exact time evolution for
short times (see Appendix). One finds, that the two leading orders of all coefficients up
to 78 are correct, if in the invariants of the function P(r) we take

r

3=—?(R+N), (4.19)

6% = RN + 14*(R + N)?, (4.20)

respectively. We note that these values do not correspond exactly to the expectation
values

’ ’

4
<3f>=-—2—(N+L+=})=—-§-(R+N+%), (4.21)

(#%y = RN + 34" (R + N + 3)?; (4.22)

in fact, the modification L — L — 4 is necessary in the terms containing 4'. The
quantity (n*(f)> can be computed by the same method, and for the mean square
variance we finally get

P?— (R = N)’

o? = ' 4.23
e RN(P+%(R+N))2(P+%(R+N)—1) (4.29)

We remark, that in the fully depleted case also the detuning constant 4 appears only
in the elliptic function P(7). Apart from this, the results (4.18) and (4.23) are therefore
the same as in the resonant case. :

The discussion of these results runs in analogy to the case of the fully excited
initial state. It turns out however that it is not possible to describe the period and the
maximal height of the pulses by similarly simple equations as in the case treated
initially. We thus confine ourselves to depict the numerical values for L = O(1) and
2L = N(1 — 42¢?/4), see Figure 3.

We remark that for L = O(1), the period increases strongly as |4|c tends towards
0; this is due to the fact that for 4 = 0 the parameter # of the complete elliptic integral
K (m) determining the period, equation (3.41), is m =1 — 5, n = O(N~!), [10]. Thus, in
the resonant case, the period is O((1/N)logN), whereas for |d|c=0(1), it is only
O(N-1), the parameter » being equal to m =1 — 7, » = O(1). This difference in the
order of magnitude of the quantity 7 also accounts for a drastic change in the time
evolution. In the resonant case, the aperiodicity already begins after a few oscillations
[10]; in the non-resonant case however, an analogous computation shows that O(N'/?)
oscillations are periodic.

Finally, we consider the superradiant initial state 2L = N(1 — (42¢?/4)). Figure 3
shows that the period now depends weakly on the quantity |4|c in contrast to the case
discussed above. Furthermore, the periodic approximation is valid for O(N'/?) periods,
if |d|c # 0; whereas in the resonant case, the aperiodicity starts after O(N) periods
only. Thus we see that in the fully depleted case, as well as in the fully excited case, an
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Figure 3
Maximal height % and period T of the pulsations for the fully depleted initial state, ———— L = O(1),

superradiant.

increase in the number of photons present initially augments the range, where the
physical quantities show a periodic behaviour; besides, near resonance, the period as
well as the height of the pulsations become less sensitive to a change of the quantity 4c.
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APPENDIX

The exact time evolution for short times

The average photon number at the time £ is equal to
N
m(e)> = 2 (R—=)|ex()]?, (A.1)
x=0

where the state vector e(¢) is given by
e(t) = e~ He(0). (A.2)
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As initial state e(0) we first take the case with all molecules in the upper level, i.e.
e(0) = (0,0,...,1). In order to get a power series expansion in ¢ of {%(t)> we expand the
exponential function in equation (A.2). After an elaborate computation one arrives at

)y =2L +P—@L+ 1)+ 2L +1)— (v_2r—2-L%N
c? c"'( + )3N 4
61 1 1 4 .4 2 1 2ind

‘ 11
+ = (2N2 —26NL — 26N + 8L2 + 34L + 26)] +t8—81—\-r—5
c

X (2L + 1) [~} sghp A5 S N3+ 1 A*c* N*(N — 2L — 2)
+ 735 42 c*N(—N? — 412 + 22LN — 26L + 22N — 22)
+ s (4N3 — 240N2 L 4+ 480N L2 — 3213 — 240N?

+ 1446 LN — 52812 + 966N — 1230L — 734)] + . . ..

By the same procedure, we compute the average square photon number given by
N
(0> = 3 (R—2?2|e0)]2 (A.3)
x=0

The result of the series expansion reads

2

1 1
Py =4L2+ 2 — (2L +1) (4L +1) +#*— (2L + 1)
c c
1
g [—(4L +1)34?c*N + 10NL —8L% + TN — 16L — 8]

1 1
+t60—6(2L+ 1) —[(4L + 1) 555 4*c* N2 + J2 422N

YV—Z[
X (—19LN +8L2 +25L — 16N + 17) + (3213 — 22412 N
+ 68LN? + 62N2 + 26412 — 520N L — 296N + 468L + 236)]

- "‘801—8 QL +1) % s [—(4L + 1) %A% cO N3 + 144 c* N*(138N L
— 2412 + 129N — 156L — 132) 4 4> c* N(-—48L° + T68NL? —

— 264N2 L — 82812 — 255N% + 1968N L — 1728 L + 1200N — 948)
— 12814 + 3936 L3 N — 499212 N2 4 520LN3 — 416013 +

— 23400L2 N — 12288 LN? + 508N> — 18552L2 + 39204LN

— T296N2 — 27476 L + 19740N — 12956] + . . ..
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For the fully depleted initial state, i.e. for ¢(0) = (1,0,...,0), we have

1 1R 1 R
mt))=R—t*—R+t*——(R+N —1+ 14?2 N)—t6— —
g c*3N 4 ¢S N2

X [5554%c* N? + 2 A2c2N(R + N — 1) + & (2R? + 2N? + 13RN

5040 1680

1R

1 1
—13R— 13N + 11)] — £ — — [ g5 $4°¢° N — g
x A*c*N*(R+ N — 1) — oL 42c* N(3R? + 3N? + 33RN — 33R
— 33N + 30) — (120R2N + 120RN? 4+ 4R? + 4N3 — 120R? — 120N?
— 483RN + 363R + 363N — 247)] + .. ..

1 1R
() = R*— £ S RER 1) + #= AN ER-1)

1R
+ $(2R? + 5RN — 6R — 4N + 4)) — 6 —

e [ad
¢ N2 [360

A*c* N2(2R — 1)
+ g5 422 N(4R? + 19RN — 21R — 17N + 17) + % (4R3 + 56R*N
+34RN? — 58R? — 17T4RN — 32N? 4 140R + 118N — 86)]

1 R
+18 = — [ LA N3(2R — 1) + A= 4*c* N2(2R? + 23RN

CS N3 1680

—24R — 22N + 22) + A5 422 N(6R® + 192R2 N + 132RN?
— 195R? — 129N? — 666 RN + 534 R + 474N — 345) + 35
X (8R* + 492R3 N + 1248R?N? + 260RN> — 496 R> — 4614R> N

— 3888RN? — 256NN? + 3366 R* + 10344 RN + 2640N?* — 6716R
— 6222N + 3838)] + .. ..
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