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Analysis of a Non-Resonant Maser Model

by René Weiss
Institut für Theoretische Physik, Universität Zürich, Switzerland

(5. III. 73)

Abstract. A system of N two-level molecules interacting by dipole coupling with one non-
resonant mode of the radiation field is treated quantum mechanically. First the eigenvalue spectrum
of the Hamiltonian is discussed and asymptotic expressions (for large, but finite N) for the difference
of successive eigenvalues are given. The time behaviour of the mean photon number and its mean
square variance is then derived for various initial states. The time evolution of these quantities
strongly depends on the ratio of the coupling constant and the difference of the field energy and the
transition energy of the molecules.

1. Introduction

For an understanding of the laser phenomenon, a fully quantum mechanical
treatment of the laser-active molecules and the radiation field coupling them is necessary.

Such a program is very ambitious. However, in order to understand the basic
mechanism, it is sufficient to consider a model suggested by Dicke [1] : a) the laser-active
molecules are described by two-level molecules, b) only one mode of the radiation field
is of importance, c) the losses of the system are neglected. Assumption a) is justified,
since in a pulsed laser only the levels of the laser transition are important, the pump
levels are necessary only for the preparation of the initial state. The single-mode laser
operation can today be obtained with almost any type of laser [2], and is important for
many applications.

If we describe the interaction of the radiation field with the molecules by the dipole
approximation and make the rotating wave approximation [3], we arrive at the
Hamiltonian

#=2 bjbt + (l+A).a+a+ f (g,a+b, +gtabj). (1.1)
(=i i-i

Here the photon operators a, a+ satisfy

[a,a+] l, (1.2)

and for the spin-flip operators bt, bj of the molecules we have

[bi,bj] [b„bj-]=0, iAj,
btbt + btbt l, b2 0. (1.3)
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Furthermore, considering a ring laser, which allows the selection of modes running
in one direction [4], we have

g. getxt, g>0, for all i, (1.4)

irrespective of the spatial distribution of the molecules in the optical resonator. In the
case of a Pérot-Fabry interferometer, equation (1.4) holds if the molecules are placed
at equal mode positions, or if all molecules are concentrated in a region whose dimensions
are very small compared to the wavelength of the mode in consideration. It is evident
that the transformation

bi^bte-ixi (1.5)

leaves equation (1.3) unchanged. Therefore we will study the Hamiltonian

H= 2 bfb,+ (l+A)a+a + g f (a+bt + abt). (1.6)
i-l i-l

In the case of dipole coupling, the coupling constant depends on the quantization
volume V of the radiation field [11]

We will consider large N with fixed NjV. Thus we have

(1.7')
:VN

In the resonant case A 0, this Hamiltonian has been treated by various authors.
Its spectrum was investigated numerically by M. Tavis and F. Cummings [5], W.
Mallory [6], D. Walls and R. Barakat [7] and G. Scharf [8] ; asymptotic expressions (for
large A') for the eigenvalues were given by G. Scharf [8]. The time evolution of the
system was discussed by R. Bonifacio and G. Preparata [9] and G. Scharf [10] by
entirely different methods.

In the present paper, we are interested in the non-resonant case A AO, and we will
extend the methods of Refs. [8] and [10] to this more general situation. First we investigate

the spectrum of the Hamiltonian (1.6) and compute asymptotic expressions (for
large Af) for the difference of successive eigenvalues (Section 2). In Sections 3 and 4 the
time behaviour is studied for various initial states.

Let us consider some of the results. For the laser problem, the initial state with all
N molecules in the upper level is very interesting. If at t 0,2L additional photons are
present, we will show that for large N the average photon number is given by

N
(n(t)y 2L + (2L + l) (1.8)

P(t) + L + l
where we have introduced

T=gt. (1.9)

In equation (1.8) P(t) denotes the function /?(t) — (F/3), where

E N+L--\A2c2N +1, (1.10)
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and /Jt) is Weierstrass' elliptic function with the invariants

g2 ±E2 + 2A2c2N(L + l)+AL2, (1.11)

g3 - 4f E3 + f FL2 - \A2 c2 NE(L + 1)

+ N(2L + 1) +A2c2N(2L2 + 2L+l). (1.12)

If only a few photons are present initially, L<N, the average photon number oscillates
with a period

/ A2c2Y1'2
T c\l logAT (1.13)

if the laser is 'weakly detuned'

\A\c<2. (1.14)

The maximal height of a pulse is found to be

,Ts

nl2J/?=N[1 4~'' (L15)

where we assumed L > 1. On the other hand, for a 'strongly detuned' laser

|J|c>2, (1.16)

the period is given by
4 \_1/2

T 2tt\A2--\ (1.17)

and the maximal height of a pulse is 0(1). We thus see that for increasing | A | c, the height
of the pulse decreases strongly, and is only 0(1) for |A\c 2; the laser action has then
vanished. A similarly drastic change can be noticed considering the periods, equations
(1.13) and (1.17). Such periodic behaviour of the physical quantities is true only for not
too large times. In fact, we will show that in the weakly detuned case, the periodicity
is destroyed after about 2LlogN periods, whereas in the strongly detuned case 0(N)
oscillations are periodic.

We finally consider the limit N -*¦ oo. In the case of the weakly detuned laser, the
function P(r) tends to [25]

P(r)=Esinh-2(VËr), (1.18)

and the average photon number is thus given by

<n(t)7 2L + (2L + 1) (l - ^A\ '
sinh2 L J'L_ *\ (1.i9)

In this case the time evolution becomes aperiodic and the photon number increases to
oo. For the strongly detuned case we obtain, in a similar way,

A2c2 A1 A U2 1

Ä<n(*)> 2L + (2L + l)(-:--!) sin2 t J — - - (1.20)

which means that the photon number remains finite. Equations (1.19) and (1.20) agree
with the corresponding results in the work of K. Hepp and E. Lieb [11].
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2. The Eigenvalue Spectrum

As a first step in the analysis of the Hamiltonian (1.6) we introduce the operators

S+= f bj, S_= f h, S3 i[S+SJ. (2.1)
i-l 1-1

They obey commutation relations of angular momentum operators. Equation (1.6)
now takes the form

H S3 + 42V1 + (1 + A) a+ a + g(a+S_ + aSJ. (2.2)

This Hamiltonian commutes with the square of the total angular momentum
S2 S2 + %(S+S_+S_SJ. Thus H does not connect states of different eigenvalues
s(s + 1) of the square of the total angular momentum, and we need consider only
subspaces corresponding to one fixed value s. In our analysis, we may assume s %N;
if s < %N a reduction to the former case is possible1).

In order to reduce the problem to an algebraic form, we choose as a basis the
products \n,m) of the eigenstates \ri) and \my of the photon number operator a*a and
the angular momentum S3 respectively. In this basis we have

/ N \,
H\n,m7) I m -\ h (1 + A) n I \n,m}

In (n
+ gyn+ 1 A — h 1 j — m(m — l)\n+l,m — 1>

7N In \
— hi — m(m + l)\n-l,m+V). (2.3)

We see from this equation, that the quantity
N

R n + m+ (2.4)
2

is preserved. Physically, this means that the total number of photons and excited
molecules remains constant. Hence a further reduction of the problem is possible: we
need consider only subspaces with one fixed value of R. Furthermore, without loss of
generality, we may assume R>N [10]. In this subspace we introduce as a basic variable
the number of excited molecules

N
x mjr — R-n, x 0,l,...,N. (2.5)

2

In this representation the Hamiltonian (2.3) reads

Hx.lx=R8x,]x+A(R-x)8x,lx+gV(R-x+l)(N-x+l)x8xrlx_x

+ g^(R-x)(N-x)(x+l)8x-]x+i=(Ri +M)x-\x- (2-6)

') This is achieved by a redefinition of the quantities AT and R (see below) entering in equation
(2.6) [10].
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The energy eigenvalues R + e of the Hamiltonian H are determined by the
algebraic eigenvalue problem

Afe ee, e= (e0,ex,...,eN). (2.7)

Following the procedure in Ref. [8], we convert equation (2.7) into a difference equation

(€' - A'(R - x)) e'x= (R - x + 1) (N - x + 1) e'x_x + (x+l) e'x+x, (2.8)

where we have introduced

AAi/2

- (R-x)\-112, (2.9)

e' -, A' -. (2.10)
g g

Equation (2.8) shows that in the resonant case A' 0, the eigenvalues lie symmetrically
around 0. For A ' # 0 this property does not hold any longer. Remembering the
transformation (1.5), we see that it is sufficient to consider either sign of A'; this
property will be used later in the analysis.

We now transform equation (2.8) into a differentia] equation using the characteristic

function

f(z) f e'xz*~*. (2.11)
x„0

Thus we get

zf" +f'(N +l-R + A'z-z2) + f(Rz - e') 0. (2.12)

In order to solve the eigenvalue problem, one would have to search for polynomial
solutions of equation (2.12). It is more convenient, however, to perform another
transformation. Defining y(z) by

y(z)=f(z)z-texpl-iz2+jz\, (2.13)

where

21 R-N-1, (2.14)

we arrive at

tz2 A' 1(1+1) J-A'I A'2\

This is just the Schrödinger equation for a particle moving in the potential
z2 A' 1(1+1) d-A'lV(z,J)=--z-+AAl+e-A!A (2.16)
A 2 z2 z

at a fixed energy

E N+l+%-—. (2.17)
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For z tending to 0, we have y(z) ~ z,+1 ; for large z, y(z) is proportional to exp —\z2.
Thus the eigenfunctions y(z) we are looking for are ordinary L2(0, oo) eigenfunctions of
the Schrödinger equation (2.15).

A discussion of the potential given by equation (2.16) shows that for sufficiently
large positive e' the minimum VmXa of the potential is greater than the fixed energy
(2.17), whereas for decreasing (negative) values of e the well becomes increasingly
large and deep, hereby we assumed I > 0. Therefore the Schrödinger equation (2.15)
gives an infinite sequence of possible values J. How can we pick the N+1 eigenvalues
of the laser problem out of this infinite sequence? This question can be answered
remembering the node-theorem [12], which states, that in a one-dimensional potential
the eigenfunction of the nth bound state has n — 1 nodes, if the bound states are ordered
by increasing energy. On the other hand, we see from equations (2.11) and (2.13), that
all AT + 1 eigenfunctions y(z) we are looking for have not more than N nodes in the
interval (0, oo). Since the potential decreases monotonously for decreasing e', the energy
eigenvalues of the laser Hamiltonian correspond to the A^ + 1 largest values e which
lead to L2-solutions of the Schrödinger equation (2.15). Besides, all eigenvalues are
non-degenerate [12].

Now we want to derive asymptotic expressions (for large, but finite N) for the
difference in successive eigenvalues. For this purpose, we apply the WKB-method to
the Schrödinger equation (2.15). As we will see in a moment, we have two positive
classical turning points a2 and ax, ax > a2. Therefore the quantization rule determining
the possible eigenvalues e' gives [13]

"1 / JZ z' £ z2

Ji= dz E-—-- + z--- (n + \)TT, (2.18)
J /J z2 z 2 A
"2 v

where we have introduced

i' €'-AT, (2.19)

and

L2=(l + i)2. (2.20)

If we differentiate equation (2.18) with respect to ê', we arrive at

dn 7

-tt-—=J2= f dz(-A + 2A'z3 + AEz2 -Aë'z- AL2)-1'2. (2.21)
de J

a2

Let us discuss this equation first. The integral on the right-hand side may be reduced
to the form pK(m) [15], where K(m) denotes the complete elliptic integral of the first
kind. In order to perform this reduction, we first have to compute the roots of the
biquadratic form

z* - 2A ' z3 - AEz2 + Ai' z + AL2 0. (2.22)

The normal form of the associated cubic resolvent is [14]

y3+yl-$E2 ~j-v\+^fE*-l$EL2-\~J2 + \AEÏ -\A'2L2

y3 + 3py + 2q 0. (2.23)
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For the laser problem, the initial state with all molecules in the upper level, the
'fully excited' state is very interesting. We will consider this case first. This initial state
lies in the subspace in consideration (s Nj2), and is described by e (t 0) (0,0, ...,1).
From equation (2.6) we get for the mean value of the energy

<#> R + A (21 + 1) R + eLaser, (2.24)

and for its mean square variance

<j8H2y {(H-<\Hy)2y g2N2(i+1). (2.25)

We recall that in the dipole approximation the coupling constant g depends on N,
equation (1.7')

(2.26)
-An'

The photon number at t 0 is equal to 21 + 1. In our analysis we first assume that
/ 0(1), i.e. initially only few photons are present; the case / 0(N) will be treated in
Section 4. Therefore we have

J(2/+1)=0(1),
i.e.

A^, 0(N1'2),

(2.27)

(2.28)

and

<Stf2> -(/+!)= 0(1). (2.29)

Equation (2.29) shows, that only the eigenstates with eigenvalues e eLaser + Se',
Se' 0(N112) contribute strongly to our initial state.

The roots of the cubic resolvent (2.23) are found by standard methods [14]. As we
have just seen, we may limit our consideration to such values of e' which are 0(N1/2).
In this case, all three roots of equation (2.23) are real, and for the two leading orders in
N we find

yi -iE-\--% + 0(N-1),

At
y2 iE + i—±

3 E L2+-
4 F

1/2

+ 0(N~ (2.30)

Knowing the roots of equation (2.23), we can compute the roots of the biquadratic form
(2.22) [14]

Zl'2\1/2 le'z,=A' ±2\E+— ±
2 \ A 2F

l'A'

le'
z3=-- +I 2E

n
1 ê'2

L2+
4F

1/2

+ 0(N

A'2Y'2
AE\E + —

¦3/2\

+ 0(N~3/2),

(2.31)
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Now it is convenient to distinguish the two cases E > 0 and E < 0. Since we are
considering large values of N, we have I A\c < 2 and I A\c> 2 respectively [equation
(2.17)].

a) | A |c < 2. In this case the laser is weakly detuned. From equation (2.31) we have

zx>zA>0>zx>z2, (2.32)

where zA and zx are the two positive classical turning points. The integral (2.21) can
therefore be written in the form

J2 pK(m) (2.33)

where [15]

It A'
p 2(zi - zj'1'2 (z4 - zj-1'2 E-1'2 11 +

g e2

1 A'2Y'2(L2 lt2Y'2\-AE+A (ë+ïf) )+0(iV"!")

(z3-z2)(zt-zx) 2 A'2V'2 L2 lt2\1/2m=A IA± H i__ £ + — __ + +0(N~2),
(z3-zx)(zA-z2) E\ A] \e^AE2J ^ h

and K(m) is the complete elliptic integral of the first kind. Using for K(m) the asymptotic

expansion [16]

1 — m
K(m) log4(l - m)'112 + (log4(l - m)~112 -1) +

we arrive at

dn c (NA12
~ d~e 2^ \ F J

Considering the leading term only, we have

logSF-iloglA^ + iV^J + °(T)- (2"34)

de 2tt / A2c2

_ä=7V1_T (^g^"1 + 0((logN)-2), (2.35)

i.e. the eigenvalues in consideration are approximately equidistant:

2_ / A2 c2

é„-i - e„ — J1 - — (logiV)-1 + 0((logiV)-2). (2.35')

Therefore, over not too large time intervals (see below), the physically relevant
quantities, e.g. the photon number, oscillate with a period

/ A2c2\-1'2
T c 1 log AT. (2.36)

We see that the period T is strongly dependent on the ratio of the detuning-constant
A and the coupling constant g ljcy/N. In particular, assuming a fixed coupling
constant 1/c, the period is minimal in the resonant case.
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In equation (2.36) we considered the leading term only. The following term, being
0(logN) smaller, depends on t2; this accounts for a disturbance of the periodic
behaviour. In order to get an estimate for the aperiodicity, we compare the periods Tx
and T2 for e2 e,;aser and e2 e^er + (8H2} respectively. From equation (2.34) we find
that after

Ti
Fi-P.

i0=--2LlogN 0(logN) (2.37)

periods, the two considered oscillations differ by half a period ; this means that the time
evolution of a physical quantity is periodic only for m periods, where n < m0.

Now let us discuss the eigenvalue spectrum in more detail. By standard
transformations [15] we can express the integral (2.18) as follows

(A' 2L2\ I A' \Ji=p\ — z2 + Ez3-3rt-—-\ K(m) + p(z4 - z3) VE + — z3\ PI(a, m)

2L2 __ i z* \ p+ p (z4 — zJPIl a — ,m\^— A'(z3 — zj2
%^4 \ 2* / 4

n/2
X

0

where we have introduced

j d9(l - a sin2 P)'2 (1-m sin2 P)~1/2 (2.38)

a -, (2.39)

and lT(a,m) denotes the complete elliptic integral of the third kind. The remaining
integral in equation (2.38) can be reduced to a sum of complete elliptic integrals of the
first, second and third kind [17] :

n/2
f ty(l -asin2pj-2 (1 -msin2P)-112 [2(1 -a)(m- a)]'1

o

x[(a-m) K(m) - aE(m) + (a2 - 2am -2a + 3m) PI(a, m)]. (2.40)

Expanding these elliptic integrals for large N, we arrive at [16, 18]

Ac / Zl2c2 2 1 Ac
Ji —N J 1 + ttN 1 - -arcsin ./ - 12V 4 \ tt ^2^2

1 / A2c2\~1 j c2 l A2c2\-1Y'2
+ -ll--_l lL* + -(c-Al)*ll- — \ logN + 0(l). (2.41)

From equations (2.24) and (2.41) we may determine the leading order of the WKB
quantum number n :

/ Ac / A2c2 1 Ac\\l
n-N[TT+YJl—r-2arcsm^-[l--^- (2.42)

This equation shows where in the spectrum the eigenvalues e 0(1) are situated (see

Fig. 1). In the resonant case A =0, the middle of the spectrum, n Nj2, is important,
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AC0.5 0.5

Figure 1

The WKB quantum number m as a function of Ac/2.

whereas for increasing \A\, \ A|c < 2, the eigenvalues move towards the boundary of the
spectrum.

b) Now let us consider a strongly detuned laser: | J|c> 2. We first assume A > 0
or A' > 0 respectively. The condition that the (fixed) energy E must be bigger than the
minimum of the potential (2.16) yields

e<-)<-|J|/-|J|(/+i) /l- A2c2'
(2-43)

where the index of e denotes the sign of A. Recalling equation (2.27), namely
eLaser —1^| (2£ + 1), we see that eLä^er lies near the upper boundary of the spectrum.
Hence the eigenfunctions corresponding to the eigenvalues under consideration have
only 0, 1,2, nodes, which means that the use of the WKB approximation would be
doubtful [13].

Therefore we now take A' > 0 instead, without loss of generality. Equation (2.43)
then reads

A+>>Al + A(l + i)Jl (2.43')
A2c2'

and the eigenfunctions have N, N — 1, N — 2, nodes. In this case, equation (2.31)
gives

z, > z2 > 0 > z4 > z3, (2.44)

i.e. we again have two positive classical turning points.
The evaluation of the integral J2 in equation (2.21) runs along similar lines as in

the case a). We arrive at

dn c N\ll2( 3tA'\
(2.46)
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Considering the leading term only, we have, remembering A', e 0(N112), equation
(2.28),

A2-- + 0(N~1), (2.46)

and the period

T 2tt\A2-^\112 <*¦«>
c2

is independent of N, in contrast to the weakly detuned case a), where T is proportional
to logN, equation (2.36). The uncertainty of the period T can be estimated as above
(2.37). We find a more stable periodic behaviour: now n oscillations are periodic,
n<n0, where n0 is given by

1 / A2c2Y

^ îNrÂT\1-—r) (2P + 1)-1/2 0(N). (2.48)
\A\c\ 4 J

This result is entirely different from the case a), where only 0(logN) oscillations are
periodic.

3. The Time Evolution of the Photon Number and its Variance

In order to investigate the time-dependent problem, we return to equation (2.12),
where we replace e' by (ijg) (djdt) :

1 di-- f(z,t)=zf"(z,t) +f'(z,t) (N+l-R + A'z-z2) + Rzf(z,t), (3.1)
gdt

here we have introduced the time-dependent characteristic function

/M-l e'x(t)z*~*. (3.2)
x=0

In this case, the transformation (2.13), which led to the Schrödinger equation (2.15), is
not appropriate, because the operator djdt would enter in the Coulomb term. Instead
we search for a transformation, yielding fory(z,t) an equation of the Schrödinger type
i(d/dt)y ACy, where the operator #f is hermitean. This is achieved by taking

f(z, t) =y(z, t) zL exp Uz2 - —z J, (3.3)

where

L i(R-N) l + i. (3.4)

We in fact arrive at

9 lid2 d2 \ lz3 A' L2
iTTy — 2[zdV2y + ^zyj+y[j'Jz2-zE + A + A'lj-^ (3-5)

where E is given by equation (2.17), and

T -gt. (3.6)
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We remark that the transformation (3.3) differs from (2.13) by a factor z1'2. Therefore
the modification (2.20) of the centrifugal potential arises in a very natural way here.
The term A'I in equation (3.5) may be dropped, because it only gives rise to a phase
exp(—iA'lr), which is of no interest.

The transformations made above define an embedding operator T

y(z) Te(t). (3.7)

The Hamiltonian (3.5) may thus be written in the form

Ae TM'T~1, M'=--M. (3-8)
g

Here F_1 denotes the inverse operator on the (N + 1)-dimensional subspace of L2
corresponding to the laser Hilbert space [10], and M is the Hamiltonian given by
equation (2.6). In the matrix representation (2.5), the expectation value of the photon
number operator is given by

<«(*)> (e(t),ne(t)) £ (Ä-*) K)|2. (3.9)
x=0

If we define the photon number operator sA of the transformed problem by

sA=TnT~1, (3.10)

equation (3.9) may be written as follows

<»(*)> (e(0), T-U^de-^yo), (3.11)

where (equation (3.6))

T -gt.

From equation (3.10), namely jAy0 Tne(0), the explicit form of the operator sA is
found to be

A' d
sA \z2 z + L + z — (3.12)

2 dz

Obviously, this operator is not self-adjoint and therefore does not allow a direct
interpretation as a physical quantity.

As initial state we again take e(t 0) (0,0,.. .,0,1), i.e. all molecules are excited.
The corresponding function y0(z) (3.3) is given by

y0(z) =y(z,0) (2L\)-1'2zLexp[-\z2 + —z\. (3.13)

In this case, equation (3.11) shows that we only have to compute the lowest power
(~zl) of the expression ei3fzs^e~i3('zy0. This property will be extensively used in the
following analysis.

We now revert to the Schrödinger equation (3.5). Its time-dependent solutions can
be expressed by

y(z,T) =e-i*,y(z,0) f dz'K(z,z',r)y(z',0), (3.14)
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where we have introduced the propagator K(z,z',t). We will calculate this propagator
by the time-dependent WKB theory. It is shown that the propagator is given by [19]

K(qi,q2,r) (2TTi)~1/2Di'2expiS(qx,q2,T), (3.15)

where S(qx,q2,+) is the action

S(qi,q2,r)= j" & dr' (3.16)
o

taken along the classical path from q2 to qx, and

D J2S(qx,q2,T) (3i7)
dqx dq2

The propagator (3.15) satisfies the Schrödinger equation (3.5) with an additional
'false term' [19]

1 d j dVD\
-rzzz- \2q2-^— (3.18)
yJDdq2 \ dq2 J

Therefore the approximation is justified if this term can be neglected in comparison
with the potential V(q2), equation (3.5). We will check the consistency of this procedure
once we have found the explicit form of the propagator given by equation (3.15).

As a first step we compute the action S(q,,q2,r). The classical Hamiltonian
function AC(p,q) corresponding to the Hamiltonian (3.5) is

iW(p,q)=qp2 + V(q) (3.19)

where

A' L2
V(q)=iq3-—q2-Eq + —. (3.20)I q

Because the function 3rf(p,q) does not depend on the time explicitly, we have

"l fl
S(qi, q2, r) - J dq J - (ê - V(q)) - Sr

«2

S0(qi,q2,T)-#T, (3.21)

where the energy S is determined by the equation
dSo

t=—. (3.22)
di

K

In explicit form, equation (3.22) reads
«i «i

r= \ dq(-q" + 2A'q3 + AEq2 + ASq - AL2)'112 f dq(g(q))~1/2. (3.22')
«2 «2

This integral, which is very similar to the previous equation (2.21), can be inverted using
the formula [20]

Vg(gl)g(?2)+g(?2) g'(ft) g"fe)
(3

2(qi-q2)2 A(q,-q2) 24
'
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where fi(r) denotes Weierstrass' ^-function with the invariants

g2=\E2-2A ê + AL2,

g3 --2%îE3 + A,A'Eë+%-EL2 + 82 + A'2L2.

We are thus led to a transcendental equation for the energy S

p-qjf) ili+1z) +jqiq2-[(qi+q2)2-2A'(qx+q2)

- AE - AP]1 /2 -Pqiq2 + 9-^ß+L2
4

1/2

where we have introduced

P(t) W~T

559

(3.24)

(3.25)

(3.26)

(3.27)

One might try to compute the action (3.21) in a similar way, however, as we shall see,
this is not necessary.

Let us consider equation (3.11) again. As we have already pointed out, the average
photon number is determined by the coefficient of the lowest power ~q\ of the expression
e'"" ' """"!e-'*zy0:

CO 00

(n(t)y= lim qxL f dq2 \ dq3K(qx,q2,

A'
\\Û-—q2A-L + q2-—

d

dq2
K(q2,q3,r)yo(q3)A(2lji.

After an integration by parts, we have

A
(n(t)> lim qxL f dq2 f dq3 \q\ - —q2 + L-l-q2 —

«,-»0 QO ^2

X K(qx,q2,-T)K(q2,q3,T)yo(q3) V^IJ!,

(3.28)

(3.29)

where the differentiation operates on the first propagator. Because we need consider
this propagator only for qx -> 0, the analysis will now be considerably simpler.

In order to evaluate expression (3.29), we differentiate the propagator K(qx,q2,r)
(3.15)

t L2\112d I l A' S L2\
-9i z—K(qx,q2, -t) iq2 ~kq\ + —q2 + E + -\

9?2 \ \ 2 q2 ql]
1 dD\

-*22F^r(?i,<?2,~T)' (3.30)



1

'2D,
dD0

3?2

1 dD0
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In the limit qx ->- 0, we get for the bracket in equation (3.30), using equation (3.23),

/ A' So L2Y'2
H2 -iq22 + — q2 + E + -q2\ 2 q2 qj)

I A' Y12
iqAp + E-iq22+-q2\ -L-q2-—-^, (3.31)

\ 2 J 2D0 dq2

where we have introduced (equation (3.26))

A' \1/2
S0= lim 8=Pq2 + 2iL\P + E-\q\ + — q2\ (3.32)

From equation (3.21) we find

1 dê0
Z)0=limZ> —-A (3.33)

q,-+o 2tL dq2

Now it is very convenient to introduce the energy S0 as a variable instead of the
coordinate q2. This may be done using a formula resulting from equation (3.22') [20]

fc-** - .r/v^_„,_Y::^,°_r ¦ (3-34>
vi.)/' +te'(gi) l> - jrg'fa)] + jrg(?i)g"(gi.

2[^-^g"(?i)]2-i8g(?i)g,V(?i
which in our case yields (§>! -> 0)

12= p2_ L2(iLP' + S0P-L2A'). (3.35)

Here F' denotes the function F differentiated with respect to t [21] :

p' f iAp3-g2p-g3y2
(4(F2 - F2) (F + F) + 2J' <?0 P - 82 - A'2 L2)1'2. (3.36)

Recalling equation (3.31), the bracket (corresponding to the photon number operator)
in equation (3.29) may be written as

1 1 1

-1 [-4L(F2 - L2) (E + P)-A'2 L2(P - L)
2P + LP2-L2 K

+ iA' LP'(P -L)+ S0(iP'(P -L)+ A'(P - L)2)

1 dD0
-ê2o(P-L)]-q2 — -±. (3.37)

2D0 dq2

In this equation, the energy $0 appears explicitly as well as in the invariants g2 and

g3, equations (3.24) and (3.25). We now make the following approximation: in the
invariants of the elliptic functions P, the energy S0 shall be replaced by the quantum
mechanical expectation value

i <A7} -elaset + A'l= -A'(L+i) (3.38)

(the negative sign of eraser is due to definition (3.6)), and analogously for

S2 <^f2> AT(2L + 1) + A'2(L + i)2. (3.39)
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This means, that in the trajectories of the classical particle described by the Hamiltonian
function (3.19), we take the energy equal to the quantum mechanical expectation value
[10]. The photon number will thus be a strictly periodic function; we recall, that in
Section 2, we have given an estimate of how many periods such an approximation is
valid.

We can easily verify that the real period 2a» of the elliptic function P(t) coincides
in fact with the period T found in Section 2. For this purpose we compute the constants
ex, e2, e3 of Weierstrass' yé-function [21], i.e. the roots of the equation

Ae-gA-g3 0. (3.40)

This equation, however, is equivalent to the former cubic resolvent (2.23), where the
substitutions t -> —S, t2 -> S2 have been made. Therefore we have e, =yt, i 1, 2, 3;
and for the real period, being equal to [22]

2co 2(e,-e3)-1/2K(m), m (e2 - e3) (ex - e3)"\ (3.41)

where ex > e2 > e3, we get the former result.
We now want to discuss briefly the magnitude of the function P(r) /(t) — (F/3)

[23]. In the interval (0,2a>), we have the symmetry relation /(co — r) /(co + t),
furthermore Weierstrass' ^-function reaches its minimum ex > 0 at t co. For t -> +0,
ft(r) tends to +oo, being monotonously decreasing in the interval (0,o>). In the case
F > 0, we get, by exactly the same procedure as in the resonant case [10], the following
estimate for P(t)

P(t)=0(N"), et ^Al: 0<t<(o. (3.42)
a>

In the case F < 0, Weierstrass' ^-function has the expansion [25]

A(r)=-^+2\E\\A-cosLjA2-AU1 + 0(1), (3.43)

i.e.

P(r)=0(N), 0<t<co. (3.42')

Let us revert to equation (3.29), where we insert equation (3.37). We first compute
DQ (equation (3.33)) by implicit differentiation of equation (3.26). A calculation
analogous to Ref. [10], Appendix II, shows, that with the notation of equation (3.42)

1

D0 P(1+0(N-«)), 0<a<l. (3.44)
2iL

The terms 0(N~") originate from the differentiation of the invariants, in the resonant
case, these contributions are only 0(N-2x). In order to evaluate the integral (3.29), we
have to consider the integral

CO 00

lim -LUq2\ dq3ê0K(qx,q2,-T)K(q2,q3,T)yo(q3) VW)1- (3.45)
„-o q\ J J

Recalling the definition (3.15), we have

a n dD
$K(qx,q2,-T)=-i-K(qx,q2,-T) + K(qx,q2,-r). (3.46)

or I U Ot
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Inserting this representation in the integral (3.45), we get from the first term:
ê —A'(L + -J), equation (3.38). By means of equations (3.36) and (3.44), we find for
the leading term of the contribution of the second term : —i YE + P, the other terms
being 0(N") smaller. The integral (3.45) is thus equal to

-A'(L +AJ- iYE + P + 0(N1/2~!'), 0<a<l. (3.45')

By the same procedure, we find

j CO CO

lim — f dq2 f dq38iK(q,,q2,-T)K(q2,q3,T)y0(q3) Y(2L)l
«,->o aï J J' o o

-2(F + P)(L + 1)+ AiA'(L + i) VT+P + A'2(L +A)(L + 1)

+ 0(N1'*), 0<a<l. (3.47)

In a similar way, we see that the contribution of the last term in equation (3.37) is

0(N-2x) for 0 < et < 1. Furthermore, the order of magnitude of the 'false term' (3.18) is
found to be 0(N~1/2~2"), 0 < a < 1, which is small compared to the potential. This
result checks the consistency of the procedure.

Summing up, in equation (3.27) only the terms independent of <?0 and ~S0
contribute to the leading term of the average photon number, the other terms being at
least 0(N") smaller. We thus have

A'2
P + E + —

(n(t)} -1 + (2L + 1) =-1 + (2L + 1) —— (3.48)

where P 0(Na), a > 0; i.e. the average photon number is an even elliptic function of
order 2. We point out the remarkable fact, that the detuning constant A appears only
in the elliptic function P(r). Hence, the result is almost the same as in the resonant case.

The result (3.48) represents the leading term of a general even elliptic function of
order 2

-l + (2I + 1)£±^p, ,3.49)

where oc,ß 0(1). In order to determine the quantities a, ß, we expand the function
(3.49) in a power series, using for the elliptic function P(t) the expansion [24]

P(r) -2~+io-g2T2 + &gST* +¦¦¦¦ (3.50)
T 6

We now compare this result with the exact time evolution for short times given in the
Appendix. If we successively identify the two leading orders of the coefficients, we find
that the corresponding terms ~t°, ~t2, ~t* are correct, if we take a ß L + 1.

Comparing the terms ~t6 and ~t8, we see that for S and ê2 we have to take

8 -A'(L + l), (3.51)

S2=N(2L + 1)+A'2(L + 1)2, (3.52)
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which means that a slight modification L -*¦ L + \ of our 'trial' values (3.38) and (3.39)
is necessary. Then

P+N+L+l
<»(*)> -1 + (2L + 1) (3.53)

Ir -f- L + 1

is the correct elliptic function of order 2 for the average photon number. We have
shown this result for P ~ N", a > 0, i.e. except for t co in the case E > 0. By continuity
in t, we may now include t a» as well.

By the same procedure, the expectation value of the quantity n2(r) can be

computed. The leading term is found to be an even elliptic function of order 4

<n2(t)7 1 + (2L + 1) —t— (P(2L - 1) + 2N(L + 1)). (3.54)
P2

Comparing this result with the expansion given in the Appendix, we see that

P+N+L+l
<w2(0> 1 - 3(2F + 1)

F+F + l
(P + N + L + 1) (P + N + L + 2)

+ (2L + 1) (2L + 2) 'A 1
(3.55)

(P +I + l)(P+F + 2)

gives the two leading orders correctly up to t8, if we again make the substitutions (3.51)
and (3.52). From equations (3.53) and (3.55) we finally obtain for the mean square
variance of the photon number

(a2(t)y (n2(t)7 - (n(t)}2

P-L P+N+L+l
(2L + 1)N (3.56)'

(P + L + l)2 P + L + 2

Here again the constant A appears in the function P only.

4. Extension to Other Initial States and Discussion

In the two preceding sections, we considered the initial state with all molecules
excited and few additional photons (L 0(1)). We now investigate the time evolution
in the superradiant case, i.e. the number 2Z. of photons being present at t 0 is 0(N).
The procedure is the same as in the case L 0(1). Thus, for the leading order of the
average photon number we get

P + N + L
(n(t)y -l + 2L (4.1)

P + L

Since this result agrees with equation (3.53) up to corrections 0(1) and equation (3.53)
is correctly matched to the exact time evolution for short times, the former result can
be immediately taken over :

P+N+L+l
(n(t)y -l + (2L + l)-————-. (4.2)

P + F + l
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In the invariants g2 and g3, we have to insert again S and §2 given by equations (3.51)
and (3.52). For the quantity <«2(^)> and the mean square variance we also get the
former results (3.55) and (3.56) respectively.

In the superradiant case L 0(N), a general discussion of equation (4.1) is rather
cumbersome ; we therefore confine ourselves to a representative example. Choosing

2L N 1 + 2lx, li 0(l),
A2c2

<1,
4 / 4

we find from equations (3.40) and (3.41) for the leading term of the real period

K(m i) _ 1,854
F 2co 2 ¦

1-
A2c2

:=2-
/wVi-?*

(4.3)

(4.4)

In order to get an estimate for the time interval, over which we expect a periodic
behaviour, we compare the periods Tx, T2 for ex eLaser and e2 eLaser + Y(8H2y
eLaser + Y2LN. It results, that after about n0 periods, where

Ti 2Vn -1=0(N1'2), A^O, (4.5)

the time evolution has become aperiodic. Whereas in the resonant case A 0 [10], we
have n0 0(N), equation (4.5) shows, that for A # 0 we have periodicity only over
n 0(N1/2), n<n0, periods; in this sense the resonant case is unstable.

In Section 2, we found (equation (2.37)) n0 2LlogN, if there are only few
additional photons at t 0 ; this means that the periodicity is disturbed much earlier
than in the superradiant case. Furthermore, comparing equations (2.36) and (4.4) for
the period T, we see that in the case L 0(1) T is depending much stronger on \A2c2
than for L 0(N). The relative change of the period as a function of \A\c is shown in
Figure 2.

Let us now discuss the time evolution of the average photon number given by
equation (4.2). We first assume | A | c < 2. In Ref. [10], graphic representations are given
for the resonant case. In our case A AO, the general shape of the pulsations is the same,
however, as we have just seen, their period is a function of A. Furthermore, the height
of the pulses also depends strongly on A. In fact, assuming L < N,we get from equation
(2.30)

PH-
E

ex1
3

(L + l)A2c2

1- 1
A2 à

¦ +
2L + l+A2c2(L + iy

4 1

1/2

(4.6)

If L > 1, equation (4.6) takes the form

/ A2c2\l A2 A-1
P(co) L 1 + —- (4.7)



Vol. 46, 1973 Analysis of a Non-Resonant Maser Model 565

mc
0.5

Figure 2

Maximal height h and period T of the pulsations for the fully excited initial state,
superradiant.

¦1-0(1).

and for th^ maximal height of the pulse we thus obtain

/ A2,
cjn(co)y=N 1

procedure

P(co

(4.8)

In Figure 2 we have depicted the quantity (n(co)y — (n(0) > h. We remark, that this
quantity lends to 0(1) for |J|c->2, i.e. the laser action vanishes. The analogous

in the superradiant case yields

'N
J2c2\l/2 1 A2c-

and therefore

(n(coiy - <w(0)> AM 1
A2c2Y'2

(4.9)

(4.10)

see Figure
As in

different
N2, wherejas

(a2(t)y is

for
the resonant case, the mean square variance of the photon number is entirely

L 0(1) and L 0(N) respectively. If L 0(1), <ja2(t)y is proportional to
in the superradiant case, it is 0(N). The general shape of the curves for

the same as for A 0 [10]. However, the property that a(co) 0(1) for
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L F/3, i.e. that at t co the photon number is almost sharp, is true only for A 0 ; in
fact, from equations (3.56) and (4.9), we get

<o-»> AT—- + 0(1). (4.11)
4

Let us consider briefly a strongly detuned laser, |J|c>2, with L 0(1).
Weierstrass' ^-function may then be written

/A) - y + 2|£| 1 - cos It I A2 - t j j j
*

+ 0(1)

(equation (3.43)), and for the leading term of the average photon number we obtain

<n(*)> =2L + ^-ti £f! _ i j
l

11 _ cos) t I A2 - i\ 1 I + 0(N'A (4 12)

This means that the height of the pulses is only 0(1). Summing up, we see that for
L 0(1), laser action is possible only if \A\c < 2.

Finally we want to discuss another initial state of interest : the fully depleted state,
where at t 0 all A^ molecules are in the lower level and R photons present. This case is

important in non-linear optics.
In the matrix representation, this initial state is described by

e(* 0) (l,0,...,0), (4.13)

the corresponding function y0(z) has the form

y0(z) (Rl)-1/2zR-Lexp(-iz2 + —A (4.14)

The method developed in Section 3 can easily be adapted to this problem - we confine
ourselves to a brief outline of the main differences in the procedure. Up to equation
(3.27) the approach is the same, however the photon number is now determined by the
highest power of the expression eix'tsee~illezy0. The average photon number is thus
given by

(n(t)y lim qi-cz-v exp \\q2 - — qA dq2 f dq3
\ 2 /o oJ

xK(qx,q2,-r)
A' d

m--7ri2 + E + q2—-2 dq2
K(q2,q3,r)y0(q3). (4.15)

Having performed the differentiation, we introduce, instead of the variable q2,

8X= lim 8(q.,q2,r). (4.16)
a,->oo

From equation (3.34), the substitution formula is found to be

liP'+A' P-8m
q2 1 -. (4.17)H2

2 A'2
P + E+ —A
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The resulting integrals are evaluated by the method developed in Section 3. For the
leading term of the average photon number one gets

P + A(R- N)
<n(t)y R Hi '-. (4.18)

P + %(R + N)
We now match this even elliptic function of order 2 to the exact time evolution for
short times (see Appendix). One finds, that the two leading orders of all coefficients up
to t8 are correct, if in the invariants of the function P(r) we take

8 --(R + N), (4.19)

8~2 RN + \A'2(R + N)2, (4.20)

respectively. We note that these values do not correspond exactly to the expectation
values

^y=--(N + L + AJ=--(R + N + \), (4.21)

<[A?2y RN + lA'2(R + N+2J2; (4.22)

in fact, the modification L-^-L — % is necessary in the terms containing A'. The
quantity (n2(t)y can be computed by the same method, and for the mean square
variance we finally get

P2_ 1/P_ M\2
<ja2(t)y RN Ü '- (4.23)

(P + i(R + N))2(P + i(R + N)-l)
We remark, that in the fully depleted case also the detuning constant A appears only
in the elliptic function P(t). Apart from this, the results (4.18) and (4.23) are therefore
the same as in the resonant case.

The discussion of these results runs in analogy to the case of the fully excited
initial state. It turns out however that it is not possible to describe the period and the
maximal height of the pulses by similarly simple equations as in the case treated
initially. We thus confine ourselves to depict the numerical values for L 0(1) and
2F N(l - A2c2jA), see Figure 3.

We remark that for L 0(1), the period increases strongly as \A\c tends towards
0 ; this is due to the fact that for A =0 the parameter m of the complete elliptic integral
K(m) determining the period, equation (3.41), is m 1 — n, n 0(N~1), [10]. Thus, in
the resonant case, the period is 0((ljN)logN), whereas for |J|c 0(l), it is only
0(N_1), the parameter m being equal to m 1 — n, r) 0(1). This difference in the
order of magnitude of the quantity 77 also accounts for a drastic change in the time
evolution. In the resonant case, the aperiodicity already begins after a few oscillations
[10] ; in the non-resonant case however, an analogous computation shows that 0(N1/2)
oscillations are periodic.

Finally, we consider the superradiant initial state 2F N(l — (A2c2jA)). Figure 3
shows that the period now depends weakly on the quantity |A \c in contrast to the case
discussed above. Furthermore, the periodic approximation is valid for 0(N112) periods,
if |,d|c^0; whereas in the resonant case, the aperiodicity starts after 0(N) periods
only. Thus we see that in the fully depleted case, as well as in the fully excited case, an
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N-r

:AIC

Figure 3

Maximal height h and period T of the pulsations for the fully depleted initial state, L 0(1),
superradiant.

increase in the number of photons present initially augments the range, where the
physical quantities show a periodic behaviour; besides, near resonance, the period as
well as the height of the pulsations become less sensitive to a change of the quantity A c.
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APPENDIX

The exact time evolution for short times

The average photon number at the time t is equal to

<n(t)7=2 (R~x)\ex (AA)

where the state vector e(t) is given by

e(t) =e-""e(0). (A.2)
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As initial state e(0) we first take the case with all molecules in the upper level, i.e.
e(0) (0,0,..., 1). In order to get a power series expansion in t of (n(t)y we expand the
exponential function in equation (A.2). After an elaborate computation one arrives at

l(2L + l)+pl(2L + l)±v _._

1 1

<n(t)y 2L +12 - (2L + 1) + P - (2L + 1) — \ N - 2L - 2 — N

+ C-(2L + 1) -- [^A*c*N2 + ±A2c2N(-N + 2L + 2)
c° N

1 1

+ ^ (2N2 - 26NL - 26N + 8L2 + 3AL + 26)] + i!8 - —

x(2L + l)[-iSiAi0-A6c<>N3+J±o-A*AN2(N-2L-2)

+ éôA2 c2N(-N2 - AL2 + 22LN - 26L + 22N - 22)

+ j^ö (AN3 - 240A^2 L + A80NL2 - 32L3 - 2A0N2

+ 1AA&LN - 528F2 + 966AT - 1230F - 734)] +

By the same procedure, we compute the average square photon number given by

{n2(t)y= f (R-x)2\eJt)\2. (A.3)
x=0

The result of the series expansion reads

<n2(t)y AL2 + t2- (2L + 1) (AL + 1) + P - (2L + 1)
c2 c*

1

x — [-(4L + 1) \A2c2N + 10NL - 8L2 + IN - 16F - 8]
3N

+ fij6(2L + l)-^2[(AL + l)1rh)A*c*N2 + £rA2c2N

x (-19LN + 8L2 + 2bL - 1W + 17) + ^-(32F3 - 22AL2N

+ 68LN2 + 62N2 + 264F2 - b20NL - 296AT + 468L + 236)]

1 1

-(2F + 1)-csV ' N3

24L2 + 129AT - 156Z. - 132) + J2c2AT(-48L3 + 768ATF2

+ t* - (2L + 1) — j^3 [-(4L + 1) -&A6 c6N3 + r\A*AN2(138NL

- 2&AN2 L - 828L2 - 255AT2 + 1968ATL - 1728L + 1200AT - 948)

- 128L4 + 3936Z,3AT - 4992L2 N2 + b20LN3 - 4160L3 +

- 23400L2 N - 12288FAf2 + 508AT3 - 18552F2 + 39204LAT

- 7296AT2 - 27476L + 19740AT - 12956] +
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For the fully depleted initial state, i.e. for e(0) (1,0,.. .,0), we have

<n(t)y R-t2^R + P^(R + N-l+iA2c2N)-P^2
x [AroA4c4N2+^EA2c2N(R + N-l) + -i\(2R2 + 2N2 + 13RN

xA*àN2(R + N-l) - T2\b-A2c2N(3R2 + 3N2 + 33RN-33R

- 33N + 30) - (120R2N + 120RN2 + AR3 + AN3 - 120R2 - 120N2

- A83RN + 363P + 363N - 247)] +

1 17?
(n2(t)y R2-t2-R(2R-l)+P--(-^A2c2N(2R-l)

+ -\(2R2 + bRN-6R-AN + A))-t6- — [JL- A*AN2(2R - 1)

+ ^A2c2N(AR2 + lQRN-21R-nN+17) + ^(AR3 + b6R2N

+ 3ARN2 - 58F2 - 174FJV - 32N2 + 1A0R + 118N - 86)]

+ f8
j7sJp [ans i^c*N3(2R - 1) + TAS-0AU4N2(2R2 + 23RN

- 2AR - 22N + 22) + -2\ô A2c2N(6R3 + 192R2N + 132RN2

- 195P2 - 129A^2 - 666FJV + 534F + 474AT - 345) + -2

x (8P4 + 492F3 A^ + 1248P2 A^2 + 260FJV3 - 496F3 - 4614F2 N

- 3888FJV2 - 256N3 + 3366P2 + 10344FJV + 2640A'2 - 6716F

-6222Af + 3838)] +
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