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The Scattering Matrix for Some

Non-Polynomial Interactions II
by Sergio Albeverio and Raphael Hoegh-Krohn

Institute of Mathematics, University of Oslo, Blindern, Oslo, Norway

Abstract. We continue the study of the infinite volume limit of quantum field theoretical
models in «-dimensional space-time with interaction densities which are bounded functions of an
ultraviolet cut-off boson field. The truncated off-shell scattering amplitudes are (in contrast to the
on-shell ones) the limits of the correspondent space cut-off quantities. They are analytic in the
energy variables outside the union of certain real hyperplanes and have the crossing symmetry.
Remarks are given on the restriction of the off-shell scattering amplitudes to the physical mass'
shell.

1. Introduction
As in two preceding papers [1], [2], we study quantum field theoretical models in

n > 4-dimensional space-time1) with non-polynomial boson self-interaction. The infinite
volume models are obtained as limits of the corresponding ones with a space cut-off in
the interaction. The Hamiltonian of the space cut-off interaction is

H,=H0 + X J v(9Jx)) dx,

where H0 is the free energy of the free time zero boson field <p(x) of mass m > 0, and
9J*) hJx-y)9sJ)dy, withxeU"-1, andxJA) eC^R""1), XJX) > 0, *.(*) &(-*).

v(u) is a real valued function of the form v(ct) j" eixsdv(s), where dv(s) is a bounded
measure of bounded support on the real line. A is a coupling constant. For A real, H, is
a self-adjoint operator, bounded from below, with the same domain as H0 in the Fock
space #" of the free boson field 9(x).

In [2] we proved the existence and uniqueness of the infinite volume vacuum Q
for all | A | < A0, A0 > 0. Moreover we constructed the imaginary and real time Wightman
functions and proved the relative cluster properties. We obtained thus the physical
Hilbert space Jf with a strongly continuous unitary representation of the space and
time translation group and hence, in particular, the Hamiltonian H > 0 of the infinite
volume models. We also proved analyticity in A of the imaginary time Wightman
functions and of the infinite volume limit of the energy density.

In [1] we started the study of the scattering in these models. For the space cut-off
interactions we constructed the S-matrix in terms of asymptotic fields and proved that
it is analytic in the coupling constant A and equal to the sum of the linked cluster

The results of [2] are valid for all n > 1.
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expansion, which in turn corresponds to the usual expression of the S-matrix in terms
of Feynman graphs. This S-matrix for the space cut-off interaction was also given ([1])
in terms of so-called scattering functions, for which the existence of the infinite volume
limit was proved2).

We remarked moreover that the limits for / -> oo of the off-shell scattering
amplitudes exist. In this paper we continue the study of these infinite volume off-shell
scattering amplitudes and prove results on their analytic dependence on the energy
variables, on the position of the corresponding cuts and on the crossing symmetry.
More specifically, in Section 2 we introduce the Fourier transforms of the infinite
volume scattering functions constructed in [1]. We prove that they have a simple
expression in terms of Fourier-Laplace transforms of the correlation functions of [2],
the so-called spectral density functions, which are analytic in the coupling constant
and exhibit explicitly a large analyticity domain in the complex energy variables,
restricted only by the spectrum of the Hamiltonian H.

In Section 3 the analyticity results in the energy variables are applied to the
infinite volume truncated off-shell scattering amplitudes, which are proven to be

analytic outside the union of certain real hyperplanes. From this we have then the
crossing-symmetry of the off-shell scattering amplitudes3).

In contrast to the off-shell scattering matrix the on-shell S-matrix is not the limit
of the corresponding quantity for the space cut-off interaction, but will be obtained by
restricting the off-shell scattering amplitude to the physical mass shell, given by the
eigenvalues m(p) of H in the subspace of fixed momentum P fi. This is discussed in
Section 3.3.

Throughout this paper we shall always use the same notations and definitions as

in[l].

2. The infinite Volume Scattering Functions in Momentum Space

2.1. The scattering functions and correlation functions

In Section 6 of [1] we introduced the infinite volume scattering functions
ct*(a'1s1, .,xksj, as limits of the corresponding finite-volume scattering functions. By
Theorem 6.1 of [1] the infinite volume scattering functions are given by

ak(t1xxsx,...,tk xk sj H'A)* (Q, exp[isx 9JxJ] exp[-i(t2 -tJH]...
x exp[-i(tk - tk_x) H] exp[isk9Jxk)] Q), (2.1)

where xt (ti,xj) (i =l,...,k),t, being a time variable and x, a space variable, running
over IR"-1, where n — 1 is the number of space dimensions. The s, run over the support
of the measure dv(s) defined in Section I. H is the physical Hamiltonian for the infinite

The scattering functions are the analytic continuation of the correlation functions discussed
in [2], which arise quite naturally in the Markovian euclidean version of the models and have
the interpretation of classical correlation functions for a gas of variably charged particles in
W. Similar correlation functions were introduced for related euclidean models in [3], where
also a relation of these and euclidean Bogoliubov off-shell scattering elements is given. Ideas
on the relation between the vacuum functional and the euclidean (space-time cut-off) S-matrix
are contained in several Kiev publications : [4].
This is the corresponding property of the one which is called crossing symmetry in relativistic
covariant theories: see, e.g., [5].
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volume theory, and Q is the unique eigenvector in the physical Hilbert space
corresponding to the simple lowest eigenvalue zero of H. It follows from (2.1) that, for real
coupling constant A, ct* is uniformly bounded and analytic for lm(ti+x — tj) < 0,

i l, k—1. By Theorem 6.2 of [1] ct* is related to the infinite volume correlation
functions by

ak(xxsx,.. .,xksk) (i)kpk(xxsx,.. .,xksk), (2.2)

where x (ix0,x), with x (x0,x).
From (2.1) we see that ajtxxxsx,...,tkxksj is a uniformly bounded continuous

function of all its variables. As in (5.5) of [1] we define the infinite volume time-ordered
scattering functions by

6k(xx sx,..., xksk) ak(xx sx,.. .,xksk), (2.3)

for <!<... < tk, and the requirement that ak(xxsll.. -,xksj is symmetric under permutations

of its variables. ak is then again a uniformly bounded function, which is
continuous in xx, xk and sx, sk and piecewise continuous in tx, tk. Like ct* it is
also translation invariant in space and time.

We define the infinite volume scattering functions in momentum space by

SFk(pi Si,.. .,pksj \-'-\ exp i f pjXj ak(xi sx,.. .,xksk) dxx... dxk, (2.4)

where the Fourier transform (2.4) is understood in the sense of tempered distributions.
Let tt he any permutation of 1, k. Then we define

.dxk.S7'k,(j>iSx,...,pksk)= | ¦•• Jexp\i 2pjXj\ak(xxsx,...,sksjdxx...i
»"i>«-«»(»t) 1=l

(2.5)

It is obvious that

9>k(pxsx,.. .,pksj 2 £fkjpisx,.. .,pksk), (2.6)
it

where the summation runs over all the permutations. It follows from (2.5) and the

symmetry of 0k(XiS,,.. .,xksk) with respect to permutations of the indices that

7AkJpiS,,.. .,pksj Sfk(p„,i,snœ,..., pnmsMky), (2.7)

where

^oiPiH, ¦ ¦ -,Pksk) ¦ ¦ ¦ \ exp \i f pjXjl ak(xx sx,.. .,xksk) dxx... dxk (2.8)

and we have used that ak and ct* are equal for tx < < tk. Introduce now the variables
(ruh) Xi+i -Xi,i=l,...,k- 1 and (ocx,ßj p., (cc2,ß2) =px + p2,.- -, (a/c-i-Â-i)
Pi + + pk-i- Then we have

Pk) J- ¦ ¦/ exp m 2 *j T3 + ßj I)]yko(PiSi,...,pksk) 8(px+ ...+:

x ak(xx sx,...,xk sj drx... drk_x d£x... d$k_x. (2.9)
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We now introduce the functions:

if(ocx,ßv..., <xk_xßk_x;sx,...,sk)

j ¦ • ¦ j exp \i I 2 etj Tj + ßjij\\ cA(x. sx,...,xk sj dr.... drk_x dgx... dlk_x,

T,>°
J '

(2.10)

where (T„|,) xi+1 - x„ i 1,..., k - 1. (2.9) then gives TAI in terms of rf, so that

WiSi,..., Ask) o(^ + +pj nk(ocJi,..., ock_xßk_x; sx ...sj (2.11)

where

(al>Pl) =/»1, («2,^2) Pi + P2, ¦ ¦ -, (<Xk-l, ßk-l) ^= Pi + ¦ ¦ ¦ + Pk-l-

Since the integration over r3 in (2.10) is only over the positive real axis, we see that rf
is analytic in Ima, > 0, j 1,.... k — 1 as a tempered distribution in p\, pk_i-
Since by (2.1) ak(xx sx,.. .,xksk) is analytic and uniformly bounded for Irm-j > 0, we may
continue the integration over r, from the right-hand real half line onto the imaginary
upper half line, and the integrals will be equal by the exponential decrease of the
integrand. Performing this analytic continuation for all the ^-integrations i 1,

k - 1, we get by (2.2) that for a, > 0, / 1,..., k - 1

¦qk(oc1ßi,...,etk_xßk_x;sx,...,sk)

-iy-1 j - - - J exp[- 2 a, tj j • exp [» "f ßj ¦ l] pk(x,sx,...,xksk)

xdTX...dTk_idç-x...dik_x, (2.12)

where

(rt, ii) x,+1 - x„ i=l,...,k-l.
Since 7Ak by (2.6), (2.7) and (2.11) is given in terms of rf, (2.12) gives the time-

ordered scattering function in terms of the correlation function pk(x,sx,...,xksk). The
rf(ocxßx,.. .,ak_xpk_x ;sx...sj will be called the spectral density functions.

2.2. Analyticity in the coupling constant and the energy variables of the spectral density
functions

In [2] we introduced the correlation functions pk(xxsx>.. ,,xksj. By Lemma 4.1 of
[2] we have that the correlation functions pk(xxsx,.. -,xksj are analytic in the coupling
constant A, for complex A such that |A| < A0, where A0 > 04). Moreover they satisfy, for
complex A with |A| < A0, the estimates:

\p^xxsx,...,xksk)\<C-k\X\U-l-^\ '• (2.13)

4) One has A0 C-1«-28-1, where C is defined in Section 4 of [2] and B is defined by (4.10) of [2].
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The pk(xxsx,...,xksk) are continuous in all the variables and translation invariant in
space and time.

Using (2.13) and the exponential decrease, in the r-variables, of the integrand, we
now get from (2.12) that rf(etxßx,...,etk_xßk_x;sx,...,sj is, for etj>0,j 1, k — 1,

analytic in A for |A| < A0, as a tempered distribution in ßx, ßk_x. Moreover we get,
from (2.12) and (2.13), that rf is analytic in the energy variables oq, etk_x for
Reo,- > 0 and A complex with |A| < A0. By the same argument as above we also obtain
that it is analytic in A for [Aj < A0 and Reocj > 0, j 1, k — 1.

Let now A be real and —A0 < A < A0. By (2.10) we then have that 17* is analytic in

lma,>0, j =1, k—l, as a tempered distribution in ß,,...,ßk, since by (2.1)
ak(xxsx,.. .,xksj is a uniformly bounded continuous function of all its variables, when
A is real.

From the linked cluster expansion for pk as given by Lemma 3.1 of [1] and the fact
that the measure dv(s) satisfies the relation dv(s) dv(—s), we have, for real A:

pk(xxsx,..., xksk) pk(xx,-sx,.. .,xk,-sk). (2.14)

This implies, by (2.12) :

rf(ctxßi, ock_xßk_x;sx ..sk)=-r,k(etx,-ß1,. etk_x,-ßk_x ; -S1(. .,-Sk), (2.15)

where rf is the complex conjugate of 7;*.

By the analyticity of rf in Ima,- > 0, j 1, k — 1, we obtain from (2.15) that
rf(a.xpi,...,etk_xpk_l;sx...sj is also analytic for lma,<0 and by its analyticity for
Reo, > 0 we have that it is the continuation of the same function.

Let us now define the integrated spectral density functions

rf(otxfx,...,etk_xfk_x;sx,...,sk)

/•••/ *rWi, • • - «wltiisi • • -sjfiißi) - • -fk(ßk) dßi - ..dßk. (2.16)

The following theorem follows from what is said above

Theorem 2.1

Let fx, ...,fk-i be in ^(M"_1), then the integrated spectral density functions
Vkixifi'--->a-k-ifk-i',si,---isk) i°r X real and —A0 < A < A0, are analytic functions in the

energy variables a.,, ctk_, in the product of the cut planes C — [— 00,0], i.e. the
complex planes cut along the negative real axis.

Moreover for complex A, the integrated spectral density functions are analytic in
the coupling constant A and the energy variables ax, ock_x in the product of the disk
|A| < A0 and the right-hand half planes Rea; > 0, i 1, k — 1. ¦

By formula (6.4) of [1] we have that for tx < < tk and —A0 < A < A0 :

pk(txxxsx,...,tkxksk)

(-X)k (Q, exp[is. cpjxj] exp[H2 -tJH]... exp[-ftt - tk_JH] exp[is9JxJ] Q).

(2.17)
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Introducing now P {Px,P2,...,Pn_x} as the self-adjoint infinitesimal generator for
the unitary group of space translations, we see that (2.17) may be written

pk(t,xls,,...,tkxksk)

(-A)* (Q, exp[isx 9J0)] expH'|x P] exp[-Tl H] exp[is2 9J0)]...

x exp[-4-i ¦ P] expt-r^! H] exp[isk 9J0)] Q). (2.18)

Inserting this expression for p* into (2.12) we get the following expression for the
spectral density function for a,- > 0, j 1, k — 1:

rf(etx ßi,..., ctk_i pVi Si,..., sj

iiW-JAln r ,r,i8JP-ßi) r ,nn g(g-jU)
,« s ¦

\ Q> exPfwi 9JW\ — exp[w2 epJOj)... —
(27t)"-1 t \ H + eti H + etk_x

xexp[isk9J0)]Q\ (2.19)

where we have used that H and P commute, and the identity (2.19) is in the sense of
tempered distributions.

Theorem 2.2

For —A0 < A < A0 and etx, etk_x complex and outside the negative real half axis,
the spectral density functions are given by

rf(ctx ßi,..., ctk_x ßk_x, sx,..., sj

((2nr1X)k(n 8(P -ji) r. mi
/o sn i ¦

Q- exP["i <P£(°)] -rr, exp[«2 9J0)]...
(2-tt)" t \ H + etx

8(P - /Li) \
x n v exp[isk9J0)]Qtl + ctk_x J

The jumps of the spectral density functions across the cuts along the negative real axis
for etj are obtained from the formula above by substituting 2rri8(H + etj) for lj(H + etj).
The equality above is to be understood in the sense of tempered distributions. Hence
for the integrated spectral density functions we have

rf(ctxf,,...,ctk_xfk_x;sx,...,sk)

((2TT)"-1 X)k ^ fJP)
io sn-i ¦

Q- exP[«i 9e(0)] — exp[ts2 cpJO)].
(Zi-tt)" t \ H + etx

x ~ik-l{P) exp[isk9J0)]Q}.
n + ak_!
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Proof: Integrating (2.19) with respect to/x (ßj fk_, (ßk_x) and utilizing that both
sides are then analytic functions for Reot; > 0, i 1, k — 1, because of H > 0, we get
the corresponding identity for all ctx, ctk_x in the cut planes, and from this formula
it also follows that rf is joint analytic for all o^, etk_x in the cut planes, since the
spectrum of H is contained in the positive real axis. ¦
Theorem 2.3

Consider now the scattering functions in momentum space £fk(pxsx,...,pksk) as
functions on the hyperplane 2Li Pi 0- Then for real A, —A0 < A < A0,7Ak(px s,,.. .,pksj
is complex analytic in the energy variables pf, ...,p1'm the complex k — 1 dimensional
space 2*=i P° 0 outside the union of the real hyperplanes of the form

Im 2 P° - 0,
lei

where / is any subset of {1,.. .,k}.

Proof: The theorem is proven by expressing SFk in terms of rf-1 by the formulae
(2.6), (2.7) and (2.11) and using Theorem 2.1, which gives the analyticity of rf~l in
«i, •¦•, ctk-v ¦
3. The Infinite Volume Off Shell Scattering Matrix

3.1. Analyticity in the energy variables for the off shell scattering matrix

We now introduce the truncated spectral density functions

Vt(<*i ßi,---, a*-i ßk-i ;si,...,sk)

ii^y^xyf inJiP-Jkr; r tc,MS{P-^
Q, exp[tsx cpJO)] —— F exp[is2 9J0)] ¦

(2TT)"-1i \
• rL ±r£WJ H + 01, -r^-r^i) H+X2

x F... 8(rf ~ ßk-l]
F exp[isk y.(0)] Q (3.1)

H + etk_x J

where F is the projection on the orthogonal complement of Q in the physical Hilbert
space AC. Let F0 be the projection onto Q, then by utilizing that F + F0 1, we see

that if we define the truncated time-ordered scattering functions in momentum space
y"r(Pisi,---,Pkskl by the formulae (2.6) and (2.11) with -qT instead of rf, then
^T(Pisi,---,Pksk) is actually the Fourier transform of the time-ordered truncated
scattering functions örixiSi, ¦ ¦ -,xksk), where or is the function obtained by truncating
the time-ordered scattering functions (2.3) in the sense of (3.13) of [1].

We define the off shell finite volume truncated scattering amplitudesS^;^^!,... ,pn ;

qi,---,qm) by the formula in theorem 6.4 of [1], without the restrictions p° pißj),
fi-Piti-

Introduce the notation

Sljl(A,B)=SiAm(px,...,pn,qi,...,qm) (3.2)

with A {p.,.. .,p„) and B {q, qm}.
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With this notation the formula in Theorem 6.4 of [1] takes the form

S'.T(A,B)= 2^- 2, ••¦ I («i)w,l+|B,l...(«i.)u',+ |B'lX.W
r=l ' A=A,\J-.\jAr

B-BlU'UBr

xxJB)6ri,T{ 2 Pt- 2 qj,---, 2 Pi- 2 qJ,s1,...,sr)
\teA, 3eB, tsA, leA, /

x n.dp(Sj)+8lAU8lBl_x8(px-qx), (3.3)
3=1

where the sum runs over all disjoint partitions of A and B into r subsets, and \A | stands
for the number of points in the set A.xJA) PIjsA xJpJ and 8lA^ x

1 if \A | 1 and
zero if not.

By Theorem 6.1 of [1] we know that the finite volume scattering functions
ak(x,s1,...,xksk) converges pointwise as uniformly bounded functions to the infinite
volume scattering functions ak(x1s1,. ..,xksk) for A real and —A0 < A < A0. Hence the
corresponding time-ordered scattering functions also converge pointwise as uniformly
bounded functions and of course also the corresponding truncated functions converge
pointwise as uniformly bounded functions. Therefore their Fourier transforms
converge as tempered distributions, and their limits are given by the truncated time-ordered
scattering functions in momentum space 7Fk(pxsx,...,pksJ. We formulate this result
in the following theorem.

Theorem 3.1

The finite volume truncated off shell scattering amplitudes S''T(A,B) given in
(3.3) converge in the sense of tempered distributions to the infinite volume truncated
off shell scattering amplitudes ST(A, B) given by the following formula, for A real and
-A0 < A < A0 :

1-41+1*1

ST(A,B) 2 -r 2 I "J iisi)Ull+m---i^r)lA'l+iBAxJA)xJB)
r=l ' A=AlIJ-UAr

B-B,U-U«r

x SA%(2 Ax-^Bx,sx,...,2Ar-2 Br, Sr)

xndp(Sj) + 8lAUi8lBUX8(px-qi),

where A ={px,.. .,pj and B {qx,.. .,qm) and \A \ is the number of points in the set A.
The sum runs over all disjoint partitions A A x U U Ar and B BXU U Br, such
that A,UBi*0 for i=l,...,r. UA) n„sAxJ[p), and 2AJ 2,eAjP and
8\a\,i 1 ot \A\ 1 and zero if not.

The truncated scattering function 7fkr(pxsx,...,pksJ is given in terms of the
truncated spectral density functions r)kT(ot.ißi, ¦ ¦ -, ock-ipk-V, sx sj by

SfT(piSx, .,PksJ 2 r)T(P*'l,,Px(.l)+P«l2), ¦ ¦ -iPnll) + ¦¦¦
+ Pn'K-l) • ««(I). • • •> S*tt)) 8(pi + ...+PJ,

where the sum runs over all permutations tt of {!,...,k), and nT is given by (3.1).
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We remark that the truncated scattering amplitudes STm(p,,.. .,pn;q,,. .,,qm) are
symmetric inpx, pn and in qx, qm.

Theorem 3.2

For A real and —A0 < A < A0, the truncated off shell scattering amplitudes
Sl.miPi, ¦¦¦>Pn',qi>-- -,qm), considered as functions on the hyperplane 2î=iPt ~ 27=i<2i=*0.
are analytic functions in the complex energy variables p°x, ...,pa;q\,...,qm in the
n + m—1 dimensional complex space which is the hyperplane 2"-i Pi — 2£i li ®<

in a domain which is the complement of the union of the real hyperplanes of the form

WZ*?" 2<7?)=0>
\tel 3eJ /

where I is any non-empty subset of {1,...,»} and/ is any non-empty subset of {1,..., w}.

Proof. This theorem follows from the analyticity of the scattering functions in
momentum space, Theorem 2.3, and the immediate observation that the truncated
scattering functions in momentum space have the same domain of analyticity, as
follows from the fact that rf and tjt have the same domain of analyticity in the energy
variables, as seen from the definition (3.1) of the truncated spectral density functions wT,

Remark: The structure of the regions where the truncated off shell scattering
amplitudes are not analytic could be more closely specified if one could have more
detailed information on the spectrum of H in a fixed total momentum subspace. This
is clearly seen from the formula (3.1) for the truncated spectral density functions,
which shows how the maximal domain of analyticity depends on the spectrum of H.

3.2. The crossing symmetry for the off shell scattering amplitudes

The form of the off shell scattering matrix given in Theorem 3.1 together with the
analyticity in the energy variables for the off shell scattering matrix, as given in
Theorem 3.2, are sufficient to prove the correspondent in this model of what is usually
known as the crossing symmetry for the off shell scattering amplitudes5). Namely, the
property that the scattering amplitudes for different scattering channels are related to
one another in the sense that they are boundary values of one and the same analytic
function taken at different branch cuts.

Recalling that for any physical scattering process the energy variables are of
course all positive, we shall see that the crossing symmetry actually follows from the
fact that by Theorem 3.2 we may continue analytically the energy variables from the
cut along the positive real axis to the cut along the negative real axis. In fact we have
the following theorem :

Theorem 3.3

For A real and —A0 < A < A0, the truncated off shell scattering amplitudes
SJ.miPv-'Pn'Ai,¦¦¦Am) are symmetric in px, ...,p„ and in qt, qm. Moreover they

See, e.g., Ref. [5].
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are symmetric with respect to interchanges of ^>'s with ^'s in the sense that

SI miPl, ¦¦¦,Pn',qi,--,qm)= SLl,m+l(Pl, ¦ ¦ -,Pn-l Av -, ?m. ~Pn)-

Furthermore S? m(px,.. .,p„;q,,.. .,qm) is analytic in the upper half planes for the energy
variables p\, ...,p%',q\, ¦¦¦,q%, so that SIm(p1,...,pn;qx,...,qm) may be analytically
continued in the upper pÇ\ half-plane from the positive real p° axis to the negative real
/°axis. Hence all the truncated off shell scattering amplitudes S^_m(px,. ..,pn',qi,...,qm)
with n + m N are boundary values of one and the same analytic function taken at
different branch cuts.

Proof: The identity in the theorem follows immediately from the formula for the
truncated off shell scattering amplitudes given in Theorem 3.1. The analyticity in the
energy variables follows from the analyticity in the energy variables given in Theorem
3.2. This proves the theorem. ¦
3.3. Remarks on the scattering matrix

The scattering matrix would be obtained from the off shell scattering matrix by
restricting the energy variables p°,i =1, n and qj,j= 1, m to the physical mass
shell, in a similar way as for the space cut-off scattering matrix in Theorem 6.4 of [1].
Of course the physical mass shell in these models would not be a hyperboloid, since the
models have a momentum cut-off in the interaction, but it should be given by the
eigenvalues m(p) of H in the subspace of fixed momentum P f>. The corresponding
eigenvectors would be the asymptotic or physical one-particle states. By (3.1) we see

that the eigenvalues m(p) of H, if they exist, would correspond to poles on the negative
otj-axis at m(pj) for the truncated spectral density functions. From (2.12) and the fact
that pk(xxsx,.. .,xksk) is analytic in A for |A| < A0 and has a zero of order k at A 0, we
find from (3.1) that

8(P-ßJ 8(P-ßk J \
Q, exp[iscpJ0)]

l F exp[is2 9J0)]... ' F exp[tsk 9J0)] Q (3.4)
H + et, H + etk_x J

is an analytic function in A for |A| < A0, and Rea( > 0, i 1, k— 1.

For A 0 we know that (3.4) has poles only at et, —p(ßj) and that the cuts along
the negative real a-axis actually start only at —2p(ßi), so that the poles are isolated
from the cuts for A 0. This, together with the analyticity in A of (3.4), seems promising,
but we have not yet been able to prove that the spectral density functions have isolated
poles.

Acknowledgments

The first-named author is very grateful to the Institute of Mathematics of Oslo
University for providing him with the opportunity to spend a beautiful time in an
exciting working atmosphere.

REFERENCES

Tl] S. Albeverio and R. Hoegh-Krohn, The scattering matrixforsome non-polynomial intei'actions I,
Helv. phys. Acta 46, 506-536 (1973).



Vol. 46, 1973 The Scattering Matrix for Some Non-Polynomial Interactions II 545

[2] S. Albeverio and R. Hoegh-Krohn, Uniqueness of the physical vacuum and the Wightman
functions in the infinite volume limit for some non-polynomial interactions, Commun. Math. Phys.
30, 171-200 (1973).

[3] D. Fivel, Construction of unitary, covariant S-matrices defined by convergent perturbation series,
Phys. Rev. D, 4, 1653-1662 (1971). D. Ya Petrina and V. I. Skripnik, Kirkwood-Sahburg
equations for the coefficient functions of the scattering matrix, Theor. and Math. Phys. 8, 896-903
(1971)

[4] S. S. Ivanov, Equations for the S-matrix elements in g(:é>*)2 theory, Preprint Kiev Institute of
Theoretical Physics, 1972. And references quoted therein.

[5] H. Epstein, Some analytic properties ofscattering amplitudes in quantum field theory, in Axiomatic
Field Theory, Vol. 1, Brandeis Summer Institute, 1965 (edited by M. Chretien and S. Deser
(Gordon and Breach, New York 1966).


	The scattering matrix for some non-polynomial interactions. II

