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Phonon-Hydrodynamic Description of Structural
Phase Transitions

by H. Beck
Institute for Theoretical Physics, University of Zurich, Switzerland

and P. F. Meier1)
IBM Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

(28. III. 73)

Abstract. Recent neutron scattering experiments on SrTi03 and KMnF3 near the structural
phase transition have revealed the existence of a strong central peak, besides the soft phonon
doublet at QR, the R corner of the Brillouin zone. Starting from a model Hamiltonian for the soft
mode an expression for the structure factor S(k,Q) is derived. We use the microscopic theory of
phonon interactions which leads to the form of S expected from the elastic continuum theory, and
can account for a central peak at k » 0 near phase transitions. The special form of the dispersion
curve of the soft mode implies that for k a QR the same collision processes are dominant as for
k fs 0. The resulting structure of S(k, Q) for k near QR is the same as for k x 0 which yields a microscopic

justification of the hydrodynamic description of the central peak at the R corner.

I. Introduction

The perovskites ABC3 show a phase transition where the high-temperature cubic
phase goes over into a phase of lower symmetry. For SrTi03, KMnF3, and LaA103 this
displacive transition is connected with a phonon instability at the R corner of the
Brillouin zone where the frequency of one of the F25 modes goes to zero for T ->¦ Tc and
consists of alternate rotations of the BC6 octahedra around the cubic axes as revealed
in EPR measurements by Müller et al. [1]. Pytte and Feder [2] have shown that the
essential features of the transition can be accounted for by considering only the three
phonon modes corresponding to these rotations. In subsequent papers they also
treated the coupling to other phonon modes, especially the acoustic branches, but the
picture of the phase transition driven by the 'soft mode' has not been altered.

Recently, neutron-scattering experiments on SrTi03 and KMnF3 [3] have revealed
an interesting new feature : for T approaching Tc from above and for wave vectors k

near QR, the R corner of the Brillouin zone, the structure factor S(k,Q), exhibits a

strong peak at Q 0 besides the two soft-mode resonances. Such a central peak usually
occurs near first-order transitions for kxO, representing scattering from long-wavelength

critical fluctuations. It was, however, surprising to detect a central peak near a
corner of the zone.

IBM Postdoctoral Fellow of the Institute for Theoretical Physics, University of Zurich,
Switzerland.
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It is well known that the structure factor has the form

k T 1
S(k,Q)=^— Im— rr—- (1)' Q Q2-col-a(k,Q)

y '

Several attempts have been made to find a form of the self-energy a(k, Q) which would
give rise to a central peak in addition to the phonon poles near ±ojj.

Shirane and Axe [4] have reported on the occurrence of a central peak at the
structural phase transition in the high-temperature superconductor Nb3Sn where an
acoustic shear mode becomes soft. There a central peak at the center of the Brillouin
zone shows up in the response function. Shirane and Axe demonstrated that a complex
self-energy of the form

iQ82
o(k,Q)=iQo' (2)

iQ — y

accounts for the observed central peak and the phonon resonances and they showed
that expression (2) results from a transition of the usual collision-free to the collision-
dominated regime near the phase transition.

For a discussion of the central peak in SrTi03 where a form of a analogous to (2)

but for k near QR is required, several semi-phenomenological theories have recently been

proposed. Schwabl [5] used a dynamic theory based on Mori's theory of 'Brownian
motion' relating in this way the dynamic quantities to static susceptibilities. Schneider
[6] treated S(k,Q) by means of Mori's continued fraction method and obtained an
expression for a in accordance with the moment sum rules. The form of S(k, Q) with the
self-energy (2) agrees with the expression derived from the elastic equations [see

equation (21)], and leads to a strong central resonance provided that

S2 > col. (3)
k

This condition is equivalent to the fact that the ratio of the isothermal and the
adiabatic susceptibilities is much larger than unity, which was used by Feder [7] to
explain a central peak.

On a more microscopic level, the critical behavior of SrTi03 can be studied by
using a single-mode Hamiltonian of our form (4) as a model for the R25 mode that
becomes soft. Silberglitt [8] used a quartic anharmonicity to calculate a(k,Q) in a
self-consistent way. Enz [9] has pointed out a remarkable property of the dispersion
curve of this mode: for T> Tcit consists of two almost symmetric branches (see Fig.
1). As a consequence, he sums up the infinite set of 'chain diagrams' which leads to an
expression for a(k, Q) reducing to (2) for small Q.

The lattice dynamic description of the collision-dominated hydrodynamic regime
(Q -> 0, k-^0) is well established : Kadanoff and Martin [10] have shown that the
hydrodynamic equations for fluids or elastic solids lead to the form (21) of the structure
factor. In lattice dynamics it has been possible to derive this form starting from an
anharmonic Hamiltonian (see Refs. [11], [12], and [13]). Sham [11] has pointed out that
in this regime (k x 0, QxO) perturbation theory breaks down due to hydrodynamic
singularities. In this case a Boltzmann equation has to be solved which amounts to
summing up the 'ladder graphs'. This procedure gives a microscopic justification for the
result of hydrodynamics.
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In this work we show that the same microscopic considerations can be made to
explain the central peak found at k x QR in connection with structural phase transitions.
The crucial point is that the above-mentioned symmetry property of the phonon
branch also leads to hydrodynamic singularities for this case. Thus for T -> Tc the
behavior of S(%, Q) for kxQ~R and Q x 0 is also governed by hydrodynamic equations.

In this way we get a microscopic explanation of the form (2) of the structure factor.
Our derivation is based on the same assumptions as the work of Enz [9]. The results
of Enz are rederived in a different manner, but in addition it is shown that with the
same assumptions also a collision-dominated situation may give rise to the form (2) of
a. This latter case constitutes for kxQR the analog to the explanation of Axe and
Shirane [4] for the central peak in Nb3Sn at k x 0.

In Section II the equations of motion for suitable Green's functions are derived
starting from a Hamiltonian with cubic and quadratic anharmonicities. In Section III
we make use of the hydrodynamic singularities for kxQR to transform the integral
equation for the vertex part into a generalized Boltzmann-type equation which sums

up chain and ladder graphs. The structure factor resulting from this equation is

evaluated in the fourth section. Its general form is the same as for kxO. Some
modifications may, however, arise from the details of the actual dispersion curve. Finally,
Section V is devoted to a discussion of the form of the central peak.

II. Hamiltonian and Equations of Motion
We start from the single-mode Hamiltonian

H-i2BtBk+^- J Vjk, kJAki...Akv. (A)
k v-2 ' k,...kv

As usual, the operators Ak and Bk are Fourier transforms of the displacements and the
momenta of the particles and satisfy

[Ak,Bk.] 8tk-. (5)

The important information about the behavior of the system is contained in the
functions

d(k,t) (Ajt)y (6)

and

g-(k,t-1') 9(t -1') <JAJt),Ai(t7)]y (7)

Cdco
—e-itaC'-''>gr(k,co),

J 2tt

the bracket denoting a thermal average. The expectation value (AJt)y corresponds to
the order parameter and has the form

d(k,t)=o for r>rc
d(k,t)=a(T)8kMR for T < Te. (8)
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The retarded commutator gr determines the structure factor S(k,Q) :

S(k,Q) lmg'(k,Q)—}—- (9)
e"" — 1

with

ß=(kBT)-V (10)

For high temperatures where Q < ß'1 this can be simplified to

S(k,Q)=-^-lmg'(k,Q). (11)

This quantity is best calculated by solving the equations of motion for the imaginary-
time Green's function

G(k,T-r')=-ATl)(Ak(r)Ai(r'))y, (12)

where Tß orders the times from 0 to —iß. gr is then related to the Fourier coefficient

-iß
G(k,zJ= f dre-^G(k,r), zv=^ (13)

by the well-known equation [14]

gr(k, Q)=G(k,z Q + i8). (14)

The technique of functional derivation with respect to an external source has been
used in Ref. [12] to derive a system of equations determining G. They read

-
d

GJk'T) 8(t) + f dr' a(k, t - A) G(k, A), (15)
dr2 J

where the self-energy

a(k,r)=a0(k)8(T)+aF(k,r) (16)

is given by

a0(k) V2(-k, k)+~y VJ-k,k,k',-k') G(k', t 0), (17)

and /

aF(k, t) - V V3(-k, kx, k2) F(kx, k2, k';r, t). (18)
2 *—i

k,k2
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The vertex part F obeys the integral equation
-iß

F(k, k', k";r- A) j drx dr2 G(k, r - rj G(k', A - t2) [V3(-k, k', k") 8(rJ 8(r2)

+ l- 2 VJ-k,k',kx,-k2)F(k1,k2,k";r1,T2)8(rl-r2)
2

k,,k2

+ i 2 V3(-k,k1,k2)V3(k',-k3,-kJG(k1;r1-r2)
*,...*3

xF(k2,k3,k";rx,r2)]. (19)

These equations are correct up to terms of the order of Vj and F4.
In lattice dynamics these equations are well known. If the vertex part is approximated

by the first term of (19) the solution of (15) yields information about the
frequencies and life-times of phonons with thermal wave vectors k. For long wavelengths,
i.e., for wave vectors k near the center of the Brillouin zone, this procedure does not
lead to the form of the structure factor S(k,Q) expected from hydrodynamics, see for
example Ref. [15]. Sham [11] has shown that this is due to 'hydrodynamic singularities'
which make a perturbative treatment of (19) in powers of V3 impossible. In the picture
of phonon-phonon interactions these singularities occur since in the three-phonon
processes

k±tqx + k;-qx (20)

the thermal phonons with wave vectors —qx and qx + k have almost the same energy.
Equation (19) can in this case be transformed into a linearized Boltzmann equation
(see Refs. [11] and [12]). The solution of the latter, inserted into the self-energy (17) and
(18) produces the hydrodynamic form of S(k,Q) :

k T 1

S(k,Q) =^—lm (21)
ß ^, „ Qk2

Q2 -cTk2 + iQk2 r, - B-T ' Q + iDk2

This structure of S corresponds to the macroscopic elastic equations. It describes a

diffusive central peak and the Brillouin doublet, i.e., two propagating sound modes,
whose frequencies are renormalized from ±cTk to cadk; cT and cai being the isothermal
and the adiabatic sound velocities, respectively. This renormalization occurs since the
form for a inserted into (21) is appropriate for the collision-dominated regime. The
significance of parameters B and D will be discussed in Section IV.

Recent experiments have proved the existence of a strong central peak for kxQR.
In the next section we want to show that under certain conditions on the phonon
spectrum which seem to be fulfilled in SrTi03 and KMnF3 for T> Tc, the three phonon
processes (20) again lead to a hydrodynamic singularity, in this case for k x QR, in a
similar way as they do for k x 0 in usual hydrodynamics.

III. Hydrodynamic Singularities in the Vertex Part

Equation (19) for the vertex part F is now treated in the same way as in Ref. [12].
For the sake of completeness some arguments are collected in the Appendix. The
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non-instantaneous part aF of the self-energy for a phonon with wave vector QR—Q near
the R corner can be written as

aF(QR -Q,Q + i8) t-^ V3(-QR + Q,q,QR-Q-q)
2 i

mn o\ a
F\q,q-QRA-Q,

Q Q \ I Q
x Qr-Q: v + j+ie,-v+- + t8\+N0lv--

Q Q \ I Q
xF[...,v+-+i8,-v + --ie\-N0\v + -

xF|...,v + ie,-v + — + i8\\, (22)

whereas F obeys an equation of the type

/ Q Q
Fiq,-QR+Q + q,QR-Q;v +- + iei,-v + - + ie2

G\a,v + -+ie1\GL-QR + Q,v---i^2\M(q,QR-Q;v,Q;ei,e2). (23)

Here the et are small positive or negative quantities and M is an expression derived
from (A2), involving V3, V4, G and again the unknown function F. The behavior of F,
which for small Q and Q depends strongly on the signs of ex and e2, can be investigated
by examining the product of the two G's on the right-hand side of (23). For those
momenta q which will be important in the sum (22) the phonon propagator G can be
written as

G(k, co + ie) (24)
i

to2 — to2. -\—sgn e • r(k, to)

r(k,co) —r(k,—co) is the imaginary part of the self-energy, whereas the real part has
been incorporated into the renormalized ('experimental') phonon frequency cok. Using

G1G2 (G21-G-X1)-1(GX-G2) (25)
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"QR-q-Q
CJ,

E

\ \
-AS

A \

q-Q
Figure 1

Dispersion curve cok of the soft mode in the (1,1,1 (-direction as measured by Refs. [16] and [17]. In
the hatched areas I and II the phonon energies co, and wqr-q-q are almost equal.

we write

Q \ Q
G\q,v + -+tei\G[q-QR+Q,v-—-te2

-2vQ - (tt)|-Qjt+Q - to2,) - - sgn exP\q,v + —

+ sgn e2 T q - QR + Q, v - —

-g[ q-QR + Q,v-—-i€2

G\ q, v+ \-tex

(26)

At this stage we follow the argument put forward by Enz [9] which makes use of a
special property of the frequencies cok of the soft mode treated in our model. The
measured dispersion curve [16, 17] for the R25 mode in SrTi03 and KMnF3 shows at
T> Tc an approximate symmetry as shown in Figure 1. For an appreciable range
(areas I and II in Fig. 1) the energies co„ and coQ _,_Q are almost equal provided Q is

very small. Quantitatively, we may write

c"QR-9 c^q + A(q), (27)
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expecting A (q) to be very small compared to a>a. Similarly, we assume

r(q-QR,v) r(q,v)+y(q), (28)

y(q) again being very small. Thus for the important q values the propagators for
phonons with momenta q and QR — q can both be written as

G(QR -q.to) x G(q, to)
1

to2 — to\ + ij2 sgn eT(q, co)
(29)

An expansion of (26) with respect to the small quantities Q, Q, A (q) and y(q) yields

X G\q,v +- + iei\.G[q-QR + Q, v---ie2

% 1

-2vQ + 2coJQ -Vq-A(q))-- (sgn e2 + sgn ex) r(q, v) - -sgn e2 y(q)

x [G(q, v + iex) - G(q, v - ie2)] +

dG(q,v-ie2)
x -_ h...

2vQ-2toJQVq-A(q))--y(q)

(30)
dto\

For ex > 0 and e2 > 0 the right-hand side of (30) now shows a hydrodynamic singularity

Xil'1'
X">0 ~ -2ivQ + 2icoJQV„ - A(q)) + r(q, v) + Ay(q)

whereas for ex ^0 and e2 ^ 0,

dG(q, v+io)X
dto\

(31)

(32)

(33)

(34)

Here we have defined the spectral function

X(q,v) i[G(q, v + io) - G(q, v-io)]
and the group velocity

V -^i.
9

dq

Inspection of (23) shows that the hydrodynamic singularity shows up in
F(...;v + Qj2 + io, —v + Qj2 + io), whereas F(... ; ±io,+io) behaves regularly for Q and
Q going to zero. This part of F is thus replaced by the inhomogeneous term of (23) when
inserted into (22). For the singular part

F+(q,Q;v,Q) Fiq,q-QR + Q,QR-Q;v + - + io,-v+- + io\ (35)
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we make the ansatz

F+(q, Q;v,Q)= x(q, v) h(q, Q;V,Q) (36)

and write down (23) explicitly, omitting, however, the regular part of F in the expression
forM:

[-2i(vQ - toqQVq + coqA (q) + r(q, v) + y(q))] h(q, Q;V,Q)

V3(-q,q-QR + Q,QR-Q)+t-^VJ-q,q-QR + Q,q',QR-Q-q')
«'

rdto\ Q\ Q\
xj 2^ \N0ito + -\-N0lto-j\ x(q',co) h(q',Q; co, Q)

+ 2 V3(-q, q', q") V*(q", q' -QR + Q,QR-Q - q)
q'q"

C dto
x J — ^oM [xiq", co)x(q',to + v) h(q', Q;to + v,Q)

+ x(q",v-to)x(q',co)h(q',Q;co,Q)]. (37)

In the following we expect that the spectral function x(q, f) for the 'thermal' phonons
can be represented by two sharp peaks,

X(q,v)x—[8(v-coq)-8(v+coq)]. (38)
coq

In accordance with the symmetry between regions I and II of the dispersion curve
(Fig. 1) we also assume the anharmonic coupling parameters to be almost equal:

V3(q",q'-QR+Q,QR-Q-q)K V3(q",q',-q). (39)

This enables us to proceed in the same way as the usual phonon hydrodynamics was
established in Refs. [11] and [12]. Defining

9(q,Q,Q)=h(q,Q;v coq,Q) (40)

and integrating (37) over v from 0 to co we end up with

y (q)
-iQ + iQ-Vq-iA(q)+ —

2toq
9(q,Q.O)

^-V3(-q,q-QR + Q,QR-Q) + L[cp(q,Q,Q)]-iQ^J(q,q')9(q',Q,Q). (41)
2coq q-

Besides two additional terms on the left-hand side this is a generalized linear Boltzmann
equation. The collision operator L which has the same form as in Refs. [11] and [12] is
the sum of T(q, v) and the last term of (37). The function

m(co„-)
J(q, 1) -r^1 VJ-q, q, q', -if) (42)

4ü>„ coqi
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with

m(x)=ßN0(x)(N0(x) + l) (43)

corresponds to the quasi-particle interaction first introduced by Göetze and Michel [13].
By means of equations (14) to (18) and (22) the structure factor (11) can now be

represented in the form

S(QR-Q,Q)

kBT 1

_ im (44)
Q Q2-[A(QR-Q) + B(QR-Q)-D(QR-Q)]+C(QR-Q,Q)

Here

A(QR-Q) V2(QR-Q,Q-QR) (45)

is the 'harmonic' frequency and

B(QR - Q) 2 VJ-QR + Q, q', -q', QR - Q) No(ü)j + 1/2
(46)

«' 2o),

is the first term of the usual self-consistent phonon approximation [3,18]. D is calculated
by inserting the lowest-order value of the regular part of F into (22) :

D(QR-Q) 2\v3(q,-QR + Q,QR-Q-q)Y
N0(toq) +1/2 m(toq

Acoq Ato\

C finally contains the solution of the transport equation (41) :

(47)

«ûTr- VAq,-C(QR -Q,Q)= -iQ > — V3(q, -QR + Q,QR-Q-q) m(coq) cp(q, Q, Q). (48)

IV. Evaluation of S(QR -Q, ÇI)

The symmetry property of the dispersion curve has led to a hydrodynamic
equation determining the structure factor for wave vectors in the neighborhood of the
R corner. Now we want to investigate the form of the term C in (44) by solving the
collision equation (41) in some approximation. To this end the wave-vector dependence
of V3 and F4 can qualitatively be represented as

V3(-q, q-QR+Q,QR-Q)*g3 to2 et(QR - Q) (49)

VJq',-q',QR-Q,Q-QR) Xg,to2.et2(QR-Q), (50)

where gv are anharmonic coupling constants and et(QR — Q) will be discussed later on.
These approximations are certainly justified as we do not calculate the effects of the
anharmonic coupling parameters quantitatively.

Two limiting cases can now be treated in a simple manner :

i) The collision operator is replaced by a relaxation time r(q), whereas the quasi-
particle interaction / is retained. This corresponds to the summation of the 'chain'
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diagrams performed by Enz [9] and leads to the form

CX(QR-Q,Q)=^
g*

Q
*2iQR-Q) — •

~ At
Q

g*z
The function

7IO 0\ >
m(toq) col

" -iQ
v(q) 1

±iQVq-iA(q)+-^ + —
2toq r(q)

(51)

(52)

is still Q- and Q-dependent. For small Q and Q it can be replaced by Z(0,0). This
description applies to the collisionless regime.

ii) If the collision term L dominates, J can be neglected and the Boltzmann
equation can be solved starting from the 'hydrodynamic' eigenfunctions of L (collision
invariants) and treating the drift term as well as the term —iA(q) +y(q)j2co(q) as a

perturbation. Details of such a procedure are given in Ref. [19] and in Section 8 of
Ref. [12]. The resulting expression for C reads

(53)

(54)

(55)
\Z"W

The brackets denote the following average :

2 m(toJ coqf(q) toq

</(?)>= *

v 2 ; : (56)
2cr>\m(coJ
«

C, and C2 have the same analytic structure. Cx corresponds to the solution of the
Boltzmann equation in the collisionless domain, whereas C2 is closely related to the
results of usual phonon hydrodynamics. There only the first contribution to A(Q) is
present, which, in accordance with the hydrodynamic equations has to be identified as

<(W> « m

C2(QR -Q,Ü)
ÜU{Q«-Q)

Y Q + iA(Q)

U(QR--Q)=^*2(QR-Q)Z<o2m(Loq)
A 9

and

A(Q) „2 <C?^)2> ./A,S, i /
*-Q<QVqLQVqy *<J(')> + <

/y(?)\
\2œq/'

<QVqLQVqy

k being the thermal conductivity of the system. Some expressions showing up in
U(QR — Q) can also be identified with thermodynamic quantities. In the picture of
renormalized phonons the quasi-harmonic free energy is known to be

F9n kB T 2 log 2sinh|- co„

\2kBT
(58)
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coq being the 'experimental' phonon frequencies depending on the lattice constant a.
The specific heat at constant volume

C,, -T-
d2F.Qh

dT2

and the tension coefficient

xJ-ATt
dTda

can then be put into the following form (see Ref. [13]) :

C« f2 m(wà w« (59)

and

X -^^m(toq)to2q. (60)
9

Thus we can identify

U(QR-Q) oc2(QR-Q)1— (61)
v„

and end up with

kBT
S(QR-Q,Q) =-?—lm (62)

Q Q2-xtHQr-Q)+c2(Qr-Q,Q)
where

x2(QR-Q)X2QT
C2(QR -Q,Q)= —, r r • (63)

c\ü + iQ2^ + i(^ + iA(q)y^

Here we have introduced the static isothermal susceptibility yt(&) of the system with
respect to an external force conjugate to the dynamic variable Ak. It is given by

Xr(*)—Jim «•¦(*, fl)
n->o

[A(k) + B(k)-D(k)]~1. (64)

In the derivation of solution (53) of the Boltzmann equation a regular term arising
from the eigenfunctions of L with non-vanishing eigenvalues has been omitted. It
would have led to a further contribution to C2 oi the form

C2r°*\Q,Q)=iQW2(QR-Q). (65)

In analogy to the hydrodynamic form (21) oiS(k,Q), where oc2(QR — Q) is proportional
to Q2, n can be identified with a viscosity. The above identifications with
thermodynamic quantities should, however, be considered with precaution : A, Cv, Xt and k are



492 H. Beck and P. F. Meier H. P. A.

quantities belonging to the single mode of our model. They may differ appreciably from
the values for the crystal as a whole. One would, however, expect that the critical
behavior of these quantities is mainly determined by the contributions stemming
from the soft mode alone.

V. Discussion

It has already been mentioned in Section IV that solutions (51) and (53) for the
term C(k,Q) in the structure factor both have the same form although they result from
different microscopic mechanisms, namely, the quasi-particle interaction and the
phonon-phonon collisions, respectively. For wave vectors k x 0 it is the form C2 in (53)

emerging from the treatment of collisions that produces the correct hydrodynamic
result (21) for the phonon propagator (see Ref. [15]). This fact leads to the identification
of some of the contributions to C2 with thermodynamic quantities. In the following we
shall restrict our discussion to C2, i.e., to result (63).

The term C has its origin in anharmonic interactions. In 'normal' situations where
the two main poles of S(k,Q) describe propagating phonons it is small in the sense that

^^2(Qr-Q)<Xt1(Qr-Q)- (66)

It shifts the isothermal phonon frequency vf1/2 to x7112,lne adiabatic one, and furthermore

it gives rise to a third pole due to heat conduction. The latter has, however, much
smaller weight :

¦* heat cond. XT

-* sound
— -1 R^p<1, (67)

i?LP being the Landau-Placzek ratio. In the critical region where QxO, T> Tc, the
situation will change. The phase transition occurring at T Tc is characterized by [20]

limxTiiQR)=0, (68)
T->TC

the critical behavior being

Xt(Qr)«(T-TJ->. (69)

Thus inequality (66) is expected to be reversed :

X2T

C„
ooxt1- (7°)

In this case C(QR — Q,Q) gives rise to a strong central peak in S(QR — Q,Q) dominating
the soft-mode doublet provided that </]> is zero, which should be true for T near Tc.

Depending on the critical behavior of À, oc, k, and C„ two cases can be distinguished:

X2Tet2 (Q2k / y\\2
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This situation has been considered by Schneider [6]. There are two weak soft-mode
resonances with frequencies

n*iQR - Q) * ±A J-%- cc(QR - Q) (72)

which may remain finite at T Tc, and a strong central peak. Because of equations
(68) to (72) its width

rQ J91i+/a\) £• (73)QrQ \Cv \2eo/j Xt(QR-Q)VT«2(Qr-Q)

vanishes with the critical behavior

rQ^Qcc(T-TJy, (74)

whereas its height S(QR — Q, Q 0) diverges as (T — TJ~2y. These results agree with
those in Ref. [6].

»T*\(7AA±b) —A^Kt)}' <TC)

Here the two soft-mode poles have disappeared in favor of one strong central peak.
The recent detailed experimental results [3] indicate that SrTi03 can be classified

under case a), whereas for KMnF3 relation (75) seems to be fulfilled.
It is impossible to draw conclusions concerning the detailed Ç-dependence of

S(QR — Q,Q) since the behavior of ct is not determined. If the anharmonic coupling
parameters approximated by (49) and (50) vary continuously at T Tc, oc should
vanish for Q -j- 0 :

oc(QR-Q)-Q+ Q(Q2), (76)

for in the ordered phase QR is equivalent to the center of the Brillouin zone. For the
same reason y(Q) and A(Q), being the difference of quantities which become equivalent
at T=TC [see equations (27) and (28)], will go to zero for T -> Tc. Under these
circumstances the structure factor S(QR — Q,Q) has, for Tx Tc, exactly the hydro-
dynamic form (21), even in its Q dependence.

Summary
Starting from a one-mode Hamiltonian describing the soft mode we have derived

an expression for the structure factor S(k,Q) which can account for the neutron-
scattering data for SrTi03 and KMnF3 near the transition temperature. The same
mathematical analysis which has to be performed for k x 0 to deal with the hydro-
dynamic singularities is applied to the case %xQR. This is necessary since the
symmetry of the dispersion curve of the soft mode in these two substances [16, 17] leads to
hydrodynamic singularities in the phonon self-energy for k x QR. The resulting
expression for the structure factor has the same form as in the more phenomenological
theories and comprises the result found by Enz [9]. In the framework of this model it is
difficult to draw conclusions about the quantitative behavior of the parameters entering
S(k,Q).
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We should like to stress again the fact that if we applied our calculations to an
evaluation oiS(Ji,Q) for k x 0 rather than QR, no assumptions on the phonon spectrum
would be necessary. The treatment of the hydrodynamic singularities discussed in
Section III is inevitable in this case and our formulae therefore also give a microscopic
foundation to the explanation of the central peak in Nb3Sn by Shirane and Axe [4].

The assumption of the approximate symmetry of the dispersion curve is difficult
to test in a quantitative manner and is special for SrTi03 and KMnF3. On the other
hand, it has the direct consequence that the structure factor for wave vectors near QR

exhibits a behavior which differs from that of other vectors in the Brillouin zone.
Other mechanisms of phonon collisions which single out the R corner are not conceivable.
Microscopic explanations involving four-phonon processes lead to a form for S(k,Q)
continuously varying over the whole zone. In contrast, the approximate symmetry
assumed here accounts for the special form at the R corner.
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APPENDIX

Using (13) and a similar definition for F, (18) and (19) are transformed into

vF(k,zJ=^V3(-k,kx,-k2)-l-^F(kx,k2,k;zx,zv-zx) (Al)

and

F(kx, k2, k3 ; zv, zj G(kx,zJ G(k2, -zj V3(-kx,k2,kJ+^ VJ-kx,k2,k',-k"
K-k-

—- y F(k',k",k3;zr,,zv + z -zx)
—tß *->

+ * 2 v3(-kx,k',k")v3(-k",-km,k2)

x
-iß

- (A2)x -— y G(k", 2V - zj F(k', k", k3;zat,zv + z,,- zj
The sums over za are evaluated by means of the equality

-^s2 /<*«) j§; ^oW/W (A3)
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with

N°iz)=HT—i- (A4)
e" — 1

The contour c, which is described in Refs. [11], [12] and [14], leads along the branch-lines
oif(z). These are

lmz 0 for G(k,z)

as well as

lmz 0

and

Im/ 0 for F(...;z,z').

Taking the limit zv ->- Q + i8 as required in (14) this procedure leads to (22) and (23).
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