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On Factors of Type II and Qliantum Mechanics

by Distein Bjernestad!)

Department of Mathematics, University of Western Australia, Perth, Western Australia
(22. I1I. 73)

Abstract. 1t is shown that a self-adjoint operator in a separable Hilbert space can be affiliated
to a factor of type IT if and only if ‘its spectrum is of infinite multiplicity’. This result is then put
on a form suitable for application, and an example is given.

Introduction

Von Neumann algebras have proved themselves a powerful tool in the study of
quantum systems of a large number of degrees of freedom. Due to the generality of
the notion of a von Neumann algebra, it has mainly been employed at the fundamental,
structural, level. In this paper we propose to look for possibilities of using this tool for
actual calculations.

N. M. Hugenholtzis one of those who have suggested that in the physics of quantum
systems of a large number of degrees of freedom, the system be considered infinite from
the beginning, instead of only in the end, by way of a limit process. In [1], p. 244, we
find this passage: ‘In standard statistical mechanics a state of the system is determined
by a density operator p which in turn determines a positive linear form ¢(4) = Tr(pd4).
The density operator p has no limit for an infinite system but the positive linear form
&(A4) is well defined in that limit. Therefore, to determine a state of an infinite system
one cannot use a density matrix p but must simply give the positive linear form
#(4); ..." We shall here try and follow up Hugenholtz’s program (as we construe it)
in relation to matters technical: Would it be possible, by changing the notions of
trace function and density operator, to retain ¢ in a tractable form in the case of an
infinite system? This line of inquiry is suggested by the observation that factors of
type II do have a trace function: if 4 = [ AE(dA) belongs to such a factor &, then
tr (A4) = [ Adim_, (E(d])), where dim,, is a dimension function (unique to within a
constant factor) on /. As a first step in our inquiry we shall ask what kind of self-
adjoint operators (‘observables’) can belong to (more generally: can be affiliated to)
factors of type 1.

1) This paper forms the substance of a thesis presented to the University of Geneva in partial
fulfilment of the requirements for the degree of docteur é&s sciences physiques (Thése n° 1582). This
work was performed under the supervision of Professor C. Piron, and was supported by the
Norwegian Research Council for Science and the Humanities and by the Swiss National Foundation
for Scientific Research.
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1. Preliminary

Our tool in dealing with the first step of our inquiry (as outlined in the Introduction)
will be the theory of unitary invariants (of normal operators) due to A. I. Plesner and
V. A. Rohlin [2]. With regard to our aim, we restrict this summary to the case of self-
adjoint operators in a separable Hilbert space.

Let $ be a separable Hilbert space, 4 a self-adjoint operator in §. By ‘subspace
(of )’ we shall mean ‘closed linear subspace (of H)’.

Let u € . The smallest subspace of $ which contains # and reduces 4 is called
the cyclic subspace (with respect to A) determined by w and is written $(»). A subspace
X of $is called eyclic (withrespectto A) if a u € § exists such that X = $(u). The operator
A 1s termed cyclic if § itself is a cyclic subspace (with respect to A4).

We denote by Z(R) the Borel field of the real line, by 9 the set of finite positive
measures on Z(R). If u,v € M and p is absolutely continuous with respect to » (see,
e.g., [3], p. 190), then we write u < v. The relation < is a quasi-ordering on IR, defining
in the usual manner an equivalence relation ~ on 9k, a quotient set & =4, M/~, and
a partial ordering < on &. In fact, & is a o-complete lattice. The members of & are
called Hellinger types; we shall denote by ' the Hellinger type to which u € I belongs.
We have " v p," = (uy + p,)’ (with a generalization to the countable case).

Consider 4 = [ AE(dA). For v € § we denote by u, , the measure & > (E(8) v|v)

on #(R). We get a subset © 4 =4¢¢ {pt, 4": v € H} of &, also a o-complete lattice. S, may

have a largest member, say u, ,': in that case 4 is said to be of maximal Hellinger type
B4 =ger Py 4 (since S, is a lattice, a maximal member is necessarily its (unique)
largest member). In fact, in a separable Hilbert space (which is the case of interest to
us), every self-adjoint operator is of maximal Hellinger type.

If a subspace X of § reduces 4, then 4|X is called the part of 4 in X. Parts of 4
in mutually orthogonal subspaces of § are called orthogonal paris of A. An orthogonal
sequence of Hellinger type u' (with respect to A) is a sequence (4;); . of pairwise ortho-
gonal cyclic parts of 4, all of maximal Hellinger type u’. The set of such sequences can
be partially ordered: (4,);.; will be considered smaller than (A4 ,), .k if the latter (map)
1s an extension of the former. If (4,);.; is a maximal member of this partially ordered
set (maximal members do exist), then the cardinal m(u’, A) of 7 is uniquely determined
by 4 ; m(u', A) is called the multiplicity of ' (with respect to A).

A non-zero member u’ of &, is called homogeneous (with respect to A) if for each
non-zerov' < u’, v' € G, one has m(v',4) = m(u’, 4) (necessarily, m{u’, 4) < m(v', 4)).
Any self-adjoint operator 4 of homogeneous maximal Hellinger type u, of multi-
plicity m(uy, 4) can be decomposed into a direct sum of m(uy, 4) cyclic parts, each
of maximal Hellinger type /.

The ordered pair (u),m(uy,4)) is called the spectral type of the operator A of
homogeneous maximal Hellinger type. Two self-adjoint operators of homogeneous
maximal Hellinger type are unitarily equivalent if and only if they have equal spectral

types. (Operators not of homogeneous maximal Hellinger type will not concern us
here.)

2. Affiliation of a Self-Adjoint Operator to Factors of Type II, in a Separable
Hilbert Space

‘ Let $ be a separable Hilbert space. If X is a subspace of §, we shall sometimes
write Py for the (orthogonal) projection onto X; more often, however, we shall use the
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letters X and E, equipped with identical markers, for a subspace and the projection
onto it, respectively.

IfA=fAE(d}) isa self—ad]01nt operator in §, then A4 is said to be affiliated to a
von Neumann algebra &, written Ane/, if each E(}) € o

If o is a factor of type 17, in §, then dim_, will denote the normalized dimension
function on the set of projections from ..

2.1. The maximal Hellinger type of a self-adjoint operator affiliated to a factor of type 11,

(2.1) Lemma. Let of be a factor of type I1, in a separable Hilbert space §. A self-
adjoint operator A = [ AE(dX) exists such that Ansf and dim ,(E(X)) = A, A€ [0,1].

We shall omit the proof of this result. However, the reader would have no dlfﬁculty
in reconstructmg it on the basis of the followmg remarks and suggestions:

1° If E € & is a projection, then E is the sum of two projections E’, E” € & such
that E'E" =0 and E' ~ E".

2° Consider the numbers 0, 1, and furthermore all numbers (27 — 1) 2%, where 7, £
are integers > 0, and where 1 < j < 2%, Arrange these numbers in succession: 0, 1,
2-1-1)271 .., 2-1-1)27%, .., (221 —-1)27%, ., _; let (r,) denote the sequence
so obtained, with 7y = 4. O (the range of (#,) consists of all numbers in [0,1] which are
of the form 7-27% where 7,k are integers > 0 and j < 2¥). By the principle of transfinite
induction one obtains, making repeated use of 1°, by recursive definition a sequence
(E(r,)) of projections from & such that dim(E(r,)) =7, for n=0, 1, ... and such
that », <7, entails E(r,) < E(r,,).

3° "For any number Ae [0,1] there exists a sequence (¢}, where ¢} equals 0 or 1
such that A= 3, cA27" If A is different from all j-27% where 7,k are integers, j > 0,
k>0, then the sequence (¢f) is unique; in the opposite case there are precisely two
sequences of the kind mentioned: one of them has no non-zero members past a certain
index #, whereas the other one has non-zero members beyond any index #; it seems
preferable to argue consistently in terms of the second possibility. For each A €[0,1]
one has A= 37 ; cA27". The sequence (ed), e} = 4er 220 c)2 " for p=0,1,.. ., isan
increasing sequence of members of (r,), converging to A. To each $, therefore, a pro-
jection E(e}) from o exists such that dimg(E(e})) =e). One obtains a projec-
tion E(A) € &, the strong limit of (E(e})),, with the property dim(E(X) =X ([4],
Cor. I1.1.23, gives that result). In fact, the family £(-) of projections from &, extended
toRby E(A) =0for A <0, E(A) =1 for A> 1, is a spectral family, and 4 =, j' AE(dA)
is an operator fulfilling the requirements of Lemma (2.1).

We obtain readily the following more general result:

(2.2) Lemma. Let o be a factor of type 11, in a separable Hilbert space . Let f be a
real-valued function on R which is increasing (not necessarily strictly so), continuous on
the right, and which satisfies f(—wo) =0, f(w) = 1. A self-adjoint operator A = | AE(dA)
exists such that Ansf and dim ,(E(N)) = f(A), A€ R.

The proof is not difficult: Let [ AF(4A) be the operator of Lemma (2.1). We define

E(A) def F(f('\))» AeR.
E(-) is a spectral family, and 4 =4 [ AE(dA) satisfies Lemma 2.2).
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We are now in a position to make a connexion with the subject of Section 1:

Reference to [5], pp. 141-42, shows that any function f of the kind mentioned in
Lemma (2.2) determines a positive measure u, on #(R), (called) the Borel-Stieltjes
measure in R determined by f. To any such f, then, there corresponds a member of &.

On the other hand, let 1’ € & be given, and let u € u’ be so chosen that u(R) = 1.
We set

JuQ) =ger p([=0, A)).-

The (real-valued) function f, is increasing, it satisfies f,(—w) =0, f,(x) =1, and it is
continuous on the right (at every point of R): Remembering that in a metric space,
like R, sequential convergence implies convergence proper, we select a strictly de-
creasing sequence (7,) which converges to (an arbitrary point) A € R. We find that

s o]

1 _fu(A) = [.L(]A, OO])= f"’( U ]7m OO]) = P"(]"o’ 00] U ]71170] U ]72171] U s # )

n=0

= #(]7'0; OO]) i P‘-(]"p”o]) . & ”(]72171]) e o o B 11'Il11 p.(]?’", OO])!
whence

Ju) =1lim p([—w,7,]) = im £, (r,),

so f, is continuous on the right.
These considerations allow us to put Lemma (2.2) on this form:

(2.2)" Lemma. Let of be a factor of type 11, in a separable Hilbert space . Let '
be any member of S, u a representative of w' such that u(R) = 1. A self-adjoint operator
A = [ AE(dA) exists such that Ansd and dim ,(E(8)) = u(8), 8 € B(R).

The following is the main result of this subsection:

(2.3) Theorem. Let &f be a factor of type 11, in a separable Hilbert space §. Let u'
be any member of S. A self-adjoint operator exists which 1s affiliated to of and whose
maximal Hellinger type is p'.

Proof. For the proof we shall rely on certain properties of Hellinger types, as well
as on a certain fact concerning the trace function tr, on /. Before stating the latter,
we shall take note of some facts regarding the dimension functions on &/ and &/’ (see
(4], Th. I1.2.7):

Let ® and D’ be the ranges of dim, and dim,,., respectively, and let D, and
D, be those of the functions E¥ - dim(E¥’) and EZ +> dim,.(E¥), respectively,
x ranging over §) (where E¥" is the projection onto X&', the subspace determined
by {A'x: A" € &'}; similarly for E¥). The dimension functions dim, and dim.,
should be normalized, when possible. Now let

@(dim 4 (EF")) =ger dim,. (EZ).
In fact,
(P(A) — CA, A € Do,



Vol. 46, 1973 On Factors of Type IT and Quantum Mechanics 375

where c is a strictly positive constant, the linking constant of of (see [4], Def. 11.2.8).
Moreover, D, =[0,A,], D, =[0,¢cA,], for some A, €[0,1], and D,=D or D,=D’ (or
both). If &’ is a factor of type I7_, then dim,. cannot be normalized. In that case we
may, and shall, choose ¢ =1, and we have D, = D (=[0,1]). If on the other hand &’
is a factor of type I1,, then D, = D, corresponding to ¢ < 1, or D, = D', corresponding
wezl.

We start by assuming that ¢ < 1. In that case there exists a member x of § such
that for all T € o/ we have

tr (T) = (Tx|x)

(see [4], Cor. I1.3.4),
Now let us choose u € u’ such that u(R) = 1, and let us denote by 4 = [ AE(dA)
the operator of Lemma (2.2)’. We have

e, 4(8) = (E(3)] ) = tr(E(3)) =dim,,(E(3)) = u(8), &< B(R)

whence p, 4, =pu'. So we know that u’' € S,. We shall show that u’ is the largest
member of S, ie., the maximal Hellinger type of 4. To that effect we compare an
arbitrarily chosen u, ,’, v € §, with u'. This we can do because of the following circum-
stance: by the formula tr,(T) = (Tx|x) we find

tr (EZ) = (EZ x|%) = (x]x) = (1x]x) = tr (1) =1,

ie., E¥ =1.
Let T be any member of .&/’. The operator T can be written as

T=a1U1+a1Uf+1:OC2U2+T:O€zU§,

where U,, U, are unitary operators from /', and where «,, a, are real numbers (see
[6], Ch. I, Sec. 1, Prop. 3). Thus

Kre, 4(8) = (E(8) Tx|Tx) = ioc“(E 8)V.x|V,%), 8cBR),

i,j=1

where the V; are unitary operators from &’ and the «;; are numbers. Let us consider
the (arbitrary) term

ai;(E@) Vx|V ;%) = o; (E(8) x| V¥V ;).
Now,
p(d)=0.2.[E@) x| =0:2:E@)x=0.:2. (E(8) x| V¥V ;x)=0.

The join V; p;" of members p," of & being (3, u;)’ (provided >, u;(R) < oo, which we
can always obtain by suitably choosing the u,) (see [2], Th. 10.2.1), we see that P, A
is the join of a certain number of members of S ,, all of which are smaller than p, A = .
This means that all Tx, T e.o/’, are members of §, =4 {v: vEH .y, 4 < p}-
According to [2], Th. 10.3.3, §,. is a subspace of $; hence linear combinations of
members Tx of §, T € ', as well as limits of sequences of such, all belong to §,, s
9, =X¢ = 9. That is, ' is the maximal Hellinger type of 4.

We go on to consider the case ¢ > 1. Let m be a positive integer such that ¢/m < 1.
Let us choose m projections E, . . ., E,, from & with the properties dim (E,) = 1/m
and E,E;=§,,E, (then >, E, =1). That can be done as follows: Let us first look for
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projections F;,z=1, 2, . — 1, from ¢ such that dim(F;) =¢/m and F, < F, <
‘< Fp,_. I eR satisfies dlm M(E( 1)) =1i/m, then we set F; _4.¢E(A;). If no such
A exists then we go on to consider

F{ =4e¢ sup{E(}) : dim ,(E(X)) < i/m},
F} =4 inf{E()) : dim(E(N)) > i/m}.

We find quite easily that dim(F)) <i/m, dim(F;) > i/m (using, e.g., [6], App. 11,
and Ch. I, Sec. 3, Cor. of Prop. 1). In case dim(F;) = i/m, we obv1ously choose F; to
be the projection F,. In the opposite case a trivial argument gives us a projection F,
from o satisfying dim(F,)=4/m and F' < F,<F’. We define E, =44 F;,
E,=ys F,—E,, ... E,=441—E,_;. Actually, we have obtained somewhat more
than we were seeking for: the E; commute with 4; this fact will be of avail in the
proof of Theorem (2.4).

We remind the reader of the following (see [7], Sec. 11.3):

Let X & {0} be a subspace §, Xy, and let E =;.; Py. Consider those members
T of & for which TE = ET = T, and denote by T their restrictions to X. Let o/ be
the set of all such 7. Like «of, .o/ is a factor of type II,. The map T +> Ty is an
algebraic isomorphism, mapping onto o/ the set E&/E of all T € of which satisfy
TE=ET=T. Similarly, T+ Ty is an algebraic isomorphism of all of &/’ onto
&{E =def (-ﬂs) = ().

We write of; =gt A, A =get L5, We deﬁne further dim, (Fg) =g dim g (F)
for projections F from .o/ such that F E,;, and dimg,(Fg) =g 'dim o (F") for pro-
jections F' from &/’. The functions dim_, and dim are dimension functions on & i
and /], respectively, with respective ranges [0, dim d(E )] and [0,1]. If we normalize
dim,, we get a linking constant of &, which is ¢; =4¢¢ (dim(E,)/dim.(1))c =¢/m < 1
([7], Sec. 11.4).

Thus the linking constant of &, is smaller than unity and so we can apply what
we found above We let Py =4 E;. For each ¢ there is a member x; of X; such that
tr, (Tg) = (Tgxi|%), Ty esf; From the last paragraph it is clear that.
tr, = (1/m) tr «, 10 the followmg sense: If T € E, o/ E;, then

tr (1) = (1/m) tr, (Tg,) = (1/m) (T, %i|xi) = (1m) (Txi|x7) = (Tx;| %)),

where x; =4.¢ (1/4/m) x;. Due to [8], Lemma 3.3.5, there results for tr_(7) the follow-
Ing expression:

try(T) = S (Tx|x), Ted.

i=1

Using this formula we find that

p(®) = dim (E@) = 5 (E@)nfw) = 3 s, 4(), 5 BR)

Hence u' = V fx, 4~ Since S, is a lattice, u’' € S, Now, for each i, Eff = E;;
therefore %i 5’3,,,, . according to the first part of this proof; moreover

5#,;‘4— u—sjsog X0 DX,=9, 9.

Agam, then, u’ is the maximal Hellinger type of 4.
Hence the operator 4 fulfils the requirements of Theorem (2.3).
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2.2. The spectral type of a self-adjoint operator affiliated to a factor of type II,

(2.4) Theorem. Let of be a factor of type I, in a separable Hilbert space , and let
A be a self-adjoint operator in § affiliated to sf. The maximal Hellinger type ply of A 4s
homogeneous and m(u’y, A) = No.

Proof. We shall prove that m(u,, A) is larger than any integer # > 1. The homo-
geneity of u), then follows from the separability of § and the fact that if u’, v' € S,
p' <v', thenm(y' 4) <m(u’,4).

In the first place, let ¢ < 1. In that case there is a member x of § such that
tr,, = (-%|%); moreover, E¥’ = 1. These facts were mentioned in the proof of Theorem
(2.3) ; there it was further shown that x is a member of § whose Hellinger type is
maximal with respect to 4: p, 4 =

We write 4 = [ \E(d)). We denote by 4 the von Neumann algebra determined
by A: % ={A}". The symbol _ will denote the relation of commutability (of operators)
The proof:

Let us consider first the case #» = 1. We proceed by the method of indirect proof:

F. 4 is a cyclic operator (1)
F(1) o+ Z=% (2)
k. o is a factor of type 1T, (3)
FBooA . A < B (4)
F.2.@) ohA' B =B<oA (%)
F.(5) . oh AN =L (6)

F.(3).(6) .o F. (3). ~(3)

We conclude that 4 is not a cyclic operator, so m(ul,4) > 1 (see [2], Ch. X, Secs. 4.1
and 4.2). (As for the implication in (2) above, a proof can be found in [9].) (In this
proof, I is the sign of assertion, ~ the sign of negation.)

Next we consider the case » > 1. We want to prove

mpy, A) > n (Prop).
Fom(pl, 4)> 1 (1)
Fom):l<m<n .2k m(uy, 4) >m (2)

We use again the method of indirect proof:

F. (1) . (2) . ~(Prop) (3)
F.(3) .2k m(usd)=n (4)
[[6], Ch. I, Sec. 1, Prop. 4]
F(y).ye$H .. E2ep’ (5)

[(4). (5). [4], Cor. I1.3.6]

F.(3U,,..,U,). U,,..., U,are unitary members of .o/’
S=%XF,.® - ©X .. (). A|X3 . is cyclic (6)
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[[10], Sec. 75]
F:(6).TeB .ok T=p(d)= j (\) E(@dN)
= [ o) E@X) (BZ, .+ -+ + E,.)
= [ oM EZ, . E@N EZ, |38, ® -
® [ o) E . E(@)) EZ, .|%2,. ™

F: X,, X, are subspaces of § reducing 4. T, € L(¥,), T, € L(X,).
T, _A|X, T, _A|%,.>. T, ®T,_A|%X, @ A|%, (8)

F.(6).(7).(8) .2k & ={4)"=[{A4|XZ,, D"
D A|XF, 3T < [{4|XF" © - - D{4|XF, .}
=[{4]|%7 ) @ ©{4]%F,.}7
S{A|X0,. D D A4|X7,} ={4)" =2 9)

. (9) .2k (1) . ~(1)

(10)
F. (10) .o F. (Prop)

Thus m(uy, A) = N, by the principle of transfinite induction.

Let us explain how we arrived at the statement (6) above. That m(u),4) =n
means that 4 can be decomposed into a direct sum of » pairwise orthogonal cyclic
parts each of spectral type (uj,1), or, what is the same, that § can be decomposed
into a direct sum of # pairwise orthogonal subspaces $(x;) such that Px,, 4 =y (see
Sec. 1). Now p) = u, 4, and [4], Cor. I1.3.6, says that each of the x; can be attained
from x by means of some unitary operator from &/’

In the second place, let ¢ > 1. As in the proof of Theorem (2.3), from the sixth
paragraph onwards, we start by choosing an integer m > 0 such that ¢/m <1. We
then let E,, . . ., E, be m projections from ., all commuting with A4, satisfying
dim(E;) =1/mand E,E ;= §,;E,. For each 1, A| X, is a self-adjoint operator affiliated
to the factor &7 ; the latter is a factor of type /I, whose linking constant is smaller
than 1. The maximal Hellinger type u, .  of A; =g A|X; is homogeneous and
M(pxa,, Ai) = Wo. Notice that w, ,’'=py, 4 (since E; reduces A), and that
My, 4", A) = Vo (since m(uy, 4, A4;) = No) (the remarks in Sec. 1 may convince the
reader of that; otherwise he may consult [2], Ch. X, Sec. 4.2). ©,, as wellas S, 1s
a so-called admissible (sub-)lattice (of &), i.e., it is o-closed and contains with any
member p' also S, =4 {v': v e v <pu} ([2], Ch. X, Sec. 2.3). Hence
Guxi'A‘. ={pu,.4, % € X}, for each 7. Let now 747, and let p' <p,, 4/, p' < y.xJ,Aj'.
Wg have p' =, 4/, p' = B4, for somev, € X, v;€X; Thusv,=v;=0,50 p’=0".
This we express by saying that Px, 4, Mx,a4, are independent Hellinger types ( 2],
Ch. X, Sec. 1.4). From [2], Ch. X, Sec. 4.2, we get : if (u;’) is a finite or countable sequence
of pairwise independent Hellinger types, and ' =V p,’, then m(u’, 4) = min m(u,’, 4).

4

1
In our case, therefore, m(ul, 4) = No, so u/ is again homogeneous.

(2.5) Theorem. Let A be a self-adjoint operator in a separable Hilbert space $), of
spectral type (uy, No). There is in § a factor o/ of type 11, such that Ansd.
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Proof. This follows from Theorems (2.3) and (2.4) : Choose any factor 2/, of type
I1, in . Affiliated to &/, is a self-adjoint operator A; whose maximal Hellinger type
is uj, according to Theorem (2.3). Using Theorem (2.4) we infer that u/ is homo-
geneous and that m(u/, 4,) = No. Hence (see Sec. 1) 4 and A, are unitarily equivalent:
A = UA,; U* for some unitary operator U, and &f =4, U/, U* is a factor of type 11,
with Azn.e.

3. Affiliation of Self-Adjoint Operators to Factors of Type II  in a Separable
Hilbert Space

3.1. The maximal Hellinger type of a self-adjoint operator affiliated to a factor of type 11,

(3.1) Theorem. Let o be a factor of type I in a separable Hilbert space . Let p’
be a member of . A self-adjoint operator exists which is affiliated to sf and whose maximal
Hellinger type is u'.

Proof. From [4], Lemma II.1.8, we see that the identity operator 1 in §, being
an infinite projection from 7, can be written as

1=3> E,
i=1
where the projections E,; from &/ are finite, pairwise orthogonal, and pairwise
equivalent.

For each 7, consider X; =4 E;$. On referring to [4], Lemma II.2.23, we learn
that &f; =4¢ &g, 1s a factor of type I, in X;.
Let p be any member of u'. We represent R as the union of closed intervals I;:

R=) I,

i=1
and write u as
B=2 M
i=1
where
p(d) ifdci,
0 iféNI;=¢

From Theorem (2.3) we know that for each ¢ a self-adjoint operator 4, exists
which is affiliated to «/; and whose maximal Hellinger type is y;’. From [2], Ch. X,
Sec. 3.2, we get: The direct sum A4 of finitely or countably many self-adjoint operators
A, of maximal Hellinger types u,’ is again an operator of maximal Hellinger type, and
pq =V u;. Thus in our case

i

i(8) =qer , 6eA(R).

Se 4,
i=1

is a self-adjoint operator, affiliated to &7, of maximal Hellinger type

#il-(3w))

’

o=

T <8



380 @istein Bjernestad H.P. A

3.2. The spectral type of a self-adjoint operator affiliated to a factor fo type I1,,

(3.2) Theorem. Let o be a factor of type I in a separable Hilbert space O, and let
A be a self-adjoint operator in § affiliated to of. The maximal Hellinger type py of A 1s
homogeneous and m(uy, A) = No.

Proof. We write again 1 in the form

1] T Z Ei’
i=1
the projections E,; from & being finite, pairwise orthogonal, and pairwise equivalent.
We further require that the E; should reduce A. That can always be obtained: cf. the
proof of Theorem (2.3). Writing 4; =4, 4|¥; we have the decomposition

A = i © Ai

i=1

of 4, where for each ¢ 4, is affiliated to the factor &/; =4 o/, of type I1;.
To the above decomposition of A there corresponds the decomposition

Ha= t\=l1 Ha,;

of py, where for each ¢ u), is the maximal Hellinger type of 4;. Referring to the proof
of Theorem (2.4), we realize that the u/ are pairwise independent.

From Theorem (2.4) we learn that each pj is homogeneous (with respect to 4,),
and that m(uj,, 4;) = No. From the last paragraph of the proof of Theorem (2.4) we
see that m(uj, A) = No, and hence that u/, is homogeneous (with respect to 4).

(3.3) Theorem. Let A be a self-adjoint operator in a separable Hilbert space §, of
spectral type (w4, o). There is in § a factor o of type 11 such that Anst.

Proof. Cf. the proof of Theorem (2.5).

4. With a View to Applications

We have solved above the problem of affiliation of self-adjoint operators to
factors of type I in a separable Hilbert space. However, we had something more in
mind, namely, by means of the trace-functions tr_, on the trace classes #;(&/) of
suitably chosen factors of type I, to extend the formal apparatus of quantum
mechanics to situations formerly inaccessible to direct numerical treatment. It is well
known how, traditionally, states (of physical systems) are connected with the trace
function on the trace class of #($). It would seem desirable to be able to cope with
situations falling outside the traditional framework, such as when the Hamiltonian
of a large thermodynamic system does not have a pure point spectrum (see also the
Introduction). Now if o is a factor of type I, and A = | AE(dA) € €,(%), then

tr (4) = j Adim_, (E(dN)).

Clearly, in order to use this formula for explicit calculations, we should need to know
the function A - dim ,(E(})). Let us consider the following problem:



Vol. 46,1973 On Factors of Type II and Quantum Mechanics 381

Let a self-adjoint operator B in § be given. The maximal Hellinger type up of B
should have the multiplicity &, Can we construct a function f on R such that
A = [ AE(d]), with

dim(EN) = f(), AeR,

is unitarily equivalent to B?

Theorems (2.3) and (2.4) give a positive answer to our question in the case I],:
we choose any function f,, where u € u3 and u(R) = 1. Theorems (3.1) and (3.2) imply
that the answer would be ‘yes’ also in the case I7_.

In this section we shall formulate our results (on affiliation) in terms of functions
rather than in terms of (maximal) Hellinger types. What freedom do we have regarding
the choice of the function f (see above)? We shall be particularly interested in the
possibilities of choosing f to be unbounded (i.e., in the case I7 ).

4.1. Preliminary results

(4.1) Lemma. Let of be a factor of type II_ in a separable Hilbert space §. A self-
adjoint operator A = [AE(dA) exists such that Anef and

EMN) =0, A<0,
dim_(E()) =A, A 0.

Proof. We set down again the decomposition of the identity operator 1 in $ which
appeared in the proof of Theorem (3.1):

1]= Z Ei’
i=1

and we impose the further condition dim_,(E,) = 1, where dim_, is (for the moment)
any dimension function on the set of projections from &#. Moreover, we represent R*
as the union of closed intervals I; =4 [z — 1,4]:

R+ == G Il'
i=1

In the remainder of this proof we shall make use of the notation introduced in the
proof of Theorem (2.3). We see that the factors &/, are of type 11, ; due to the conven-
tion dim,(E,;) =1, made above, the dimension functions dim,, are all normalized.

According to Lemma (2.1) there exists a self-adjoint operator [§ AEE(dA),
affiliated to o/;, determined by the requirement

dim, (E® ) =A, Ae[0,1].

Here the E®(}) should be thought of as projections from &/, with E®(1) = E,.
Let

E(l)(A), Ael,,
s n—1
TS E,4+E®WA—n+1), Ael,n=2,3,...

i=1

EM)
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Then

dim(E(Q)) =7 — 1+ dim(E™ (A — 2z + 1))
=n—1+dim, (Ef?(A—n + 1))
=n—14+A-n+1
= A

For A< 0let E(A) = 4. 0.
It is not difficult to verify that E(-) is a spectral family. The operator

A =g [ NE@N)

satisfies our lemma.
As Lemma (4.1) is an analogue of Lemma (2.1) for the case I1_, so we propose the
following as an analogue of Lemma (2.2):

(4.2) Lemma. Let o/ be a factor of type 11 in a separable Hilbert space $. Let f be
a real-valued function on R which is increasing (not necessarily strictly so), continuous on
the vight, which satisfies f(—w) =0, and is finite everywhere. A self-adjoint operator
A = [ AE(d])) exists such that Ansd and dim,(E(X) = f(A), Ae R.

Proof. Cf. the proof of Lemma (2.2).

4.2.. Absolute continuity as a relation between functions

Our aim in this section is to ascertain what freedom we have with respect to the
choice of the function f, given that the maximal Hellinger type of the operator
A =[AE(@dA) (with dim (E(A)) = f(A), A€ R) should be equal to up (see the intro-
ductory paragraphs of this section). We shall solve that problem in terms of a concept
of absolute continuity between functions, applied to the functions f and f, (u € up).
We start by defining the concept:

(4.3) Definition. Let f and g be two real-valued functions on R. We shall say that
g is absolutely continuous with respect to f on R if, given € > 0, there is a 8 > 0 such that
for any finite sequence ([a;,8,]) of disjoint intervals of R with X|f(b;) — f(a;)| <38,
one has 3, |g(b,) —g(a,)| < e. Similarly if ‘R’ is replaced by ‘a closed interval of R’.

This is an obvious generalization of the (Vitali) concept of an absolutely con-
tinuous function (see [3], p. 192). We have the following lemma, easily obtained on
the model of [3], pp. 192-93:

(4.4) Lemma. Let f and g be two real-valued functions on R which are increasing
(not necessarily strictly so), continuous on the right, and finite everywhere. Let pp and p,
be the corresponding Borel-Stieltjes measures. Then u, is absolutely continuous with
respect to u, 1f and only if g is absolutely continuous with respect to f.

4.3. Affiliation of self-adjoint operators to factors of type II in a separable Hilbert space:
another formulation

(4.5) Theorem. Let A be the self-adjoint operator of Lemma (2.2) (in the case 11,)
or Lemma (4.2) (in the case 11.), and let B be a self-adjoint operator in § of spectral type
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(15, Wo)- Let p be a member of uy. A and B are unitarily equivalent if and only if f and f,
are absolutely continuous with respect to each other on every closed interval of R.

Proof. We shall use the notation of Subsection 4.1. For simplicity we shall assume
that f is strictly increasing. Moreover, we shall carry out the proof only for the case
that fis unbounded. Let us write

Ji=aee [f7(E = 1), f71(6)] (f~*(0) meaning —w).

We let # be any integer > 0. If F'(+) is the spectral family of the operator of
Lemma (4.1), then the spectral family E(-) of 4 is given by
F'D(Q), Aely,

EQ) =F'(f(A) = {El E;+ F®O(fXN—-n+1), 2e],n=23,..

Consider
_ ( f AE(d)\))E"= j AE () = f AEL™(F(@d) — n+ 1)
= [ ABgP(f@N —n+1= [ A @n,

where

FEN) =gt FEP(fN) —n+1), Xe ],
Clearly, |
dim,,_ (F}:")(A)) = dim_d"(F,f_;(n")(f(A) —n+1l)=fA)—-—n+1, Ae],

where dim, (F{”(})) increases from 0 to 1 as A runs through J,. The reader will under-
stand that d1m (FED(+)) determines the maximal Hellinger type of Ag (cf. the
proofs of Lemma (2 2) and Theorem (2.3)).

Consider next the restriction f( of f, to J,. The function f{™ —f,(f'(n —1))
determines in an obvious way the maximal Hellinger type of B, ).

With the results of Sec. 2 in mind we realize that A; and BF( s,y are unitarily
equivalent if and only if the functions dim, (F{”(-)) and f (m'are absolutely continuous
with respect to each other. Only a trivial step now remains in proving this theorem,
and we omit it.

We have assumed everywhere spectral families to be defined on all of R; accord-
ingly, in Lemmas (2.2) and (4.2) we have brought in functions f defined on all of R.
Sometimes that is unpractical ; the reader will understand how to modify the wording
of these lemmas in such cases.

5. An Example

We give here an example of affiliation of a self-adjoint operator 4 in a separable
Hilbert space $ to a factor of type II_ in .
Let $ = L,(R3), and let 4 be the maximal multiplication operator defined by

(Af) ) =aer [A]2f )



384 @istein Bjgrnestad H.P. A.

(A is (proportional to) the Fourier transform of the Hamiltonian of a free particle; see
[11], Ch. V, Sec. 5, N° 2). Due to the spherical symmetry of the situation we introduce

polar coordinates (7,6, ¢): by 4 we shall mean the maximal multiplication operator in
$ defined by

(Af) (7, 6,9) =7 f(r,6, ).

Let us write § as

L,(R*,72dr) ® L,([0,7] x [0, 27],d82),
or, for short,

H =9 @ H[0,¢].

Clearly,
4= A5 ® Tg6,01
With

Agin= [ MF@X), (FO)#) () = x0, (0 #(2),
we have

4= J- X(F(dA) @ 1g16,01)-
0

We shall show that the multiplicity of the maximal Hellinger type u of 4 is §o.
To that end we write $[0,¢] as

$10,¢1= >° $[0,¢l,,

where the $[0,¢]; are all one-dimensional; we shall take them to be determined by
the members of a basis (¢;) of $[8, ¢]. Then A can be written as

A= [ 2Fa@) o 2.2 100,01
, -
=>e J‘ A2(F(d)) ® 1500, a]g)
i=1 ¢
We write

A =aer | R(FE@) @ V500 01).

0

First, it is trivial that the 4, are all of the same maximal Hellinger type, and that
the latter is equal to u.

Secondly, for each 7, 4, is a cyclic operator: that we shall prove by exhibiting a
member #; of H[r] ® H(0,¢];, the subspace in which A; acts, such that
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X2 =5[] ® H[0, pl;; here, of course, B, ={4,}". We consider
Ui =ger ¥ @ ¢,

where
W) =gep ; >0, re[i—1,1],

and

(i) = (v @ eyfv ® ) = (v|v)-1 = j v(r)27r2dy < .
0

That «, fulfils what is required of it comes from the fact that the characteristic functions
form a dense set in §(7) = L,(R*,72dr) (see [10], Sec. 69). In fact we can take for v any
function on R* which differs from 0 almost everywhere.

Thirdly, the A, are seen to be pairwise orthogonal parts of 4.

It follows that (4,) is an orthogonal family of Hellinger type u/, (with respect to
A). Clearly, it is a maximal family, and we have m(uj, 4) = No.

We can now invoke Theorem (4.5). Is there any obvious choice of the function f?
Clearly not a priori; the choice has to be dictated by physical considerations. We
shall not go into these matters here, but merely make the choice

f) =

(in the context of the elementary statistical mechanics of the ideal gas it would be
possible to relate df(A) to the number of one-particle states for which the norm of the
momentum has a value in the interval dA afound A).

We now have to see whether f and f,, with u € ), are absolutely continuous
with respect to each other. (The relation of absolute continuity is a transitive one;
hence it is immaterial which u € u/, we answer the question for.) The reader will
understand from the proof of Theorem (4.5) that if we can exhibit a sequence of

pairwise disjoint closed intervals J; of R, with U Ji = R*, such that the restrictions
i=1
f® and f of fand f,, respectively, to each J; are absolutely continuous with respect

to each other, then our question would thereby be answered in the affirmative. To that
we now turn.
v o]
We let the J; =[a,_4,4,],7=1, 2, ..., be intervals of R* with | J, = R*. Clearly,
i=1

if for each ¢ the derivatives of /® and f{ were proportional functions, then f? and
P would be absolutely continuous with respect to each other. Tentatively, therefore,
we set down

FON) =B, X+,
where B; and vy, are (real) constants. This entails
Braiy+yi=biy
Biai+y,=b,

where we further require that 4, , <; and that b,z 1. Let us choose a; =4« Vi,
b; =ger ¢/(¢ + 1). It follows that B; = 1/i(z + 1), y, = (¢ — 1)/ (¢ + 1).
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Let us now show that there exists a function #(r, 8, p) = v(r) - 1 compatible with f,:
A
£ = ([0, X)) = (FQ) ) = [ o(0) 272 dr- 4.
0
It is not difficult to see that v¥=; v|J, has to be constant. Thus, for A€ J;,
1 i—1 - f
£ = Nt f(Vio1) + j [vD|2 72 dr -4

(7 + 1 41
1t +1) 1+ -

. . e
Aa_*_z_l:i—_l_{_‘iﬂlvm’z(%__t 1);

iG+1)" il i 3

T P G- D 2 foopepe - -1y,

3

F I ——
dmri(i + 1)

For definiteness we let 9=, v/ [3/4mi(z + 1)]. Evidently, v is different from 0 almost
everywhere. This ensures that $(v) = $H[r]. From [2], Ch X, Sec. 1.4, we learn that
for a cyclic operator T, H(v,) = H(v,) if and only if oy, T = Py, T Now A 572 isa cyclic
operator, So u, 4. ." = ,uAﬁm But u, “‘5[] = tu.a’s and ,u,Ab“ P> SO py 4" = py, and
we are through: u € uj.

Let us choose any factor o  of type I in . Affiliated to &/, there is a self-
adjoint operator A, = [ AE,(d}), unitarily equivalent to A, characterized by
dim, (E,(A) =f(A), A e R*. We have A = UA, U* for some unitary operator U. It
follows that o =4, U, U* is a factor of type I with Axn.ef. The spectral family of
A is E(-) =4t UE,(-) U*. From [7], Lemma 8.5.1, we see that we are justified in
writing dim(E(d)) = dim, (E,(})), A€ R*. (With our choice of the function f, we
have, e.g., e™ € 4,().)

6. Concluding Remarks

We have here laid the groundwork for a certain line of application of factors of
type I in quantum mechanics. There are unsatisfactory points connected with our
program, such as the existence of (uncountably many) non-isomorphic factors of type
II, and of type I1_. We should not know how to justify a particular choice. On the
other hand, that problem may not be a serious one: after all, ours is a technical problem,
not a fundamental theoretical one, and a pragmatic approach may be admissible; e.g.,
we might concentrate on hyperfinite factors, with their convenient properties (see,
e.g., [4], Ch. II, Sec. 6; [6], Ch. III, Sec. 7; and [12]).

The physical interpretation of the trace function on factors of type II presents
some difficulties. It seems to be a question of exploiting the following circumstance:
According to Murray and von Neumann the trace function on II, factors generalizes
those on I, factors (n finite); similarly, the trace function on I7_ factors generalizes
the one on I factors: if o(4) is the spectrum of an operator 4 affiliated to a factor of
type 11, then it makes sense to talk of ‘eigenvalue n® A of 4’, for all A € o(4) (cf. [7],
‘the Introduction and Ch. XV).
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Apart from the program sketched in the Introduction, another program is sug-
gested by recent work on translation invariance in the one-electron theory of solids;
it is found that the algebra of constants of motion is a factor of type IT in some
interesting cases [13].

We expect to come back to applications in a sequel to this study.
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