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On Factors of Type II and Quantum Mechanics

by 0istein BJ0rnestad1)
Department of Mathematics, University of Western Australia, Perth, Western Australia

(22. III. 73)

Abstract. It is shown that a self-adjoint operator in a separable Hilbert space can be affiliated
to a factor of type 77 if and only if 'its spectrum is of infinite multiplicity'. This result is then put
on a form suitable for application, and an example is given.

Introduction

Von Neumann algebras have proved themselves a powerful tool in the study of
quantum systems of a large number of degrees of freedom. Due to the generality of
the notion of a von Neumann algebra, it has mainly been employed at the fundamental,
structural, level. In this paper we propose to look for possibilities of using this tool for
actual calculations.

N.M. Hugenholtz is one of those who have suggested that in the physics of quantum
systems of a large number of degrees of freedom, the system be considered infinite from
the beginning, instead of only in the end, by way of a limit process. In [1], p. 244, we
find this passage : Tn standard statistical mechanics a state of the system is determined
by a density operator p which in turn determines a positive linear form p(A) Vr(pA).
The density operator p has no limit for an infinite system but the positive linear form
p(A) is well defined in that limit. Therefore, to determine a state of an infinite system
one cannot use a density matrix p but must simply give the positive linear form
p(A) ; .' We shall here try and follow up Hugenholtz's program (as we construe it)
in relation to matters technical: Would it be possible, by changing the notions of
trace function and density operator, to retain p in a tractable form in the case of an
infinite system? This line of inquiry is suggested by the observation that factors of
type II do have a trace function: if A J XE(dX) belongs to such a factor se', then
tr^(A) J" Xdim^(E(dX)), where dirn^ is a dimension function (unique to within a
constant factor) on se. As a first step in our inquiry we shall ask what kind of self-
adjoint operators ('observables') can belong to (more generally: can be affiliated to)
factors of type II.

*) This paper forms the substance of a thesis presented to the University of Geneva in partial
fulfilment of the requirements for the degree of docteur es sciences physiques (Thèse n° 1582). This
work was performed under the supervision of Professor C. Piron, and was supported by the
Norwegian Research Council for Science and the Humanities and by the Swiss National Foundation
for Scientific Research.



372 0istein Bjornestad H. P. A.

1. Preliminary
Our tool in dealing with the first step of our inquiry (as outlined in the Introduction)

will be the theory of unitary invariants (of normal operators) due to A. I. Plesner and
V. A. Rohlin [2]. With regard to our aim, we restrict this summary to the case of self-
adjoint operators in a separable Hilbert space.

Let § be a separable Hilbert space, A a self-adjoint operator in §. By 'subspace
(of §)' we shall mean 'closed linear subspace (of §)'.

Let «e$. The smallest subspace of § which contains u and reduces A is called
the cyclic subspace (with respect to A) determined by u and is written §(«). A subspace
X of § is called cyclic (with respect to A) if a u e § exists such that X §>(u). The operator
A is termed cyclic if § itself is a cyclic subspace (with respect to A).

We denote by <%(U) the Borel field of the real line, by 9JÏ the set of finite positive
measures on <%(U). If p,v e iXH and p is absolutely continuous with respect to v (see,

e.g., [3], p. 190), then we write p < v. The relation < is a quasi-ordering on 9K, defining
in the usual manner an equivalence relation ~ on 931, a quotient set S =def 9JÎ/~, and
a partial ordering < on S. In fact, S is a a-complete lattice. The members of S are
called Hellinger types ; we shall denote by p the Hellinger type to which peiDl belongs.
We have pj v pj (px + p2)' (with a generalization to the countable case).

Consider A j XE(dX). For »E§we denote by pv A the measure 8 h» (E(8)v\v)
on âS(U). We get a subset <ZA =def {pv A' : v e §} of <3, also a o--complete lattice. <ZA may
have a largest member, say pu A' : in that case A is said to be of maximal Hellinger type

pj =def pu A (since <SA is a lattice, a maximal member is necessarily its (unique)
largest member). In fact, in a separable Hilbert space (which is the case of interest to
us), every self-adjoint operator is of maximal Hellinger type.

If a subspace X of § reduces A, then A13E is called the part of A in X. Parts of A
in mutually orthogonal subspaces of § are called orthogonal parts of A. An orthogonal
sequence of Hellinger type p (with respect to A) is a sequence (At)ieI of pairwise orthogonal

cyclic parts of A, all of maximal Hellinger type p The set of such sequences can
be partially ordered: (A,)ieI will be considered smaller than (Ak)keK if the latter (map)
is an extension of the former. If (At)ieI is a maximal member of this partially ordered
set (maximal members do exist), then the cardinalm(p A) oil is uniquely determined
by A ; m(p,A) is called the multiplicity of p (with respect to A).

A non-zero member p of <ZA is called homogeneous (with respect to A) if for each
non-zero v < p v e S, one has m(v',A) m(p',A) (necessarily, m(p',A) < m(v',A)).
Any self-adjoint operator A of homogeneous maximal Hellinger type p'A of
multiplicity m(p'A,A) can be decomposed into a direct sum of m(p',A) cyclic parts, each
of maximal Hellinger type p'A.

The ordered pair (p',m(p'A, A)) is called the spectral type of the operator A of
homogeneous maximal Hellinger type. Two self-adjoint operators of homogeneous
maximal Hellinger type are unitarily equivalent if and only if they have equal spectral
types. (Operators not of homogeneous maximal Hellinger type will not concern us
here.)

2. Affiliation of a Self-Adjoint Operator to Factors of Type IIt in a Separable
Hilbert Space

Let § be a separable Hilbert space. If X is a subspace of §, we shall sometimes
write Pj for the (orthogonal) projection onto X; more often, however, we shall use the
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letters X and E, equipped with identical markers, for a subspace and the projection
onto it, respectively.

If A j" XE(dX) is a self-adjoint operator in 9), then A is said to be affiliated to a
von Neumann algebra se, written Arise, if each E(X) e se.

If se is a factor of type II, in §, then dim^ will denote the normalized dimension
function on the set of projections from se.

2.1. The maximal Hellinger type of a self-adjoint operator affiliated to a factor of type II\
(2.1) Lemma. Let se be a factor of type II-, in a separable Hilbert space §. A self-

adjoint operator A J XE(dX) exists such that A-qsé and dim^(F(À)) À, À e [0,1].

We shall omit the proof of this result. However, the reader would have no difficulty
in reconstructing it on the basis of the following remarks and suggestions :

1° If E e se is a projection, then E is the sum of two projections E', E" e sä such
that E'E" 0 andE' ~E".

2° Consider the numbers 0, 1, and furthermore all numbers (2j — 1)2"'', where j,k
are integers > 0, and where 1 <y < 2*1"1. Arrange these numbers in succession: 0, 1,

(2-1-1)2-1 (2-1-1)2"*, (2-2fc-1-l)2-*, .;let (r„) denote the sequence
so obtained, with r0 def 0 (the range of (rn) consists of all numbers in [0,1] which are
of the iormj-2~k, where j,k are integers > 0 and y < 2k). By the principle of transfinite
induction one obtains, making repeated use of 1°, by recursive definition a sequence
(E(rn)) of projections from se such that dim^(E(rJ) rn for n 0, 1,-. and such
that rni < r„2 entails E(rni) < E(r„j.

3° For any number À e [0,1] there exists a sequence (ct)), where c^ equals 0 or 1,

such that X 2n c^2~n. If A is different from all j-2~k, where j,k are integers, j > 0,
k > 0, then the sequence (c*) is unique ; in the opposite case there are precisely two
sequences of the kind mentioned : one of them has no non-zero members past a certain
index n, whereas the other one has non-zero members beyond any index n ; it seems
preferable to argue consistently in terms of the second possibility. For each À e [0,1]
one has À 2n=o o\\2-". The sequence (e\)), e\ def 2n=o cn^~" for ^> 0, 1, is an
increasing sequence of members of (rn), converging to A. To each p, therefore, a
projection E(e§ from se exists such that dim^(E(e^)) e\. One obtains a projection

F(A) Estf, the strong limit of (E(ep))p, with the property dimjaf(£(A)) =A ([4],
Cor. II. 1.23, gives that result). In fact, the family E( ¦ of projections from sä, extended
to R by F(A) 0 for A < 0, F(A) 11 for A > 1, is a spectral family, and A =def j XE(dX)
is an operator fulfilling the requirements of Lemma (2.1).

We obtain readily the following more general result :

(2.2) Lemma. Let se be a factor of type II\ in a separable Hilbert space §. Letf be a
real-valued function on U which is increasing (not necessarily strictly so), continuous on
the right, and which satisfies f (—oo) 0,/(oo) 1. A self-adjoint operator A J AF(^A)
exists such that Avsä and dim^(E(X)) =f(X), AeR.

The proof is not difficult : Let J XF(dX) he the operator of Lemma (2.1). We define

E(X) =def F(f(X)), AeR.

E(-) is a spectral family, and A =def J XE(dX) satisfies Lemma 2.2).
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We are now in a position to make a connexion with the subject of Section 1 :

Reference to [5], pp. 141^2, shows that any function/of the kind mentioned in
Lemma (2.2) determines a positive measure pf on &&(U), (called) the Borel-Stieltjes
measure in R determined by/. To any such/, then, there corresponds a member of S.

On the other hand, let p e <S he given, and let psp he so chosen that p(U) 1.
We set

/•(A)-«/*([-«. A]).

The (real-valued) function/, is increasing, it satisfies/H(—°°) 0,/„(oo) 1, and it is
continuous on the right (at every point of R) : Remembering that in a metric space,
like R, sequential convergence implies convergence proper, we select a strictly
decreasing sequence (rn) which converges to (an arbitrary point) A e R. We find that

1 -/„(A) p(]X, =o]) mI U ]r„, »] p(]r0, oo] U ]rx,r0] U ]r2,rx] U

MOo. °°]) + mOi.'o]) + H-(]r2,ri]) + ¦¦¦ Hm p(]rn, oo]),
n

whence

/„(A) limp([-co,rn]) limfu(rn),

so/H is continuous on the right.
These considerations allow us to put Lemma (2.2) on this form :

(2.2)' Lemma. Let sä be a factor of type II\ in a separable Hilbert space §. Let p
be any member of <5, pa representative of p such that p(U) 1. A self-adjoint operator
A j XE(dX) exists such that A-qsä and dim^(F(S)) p(8), 8 e âS(U).

The following is the main result of this subsection :

(2.3) Theorem. Let sä be a factor of type IIx in a separable Hilbert space §>. Let p'
be any member of <B. A self-adjoint operator exists which is affiliated to sä and whose
maximal Hellinger type is p

Proof. For the proof we shall rely on certain properties of Hellinger types, as well
as on a certain fact concerning the trace function tr^ on sä. Before stating the latter,
we shall take note of some facts regarding the dimension functions on sä and sä' (see

[4], Th. II.2.7) :

Let D and D' be the ranges of dim^ and dim^,, respectively, and let £>0 and
D0 be those of the functions Ef h->- dim^(E^') and E^ h» dim^-(Fj'), respectively,
x ranging over § (where E*' is the projection onto Xf'', the subspace determined
by {A'x: A' e sä'}; similarly for E^). The dimension functions dim^ and dim^,
should be normalized, when possible. Now let

œ(dim^(F^'))=defdim^,(£f).

In fact,

9(X) =cX, Xe D0,
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where c is a strictly positive constant, the linking constant of sä (see [A], Def. II.2.8).
Moreover, D0 [0, A0], î>; [0,cAo], for some A0 e [0,1], and £0 T> or I>; 3V (or
both). If sä' is a factor of type IIX, then dirn^. cannot be normalized. In that case we
may, and shall, choose c 1, and we have 350 35 (=[0,1]). If on the other hand sä'
is a factor of type IIX, then 350 35, corresponding to c < 1, or 35„ 35', corresponding
to c> 1.

We start by assuming that c < 1. In that case there exists a member % of § such
that for all T e sä we have

*AT) (Tx\x)

(see [4], Cor. II.3.4).
Now let us choose p e p such that p(U) 1, and let us denote by A J" AF(<2A)

the operator of Lemma (2.2)'. We have

Px,a(8) (E(8)x\x) tr„(£(8)) =dim^(F(S)) /x(S), S e <2(U),

whence px A p So we know that p e <ZA. We shall show that p' is the largest
member of <ZA, i.e., the maximal Hellinger type of A. To that effect we compare an
arbitrarily chosen py A y e §, with p This we can do because of the following circumstance:

by the formula tr^(T) (Tx\x) we find

tTj(Ef (Efx\x) (x\x) (U[x) tr„(1) 1,

i.e.,Ef t.
Vet T he any member of sä'. The operator T can be written as

T etxUx + etx Ux* + iet2 U2 + iet2 U$,

where Ux, U2 are unitary operators from sä', and where ocx, et2 are real numbers (see
[6], Ch. I, Sec. 1, Prop. 3). Thus

Ptx,a(8) (E(8)Tx\Tx)= 2 etlJ(E(8)Vtx\VJx), Se^(R),
1,3=1

where the V, are unitary operators from sä' and the etu are numbers. Let us consider
the (arbitrary) term

*u(E(8) Vix\Vjx) etu(E(8)x\V* V,x).
Now,

p(8)=0.=>. \\E(8)x\\ 0 :^: E(8)x 0 .:=>. (E(8)x\Vt*Vjx) 0.

The join V( Pt of members p/ of <5 being (2; p,)' (provided 2i P-tW < °°. which we
can always obtain by suitably choosing the pj) (see [2], Th. 10.2.1), we see that pTx,Â
is the join of a certain number of members of <5A, all of which are smaller than px A p.
This means that all Tx, Te sä', are members of §>,,-= def {v: v e §>.p„tA < p}.
According to [2], Th. 10.3.3, §„, is a subspace of §; hence linear combinations of
members Tx of §, Te sä', as well as limits of sequences of such, all belong to §„-, so
§}ui Xf §). That is, p is the maximal Hellinger type of A.

We go on to consider the case c> 1. Let m he a positive integer such that cjm < 1.

Let us choose m projections Ex, Em from sä with the properties dim^(F() Ijm
and E.Ej Si7Fj (then 2i E, 1). That can be done as follows: Let us first look for
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projections Ft,i 1,2, ...,m— 1, from sä such that dirn^F,) ijm and FX<F2<
• • • < Fm_x. If Aj e R satisfies dim sä(E(Xj)) ijm, then we set F, _defF(Aj). If no such
A, exists, then we go on to consider

F! =def sup{F(A) :dim^(F(A)) < ijm),
Ft =def inf{F(A) : dimJ,(E(X)) > ijm).

We find quite easily that dim^(F^) <i/m, dim^(Fj') >ijm (using, e.g., [6], App. II,
and Ch. I, Sec. 3, Cor. of Prop. 1). In case dim^(F',) ijm, we obviously choose F', to
be the projection F,. In the opposite case a trivial argument gives us a projection F,
from sä satisfying dim^(Ff) ijm and F' < F,< F". We define E, =def Fx,
Ez =def P2 — Ex, Em =dcf H — Em_x. Actually, we have obtained somewhat more
than we were seeking for: the E} commute with A ; this fact will be of avail in the
proof of Theorem (2.4).

We remind the reader of the following (see [7], Sec. 11.3) :

Let X A {0} be a subspace §, Xrjsä, and let E =def Ps. Consider those members
T ol sä for which TE ET T, and denote by TE their restrictions to X. Vet säE he
the set of all such TE. Like sä, säE is a factor of type IIx. The map T h-> TE is an
algebraic isomorphism, mapping onto säE the set EsäE of all T e sä which satisfy
TE ET T. Similarly, Tv^-TE is an algebraic isomorphism of all of sä' onto
Sä'E=Ant(säE)'=(sä')E.

We write se\ =def säEl, sä[ =def sä'Ei. We define further dim^F^) =def dim^(F)
for projections F from sä such that F<Ff, and dim^,(F'Et) =def dim^F') for
projections F' from sä'. The functions dim^( and dim^(- are dimension functions on sät
and sä'i, respectively, with respective ranges [0,dimja/(F,)] and [0,1]. If we normalize
dimJJ,i we get a linking constant of se\ which is c, =def (dirn^(Fj)/dim^,(1l))c cjm < 1

([7], Sec. 11.4).
Thus the linking constant of sät is smaller than unity and so we can apply what

we found above. We let PXt =def E,. For each i there is a member x\ of Xt such that
tr^((TEt) (TEx'i\x^j, TEiesäv From the last paragraph it is clear that,
tr^ (l/w)trrf in the following sense: If F £ ErsäE,, then

tx^T) (Ijm) tr^(TEl) (Ijm) (TEix',\x',) (Ijm) (Tx't\x't) (Txt\x,),

where xt =def (ljy/m)x,. Due to [8], Lemma 3.3.5, there results for tr^(F) the following

expression :

m

tr^(F)=2 (T*t\*ù. Te sä.
t=i

Using this formula we find that
m m

p(8) dimJE(8)) 2 (E(8) xt\Xl) 2 P**„a(S), 8 e 0(R).
i=i i-i

m
Hence p V pXuÂ- Since <ZA is a lattice, p'e<BA. Now, for each i, EX\=E,;

lrrt\
therefore Xt -Ôuxt,A' according to the first part of this proof; moreover

*t S«„„x' s *>»¦ s S. so § Xi © • • • © *m <= 5>u- s §>¦

Again, then, p is the maximal Hellinger type of A.
Hence the operator A fulfils the requirements of Theorem (2.3).
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2.2. The spectral type of a self-adjoint operator affiliated to a factor of type II\
(2.4) Theorem. Let sä be a factor of type II\ in a separable Hilbert space §, and let

A be a self-adjoint operator in § affiliated to sä. The maximal Hellinger type p'A of A is
homogeneous and m(p'A,A) J$0-

Proof. We shall prove that m(p'A,A) is larger than any integer n > 1. The
homogeneity of p'A then follows from the separability of § and the fact that if p v e <ZA,

p < v then m(v'A) < vn(p',A).

In the first place, let c < 1. In that case there is a member x of § such that
tr^ (-x\x) ; moreover, Ef 1. These facts were mentioned in the proof of Theorem
(2.3) ; there it was further shown that x is a member of § whose Hellinger type is
maximal with respect to A : px A p'A.

We write A j" XE(dX). We denote by 08 the von Neumann algebra determined
by A : 3S {A}". The symbol w will denote the relation of commutability (of operators)
The proof :

Let us consider first the case n 1. We proceed by the method of indirect proof:

h A is a cyclic operator (1)

K(l).3h«-«' (2)

h sä is a factor of type II\ (3)

K m cz sä sä' c &' (4)

K(2).(4).3K/cJ' «crf (5)

h (5) => K sä H sä' sä' (6)

h (3).(6).= h(3).~(3)
We conclude that A is not a cyclic operator, so m(p'A,A) > 1 (see [2], Ch. X, Sees. 4.1
and 4.2). (As for the implication in (2) above, a proof can be found in [9].) (In this
proof, 1- is the sign of assertion, ~ the sign of negation.)

Next we consider the case n > 1. We want to prove

m(p'A,A)>n (Prop).

r.m(p'A,A)>l (1)

V. (m): 1 < m< n .zz> h m(p'A, A) >m (2)

We use again the method of indirect proof :

h (1) (2) -(Prop) (3)

r.(3).^Y.m(p'A,A)=n (A)

[[6], Ch. I, Sec. 1, Prop. 4]

k(y).yeô.3.£«e«' (5)

[(4). (5). [4], Cor. II.3.6]

V. (3 Ux,..., Un). Ux, ...,Un are unitary members of sä'.

§> *?„ 0 • • • © XSmX ¦ (O- A17$tx is cyclic (6)
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[[10], Sec. 75]

h: (6) T e & z> K T 9(A) j" 9(X) E(dX)

\9(X)E(dX)(E*iX+-..+E§iiX)

j9(X)E$iXE(dX)EgiX\X*x®---

®\9(X)EgnXE(dX)E§nX\XffnX (7)

h Xi, X2 are subspaces of § reducing A. Tx e TA(XJ, T2 e £C(X2).

Tx^A\Xi, T2„A\X2.^. Tx ® T2„A\XX ® A\X2 (8)

K (6) (7) (8) K H" {A}~ [{A\X5lX© ¦ ¦ ¦

®A\X§nX}"]'ç=[{A\X*iXy © • ¦ -®{A\X§nX}"]'

[{A\X§lX}'®---®{A\X§iiX}']'
S {A|a#, x ® ¦ • • © A\X*J" {A}" @ (9)

M9).3K(1).~(1)
K (10) K (Prop)

Thus m(p'A,A) ^0, by the principle of transfinite induction.
Let us explain how we arrived at the statement (6) above. That m(p'A,A) =n

means that A can be decomposed into a direct sum of n pairwise orthogonal cyclic
parts each of spectral type (p'AA), or, what is the same, that § can be decomposed
into a direct sum of n pairwise orthogonal subspaces 9)(xj) such that px A p'A (see
Sec. 1). Now p'A px A'', and [4], Cor. II.3.6, says that each of the xt can be attained
from x by means of some unitary operator from sä'.

In the second place, let c> 1. As in the proof of Theorem (2.3), from the sixth
paragraph onwards, we start by choosing an integer m>0 such that cjm< 1. We
then let Ex, Em be m projections from sä, all commuting with A, satisfying
d\m^(Et) Ijm and EtEj S.-jF;. For each i, A\Xt is a self-adjoint operator affiliated
to the factor säE: the latter is a factor of type II\ whose linking constant is smaller
than 1. The maximal Hellinger type px A

' of A, =def A\Xt is homogeneous and
miPx,,At',At) $0. Notice that px A

' — px A' (since E, reduces A), and that
mipx„A,A) Xo (since m(px A ',At) ^0) (the remarks in Sec. 1 may convince the
reader of that; otherwise he may consult [2], Ch. X, Sec. 4.2). <5A, as well as <ZA., is
a so-called admissible (sub-)lattice (of <3), i.e., it is o--closed and contains with any
member p' also <SU. =def {/ : v' e S. v' < p'} ([2], Ch. X, Sec. 2.3). Hence

®«x,M,' &«„*,' '¦ Ut e ^i}' f0r each *'• Let n0W i+P and let P < Px„At', P < Pxj,Aj'-
We have p p„lAl', p pjV,Aj, for some vt e Xt, v}- e Xj. Thus v, Vj 0, so p 0'.
This we express by saying that pXi<A(, PXj,a

' are independent Hellinger types 2],
Ch. X, Sec. 1.4). From [2], Ch. X, Sec. 4.2, we get : if (p/) is a finite or countable sequence
of pairwise independent Hellinger types, and p V p,', then m(p',A) min m(pt',A).

i i
In our case, therefore, m(p'A,A) J$0, so p'A is again homogeneous.

(2.5) Theorem. Let A be a self-adjoint operator in a separable Hilbert space 9), of
spectral type (p'A, X0). There is in § a factor sä of type II\ such that A-qsä.
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Proof. This follows from Theorems (2.3) and (2.4) : Choose any factor säx of type
II\ in §,. Affiliated to säx is a self-adj oint operator A x whose maximal Hellinger type
is p'A, according to Theorem (2.3). Using Theorem (2.4) we infer that p'A is
homogeneous and that rrt^,^) Xo- Hence (see Sec. 1) A and Ax are unitarily equivalent :

A UAX U* for some unitary operator 17, and sä =def Usäx U* is a factor of type II\
with Arjsä.

3. Affiliation of Self-Adjoint Operators to Factors of Type II^, in a Separable
Hilbert Space

3.1. The maximal Hellinger type.of a self-adjoint operator affiliated to a factor of type 11^

(3.1) Theorem. Let sä be a factor of type IIM in a separable Hilbert space §. Let p
be a member of<Z.A self-adjoint operator exists which is affiliated to sä and whose maximal
Hellinger type is p.

Proof. From [4], Lemma II.1.8, we see that the identity operator 11 in §, being
an infinite projection from sä, can be written as

co

1=2 Et,
i=l

where the projections Et from sä are finite, pairwise orthogonal, and pairwise
equivalent.

For each i, consider Xi=de(El9}. On referring to [4], Lemma II.2.23, we learn
that sät =def säEt is a factor of type IIx in Xt.

Vet p be any member of p We represent R as the union of closed intervals I,:

R Ü it,
i l

and write p as
CO

p=2 Pi>
1=1

where

^ 0 n 8 (1 It p

From Theorem (2.3) we know that for each i a self-adjoint operator At exists
which is affiliated to sät and whose maximal Hellinger type is p,'. From [2], Ch. X,
Sec. 3.2, we get : The direct sum A oi finitely or countably many self-adjoint operators
A t of maximal Hellinger types pt' is again an operator of maximal Hellinger type, and
p'A V pt'. Thus in our case

CO

2* At
1=1

is a self-adjoint operator, affiliated to sä, of maximal Hellinger type

p v p'i\ \2p-i
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3.2. The spectral type of a self-adjoint operator affiliated to a factor fo type IIK
(3.2) Theorem. Let sä be a factor of type IIœ in a separable Hilbert space §, and let

A be a self-adjoint operator in § affiliated to sä. The maximal Hellinger type p'A of A is
homogeneous and m(p'A,A) X0-

Proof. We write again 11 in the form
CO

1 2 Et,
i l

the projections Et from sä being finite, pairwise orthogonal, and pairwise equivalent.
We further require that the Et should reduce A. That can always be obtained: cf. the
proof of Theorem (2.3). Writing At =def A\Xt we have the decomposition

A 2® A
>=i

of A, where for each i Af is affiliated to the factor sät =def säE of type II\.
To the above decomposition of A there corresponds the decomposition

CO

Pa Yt pAl

of p'A, where for each i p'Ai is the maximal Hellinger type of At. Referring to the proof
of Theorem (2.4), we realize that the p'A are pairwise independent.

From Theorem (2.4) we learn that each p'A is homogeneous (with respect to Aj),
and that m(p'At,At) Xo- From the last paragraph of the proof of Theorem (2.4) we
see that m(pA,A) Xo. and hence that p'A is homogeneous (with respect to A).

(3.3) Theorem. Let A be a self-adjoint operator in a separable Hilbert space §, of
spectral type (pA,#0)- There is in § a factor sä of type II«, such that Arjsä.

Proof. Cf. the proof of Theorem (2.5).

4. With a View to Applications

We have solved above the problem of affiliation of self-adjoint operators to
factors of type II in a separable Hilbert space. However, we had something more in
mind, namely, by means of the trace-functions trrf, on the trace classes cßjsä) of
suitably chosen factors of type II, to extend the formal apparatus of quantum
mechanics to situations formerly inaccessible to direct numerical treatment. It is well
known how, traditionally, states (of physical systems) are connected with the trace
function on the trace class of 7A(9y). It would seem desirable to be able to cope with
situations falling outside the traditional framework, such as when the Hamiltonian
of a large thermodynamic system does not have a pure point spectrum (see also the
Introduction). Now if sä is a factor of type II, and A J XE(dX) e ^Jsä), then

txs,(A) ^Xdim^(E(dX)).

Clearly, in order to use this formula for explicit calculations, we should need to know
the function A m>- dirn^(F(A)). Let us consider the following problem:
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Let a self-adjoint operator F in § be given. The maximal Hellinger type pB of B
should have the multiplicity Xo- Can we construct a function / on R such that
^=JAF(iA),with

dim^(F(A))=/(A), AeR,

is unitarily equivalent to F
Theorems (2.3) and (2.4) give a positive answer to our question in the case II\ :

we choose any function/,, where p e p'B and p(U) 1. Theorems (3.1) and (3.2) imply
that the answer would be 'yes' also in the case IIa.

In this section we shall formulate our results (on affiliation) in terms of functions
rather than in terms of (maximal) Hellinger types. What freedom do we have regarding
the choice of the function / (see above) We shall be particularly interested in the
possibilities of choosing/to be unbounded (i.e., in the case IIA-

4.1. Preliminary results

(4.1) Lemma. Let sä be a factor of type IIœ in a separable Hilbert space §. A self-
adjoint operator A \XE(dX) exists such that A-qsä and

E(X) =0, A < 0,

dim^(F(A)) A, A > 0.

Proof. We set down again the decomposition of the identity operator 1 in § which
appeared in the proof of Theorem (3.1) :

2E
i=i

and we impose the further condition dim^(Et) 1, where dim^ is (for the moment)
any dimension function on the set of projections from sä. Moreover, we represent R+

as the union of closed intervals It =def [i — l,i]:
R+ Ü /,-

i-l

In the remainder of this proof we shall make use of the notation introduced in the
proof of Theorem (2.3). We see that the factors sä\ are of type II\ ; due to the convention

dim^(F() 1, made above, the dimension functions dim^( are all normalized.
According to Lemma (2.1) there exists a self-adjoint operator fJAF^^A),

affiliated to sät, determined by the requirement

dim^(F«>(A)) A, Ae[0,l].

Here the F<0(A) should be thought of as projections from sä, with F(0(l) Et.
Let

fF(1)(A), A e Ii,
E(X) =det "^ Ei + E,n),A _n+l)t x e /„, n 2, 3,

I i-i
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Then

dim^(E(X)) =n-l+ dim^(E(n) (X-n+ 1))

n-l+ dim^F^A -w + 1))

n — 1 + A — n + 1

X.

For A < 0 let F (A) def 0.

It is not difficult to verify that F(-) is a spectral family. The operator

A =def J XE(dX)

satisfies our lemma.
As Lemma (4.1) is an analogue of Lemma (2.1) for the case IIm, so we propose the

following as an analogue of Lemma (2.2) :

(4.2) Lemma. Let sä be a factor of type IIm in a separable Hilbert space §. Let f be

a real-valued function on R which is increasing (not necessarily strictly so), continuous on
the right, which satisfies /(—oo) 0, and is finite everywhere. A self-adjoint operator
A j XE(dX) exists such that Avsä and dim^(F(A)) =/(A), A 6 R.

Proof. Cf. the proof of Lemma (2.2).

4.2.- Absolute continuity as a relation between functions

Our aim in this section is to ascertain what freedom we have with respect to the
choice of the function /, given that the maximal Hellinger type of the operator
A J XE(dX) (with dirn^(F(A)) =/(A), A e R) should be equal to p'B (see the
introductory paragraphs of this section). We shall solve that problem in terms of a concept
of absolute continuity between functions, applied to the functions / and /B (p e p'B).
We start by defining the concept :

(4.3) Definition. Let/ and g he two real-valued functions on R. We shall say that
g is absolutely continuous with respect tof on R if, given e > 0, there is a S > 0 such that
for any finite sequence ([a^b,]) of disjoint intervals of R with 2,\f(bt) -f(at)\ <8,
one has 2i \g(bt) — g(dt) \ < e. Similarly if 'R' is replaced by 'a closed interval of R'.

This is an obvious generalization of the (Vitali) concept of an absolutely
continuous function (see [3], p. 192). We have the following lemma, easily obtained on
the model of [3], pp. 192-93 :

(4.4) Lemma. Let f and g be two real-valued functions on R which are increasing
(not necessarily strictly so), continuous on the right, and finite everywhere. Let pf and pg
be the corresponding Borel-Stieltjes measures. Then pg is absolutely continuous with
respect to pf if and only ifg is absolutely continuous with respect to f.

4.3. Affiliation of self-adjoint operators to factors of type II in a separable Hilbert space:
another formulation

(4.5) Theorem. Let A be the self-adjoint operator of Lemma (2.2) (in the case IIX)
or Lemma (4.2) (in the case IIA, and let B be a self-adjoint operator in § of spectral type
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ip'ß, Xo)- Pßt pbe a member of p'B. A and B are unitarily equivalent ifand only iff and /H
are absolutely continuous with respect to each other on every closed interval of R.

Proof. We shall use the notation of Subsection 4.1. For simplicity we shall assume
that / is strictly increasing. Moreover, we shall carry out the proof only for the case

that/is unbounded. Let us write

Jt =d.f [/"M* - I),/-1«] (MO) meaning-oo).

We let n he any integer > 0. If F'(-) is the spectral family of the operator of
Lemma (4.1), then the spectral family E(-) oi A is given by

ffi1)(A)' A6/l'
E(X) F'(f(X)) y Ei + F'M(f{X) -n + 1), X eJR, n 2, 3,.

Consider

AEn I j XE(dX)\En j XEEn(dX) j" XF£\f(dX) -n + 1)

\ XFE[*(f(dX) - n + 1 J AFi:VA),
In

where

F^iX) =def Fi<»>(/(A) -n+1), Ae/„.

Clearly,

dim^(Fif(A)) dim^(F^;>(/(A) -n + 1) =f(X) -n + 1, X ejn,
where dim^o(F^n)(A)) increases from 0 to 1 as A runs through/„. The reader will understand

that dim^ (FEn)(-)) determines the maximal Hellinger type of AEn (cf. the
proofs of Lemma (2.2)' and Theorem (2.3)).

Consider next the restriction /<,n) of fu to /„. The function /^n) — fjf~x(n — 1))
determines in an obvious way the maximal Hellinger type of BF(Jny

With the results of Sec. 2 in mind we realize that AE and BF(J > are unitarily
equivalent if and only if the functions dim^ (F|n)( • and/j!/0 are absolutely continuous
with respect to each other. Only a trivial step now remains in proving this theorem,
and we omit it.

We have assumed everywhere spectral families to be defined on all of R ; accordingly,

in Lemmas (2.2) and (4.2) we have brought in functions / defined on all of R.
Sometimes that is unpractical; the reader will understand how to modify the wording
of these lemmas in such cases.

5. An Example

We give here an example of affiliation of a self-adjoint operator A in a separable
Hilbert space § to a factor of type IIx in §.

Let 9) F2(R3), and let A he the maximal multiplication operator defined by

(Af) (A) =def |A|2/(A)
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(A is (proportional to) the Fourier transform of the Hamiltonian of a free particle ; see

[11], Ch. V, Sec. 5, N° 2). Due to the spherical symmetry of the situation we introduce
polar coordinates (r, 6,9) : by A we shall mean the maximal multiplication operator in
§ defined by

(Af)(r,e,9)=r2f(r,e,9).
Let us write § as

L2(U+,r2dr) <g) L2([0,tt] x [0,2rr],dQ),

or, for short,

S-SM «$[*.*]¦
Clearly,

With
ou

Aw =\X2 F(dX), (F(X) u) (x) Yt0, n(x) u(x),
0

we have
CO

A j" X2(F(dX) <g> iue,vl).

We shall show that the multiplicity of the maximal Hellinger type p'A of A is Xo-
To that end we write § [6, cp] as

S[0,«p]=i*S[0,9>],.
i l

where the §>[6,9]i are all one-dimensional; we shall take them to be determined by
the members of a basis (ej) of 9>[6, cp]. Then A can be written as

CO

A= \ X2(F(dX)®2*hie,„,,)
o '-1

00

f°f X2(F(dX)®lm,vh).
i=i é

We write
CO

A,=a.t { A2(F(rfA) <g> V,,^).
o

First, it is trivial that the At are all of the same maximal Hellinger type, and that
the latter is equal to p'A.

Secondly, for each i, A t is a cyclic operator : that we shall prove by exhibiting a
member ut of 9)[r] (g) 9)[6,cp]t, the subspace in which At acts, such that
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£*' §M <8> §[#, <pL ; here, of course, J1, {A,}". We consider

«i =def v ®e„
where

^W=def«i>0, re[t'-l,i],
and

CO

(Ut\u,) (v (g) e,|w (g) e,) (i;|î;) -1 j v(r)2r2dr -

That ut fulfils what is required of it comes from the fact that the characteristic functions
form a dense set in §(r) L2(U+,r2dr) (see [10], Sec. 69). In fact we can take for v any
function on R+ which differs from 0 almost everywhere.

Thirdly, the A t are seen to be pairwise orthogonal parts of A.
It follows that (A,) is an orthogonal family of Hellinger type p'A (with respect to

A). Clearly, it is a maximal family, and we have m(p'A,A) Xo-
We can now invoke Theorem (4.5). Is there any obvious choice of the function/?

Clearly not a priori; the choice has to be dictated by physical considerations. We
shall not go into these matters here, but merely make the choice

/(A) A3

(in the context of the elementary statistical mechanics of the ideal gas it would be
possible to relate df(X) to the number of one-particle states for which the norm of the
momentum has a value in the interval dX around A).

We now have to see whether / and /„, with pep'A, are absolutely continuous
with respect to each other. (The relation of absolute continuity is a transitive one;
hence it is immaterial which pe p'A we answer the question for.) The reader will
understand from the proof of Theorem (4.5) that if we can exhibit a sequence of

CO

pairwise disjoint closed intervals Jt of R, with \JJt R+, such that the restrictions
i-l

/(1) and/Jf,0 of /and/,, respectively, to each/( are absolutely continuous with respect
to each other, then our question would thereby be answered in the affirmative. To that
we now turn.

CO

We let the Jt [at_x,at], i=l,2,. he intervals of R+ with IJ/i R+- Clearly,

if for each i the derivatives of/(i) and /</' were proportional functions, then/(() and
fC-P would be absolutely continuous with respect to each other. Tentatively, therefore,
we set down

mx)=ßtX3+Yi,
where ßt and y, are (real) constants. This entails

ßtdf-i+Yi bi-i,

ßt at + yt b„

where we further require that bt_x < bt and that iji^jT. Let us choose af =def Vi,
bt =def il(i + 1). It follows that ßt lji(i + 1), y, (* - l)j(i + 1).
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Let us now show that there exists a function u(r, 8,cp) v(r) ¦ 1 compatible with/,, :

fu(X)=p([0,X]) (F(X)u\u) J \v(r)\2r2dr-Arr.
o

It is not difficult to see that i»"^^ v\Jt has to be constant. Thus, for XeJt,

M^)=r-r-TX3 + r^z=U^Ï:rl)+ f \v^\2r2dr-Arr;
t(t+L) t+1 3J

Vt^î

1 ^ i-l i-l /A3
¦ A3 + — h Att\vw\2 I

i(i +1) i+1 i ' ' I 3

[A3 - (* - 1)] M»|2[A3 - (* - 1)] ;
i(i +1) 3

3
v«>|2

Arri(i + 1)

For definiteness we let f(0=def V[3/4irt(i + 1)]. Evidently, v is different from 0 almost
everywhere. This ensures that 9)(v) =9j[r]. From [2], Ch. X, Sec. 1.4, we learn that
for a cyclic operator T, 9>(v.) 9>(v2) if and only if pVi J pv J. Now Ahm is a cyclic
operator, so pv,Auri P*KrY But AV^r,/ P»*'' a"d ^sw ^'a, so pu,A p'A, and
we are through : pe p'A.

Let us choose any factor se\ of type IIX in §. Affiliated to sä\ there is a self-
adjoint operator ^41=JAF1(^A), unitarily equivalent to A, characterized by
dirn^ (EJX)) =/(A), A e R+. We have A UAXU* for some unitary operator U. It
follows that sä =def Usai U* is a factor of type i7M with A-rjsä. The spectral family of
A is F(-) =def UEJ-)U*. From [7], Lemma 8.5.1, we see that we are justified in
writing dim^(F(A)) dim^^F^A)), A 6 R+. (With our choice of the function/, we
have, e.g., e~A e<gx(sa).)

6. Concluding Remarks

We have here laid the groundwork for a certain line of application of factors of
type II in quantum mechanics. There are unsatisfactory points connected with our
program, such as the existence of (uncountably many) non-isomorphic factors of type
IIX and of type 77^. We should not know how to justify a particular choice. On the
other hand, that problem may not be a serious one : after all, ours is a technical problem,
not a fundamental theoretical one, and a pragmatic approach may be admissible; e.g.,
we might concentrate on hyperfinite factors, with their convenient properties (see,

e.g., [4], Ch. II, Sec. 6; [6], Ch. Ill, Sec. 7; and [12]).
The physical interpretation of the trace function on factors of type II presents

some difficulties. It seems to be a question of exploiting the following circumstance:
According to Murray and von Neumann the trace function on II\ factors generalizes
those on I„ factors (n finite) ; similarly, the trace function on IIa factors generalizes
the one on 7m factors : if a(A) is the spectrum of an operator A affiliated to a factor of
type II, then it makes sense to talk of 'eigenvalue n° A of A', for all A e a(A) (cf. [7],
the Introduction and Ch. XV).
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Apart from the program sketched in the Introduction, another program is
suggested by recent work on translation invariance in the one-electron theory of solids ;

it is found that the algebra of constants of motion is a factor of type II in some
interesting cases [13].

We expect to come back to applications in a sequel to this study.
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