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Decay Formula and Fission Barrier

by F. Bary Malik1)

Institute de Physique, Université de Neuchâtel, Switzerland

and Pierre C. Sabatier

Department de Physique Mathématiques, Université de Montpellier, France

(16. II. 73)

A bstract. For any theory of fission, which construes the last step as a one-dimensional tunnelling
process through a potential barrier, we show that the observed pre-neutron emission kinetic energies
are inconsistent with the Bohr-Wheeler-Strutinski barrier used in computing the spontaneous
fission half-lives. As regards these data, we establish that the significant feature of any model which
attempts to describe the last stage of fission as a single channel tunnelling phenomenon is the presence
of a potential hole whose minimum is lower than the observed kinetic energy. Only such a hole can
contain a resonant state decaying through the last stage of the barrier with appropriate kinetic
energies. Besides, the observed half-lives indicate that this last stage of the barrier is likely to be
thinner than the one usually used. We also formulate an exact expression relating the half-life
of a decay process through a barrier to the phase shift of the scattering by the associated potential.

I. Purpose

The purpose of this note is to investigate conclusions that could be drawn on the
nature of the fission barrier from our knowledge of the asymptotic relative kinetic
energies of the daughter pair. We shall restrict our discussion to spontaneous and

binary fission. In spontaneous fission a parent nucleus of mass number A and atomic
number Z decays automatically to a daughter pair (A x ZJ and (A 2 Z2) after a characteristic

time, and the energy balance equation may be symbolically written as

M(A,Z)=M(AXZX)+M(A2Z2)+Q, (1)

where Q is the amount of energy released and is a positive quantity. M stands for the
mass of a nucleus. In practice, however, after the scission each member of the daughter
pair is in an excited state. Denoting these excited states with asterisks we have

M(A,Z)=M(AXZX)* + M(A2Z2)*+Q*. (2)

') On leave of absence from the Physics Department, Indiana University, Bloomington, Indiana
USA. Visiting Professor of Physics under the auspices of the Commission of Physics, Switzerland

(C.I.C.P.), 1971-72. This work was carried out during that period.



304 F. Bary Malik and Pierre C. Sabatier H. P. A.

Since excitation is a positive quantity,

This Q* is manifested in relative kinetic energy TR. Thus

TR<Q
because of the excitation of the daughter pair. Experimental information on pre-
gamma and pre-neutron emission kinetic energy supports this claim, and TR is 20
to 40 MeV less than Q. An example is shown in Figure 1. The dashed line in that figure

MAYER + SWIATECKI

GREE

OBSERVED TOTAL PRENEUTRON >.
EMISSION KINETIC ENERGY /

L _l_

Figure 1

An example of the difference between the observed pre-neutron emission kinetic energies and the
energy released (the g-value) in the spontaneous fission. The case refers to the decay of 252Cf and
observed pre-neutron emission kinetic energies are taken from Ref. [20]. The computed g-values
labelled as Myers-Swiatecki and Green, are obtained from the mass formulas of Refs. [3] and [2],
respectively. M H and ML refer, respectively, to the mass numbers of the heavy and the light
fragments.

represents the measured kinetic energy spectrum for the spontaneous decay of 252Cf

[1] in various decay modes. The two solid lines refer to computed Ç-values for the decay
of 252Cf to a series of daughter pairs given by equation (1) using a) the old mass formula
of Green [2], and b) the recently revised mass formula of Myers and Swiatecki [3].
We see that the observed Kinetic energy spectrum is at least 20 MeV lower than the Q-
values. This is not peculiar to 252Cf but a general feature of all known cases to date.
Apart from this knowledge of the kinetic energy spectrum, we have two other pieces of
information. Since the spontaneous fission is a barrier penetration problem, the maximum

of the interaction potential must be higher than the asymptotic kinetic energy,
and the nuclear state of the parent nucleus is métastable.

Our aim now is to examine the nature of inferences that can be drawn within the
context of a one-dimensional barrier penetration theory. (If the potential is spherical
symmetric, this holds also for a three-dimensional case.)

II. Theory

Both the Bohr-Wheeler theory [4, 5] (henceforth referred to as B-W), including its
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present-day modification suggested by Strutinski [6, 7, 8] (referred to as B-W-S) and
the recently proposed theory of fission [9, 10, 11, 12], (henceforth referred to as QMF)
treat the tunnelling stage of the fission problem with a Schrödinger equation of the type

d2jdx2 - q2(x)
1(1 + 1)

ujx) =0 (3)

with

q2(x)
2p
A2

(Potential V(x) - Energy E). (A)

Here p is the reduced mass of the problem, E the total energy and V(x) the potential.
E is equal to the kinetic energy, as measured in the range where V(x) is negligible, i.e.
E is asymptotically equal to the kinetic energy. Although the B-W model in principle
computes a fission barrier in a space of multiple deformation parameters, the actual
barrier penetration calculation in their model is often done using a one-dimensional
barrier. In this simplified version of the B-W or the B-W-S model the variable x is
the deformation parameter ß which is the fractional increase of the nuclear radius
R(ß) from its non-deformation (or equilibrium radius) radius R0, i.e.

ß=\R(ß)-Ro\jR0.
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Figure 2
The upper half of the figure represents schematically the observed pre-neutron emission kinetic
energies in relation to the potential energy relevant at the tunnelling stage in each of the three models.
B-W, B-W-S and QMF refer, respectively to Bohr-Wheeler, Bohr-Wheeler-Strutinski and barrier
of Ref. [9] through [12]. The lower half of the figure plots schematically the relevant wave functions
corresponding to the potential barrier drawn above it.
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In principle the QMF [9,10,11,12] is not only a multidimensional but also a
multichannel theory. However, actual computation of the barrier penetration usually
has been done using a one-dimensional model. In this simple approximation, the variable

x in (3) is the relative distance R between the centers of masses of the daughter pair.
Barriers of the B-W, the B-W-S, and the QMF theory along with the observed

kinetic energy are plotted schematically in Figure 3. We note that in the B-W and the
B-W-S models q2(x) is always positive for x < x0, where x0 is the only turning point
there (irrespective of double or multiple humps or their details). The barrier of the
QMF model has at least three turning points, xx, x2 and x0, and q2(x) < 0 in the region
xx < x < x2, and positive otherwise.

Let us first study the effect of q2 (x) on the regular solution u (x) of (3). For any value
of x the regular solution u(x) and its derivative u'(x) are given by the Voltera equation,

X

u(x)=x+\(x-t) u(t) q2(t) dt (5)

u'(x) l+ [ u(t) q2(t) dt. (6)

o

This is valid for 1 0, whereas, for I ^ 0, we have

X

u(x) *'+* + (21 + l)-1 j" [(xjt)l+112 - (tjx)l+112] (xt)1/2u(t) q2(t) dt (7)

0

x

u'(x) (l + \)xl + (21 + I)-1 x-1 \ [(I + 1) (xjt)1*1'2 + l(tjx)l+ll2](xty'2u(t) q2(t) dt.

(8)

Clearly, u(x) and u'(x) are known up to an arbitrary multiplicative constant. They are
chosen here in such a way that u(x) ~ xl+1 as x goes to zero. In the following we normalize
u(x) in such a way that it behaves at the origin like x'+1. Our conclusion does not depend
on this normalization. Now, both in the B-W and the B-W-S models, q2(x) is positive
everywhere up to the external (here unique) turning point x0. Therefore, all the iterated
terms in (5) and (7) are positive, and when they are inserted in (6) and (8) respectively,
the result is that u'(x) is positive. Let p(x) x_1 u(x) be the wave function. Clearly,
d/dx(p2(x)) is positive inside the B-W or the B-W-S potential. Therefore, \u(x)\
and the probability p2(x) of finding the system at a given value of x are steadily increasing
from x 0 to the turning point. The complete absence of any extremum or of any
node (apart from the one at the origin) of p(x) before the turning point (i.e., in the region
x < Xn) implies that no métastable ground or isomeric state is compatible with the
observed kinetic energies within the context of a one-dimensional tunnelling through a
potential barrier prescribed in the B-W or the B-W-S model.

It is sometimes customary to use an effective mass parameter B(x) instead of
(2pjh2) in the barrier penetration problem within the context of the B-W and the
B-W-S. This B(x) > 0. Therefore the above conclusion remains valid even in cases
which use this effective mass parameter B. The above discussion also proves that a
necessary condition for a métastable state to exist is that q2(x) must be negative on a certain
interval inside the barrier.
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Clearly, the barrier proposed in the QMF theory [9-12] fulfills this necessary
condition. q2(x) in this case is negative in the region x, < x < x2.

III. Expression for the Decay Constant and Information from Half-Lives

Let us now study the information on the structure of the barrier contained in the
observed half-lives of the actinides. To derive a convenient expression suitable for our
theoretical analysis of the half-life T associated with the barrier penetration problem in a
fission channel, let us follow for example Goldberger and Watson [13]. To this end, we
evaluate the time during which a wave packet remains localized in an interaction region
5. The half-life T of the métastable state is the probability of finding the system in the
interaction region S minus the probability of finding a non-interacting wave packet
in the same region and is given by [13, 14],

T 2hdX(E) jdE V2pjE dX(k) jdk (9)

where A is the phase shift associated with the outgoing wave packet with the wave
number k and energy E.

The expression (9) is not convenient for analysis in many cases. For example, it is
not possible to use it in the usual JWKB expression for the phase shift because such a
phase shift [15, 16] has a sudden jump of tt, when the energy goes through a resonant
value corresponding to a métastable state. In addition, (9) must be applied with some
care for a long-range Coulomb potential which is pertinent to the fission process.
To deal with the Coulomb potential, we choose a large enough distance R in a region when
the wave functions of both the interacting and non-interacting systems have attained
their asymptotic values. We then cut off the potential at R. For simplicity we consider
only the S-wave. For the case with an interaction the wave function with a wave number
k(k2 2pElh2) may be written as

u(k, R) RP(k, R)=A (k) sin(cp(Â:, R) + X) (10)

with

cp(k, x) kx — v log kx + a + 0 I —- I (11)

(n and a are, respectively, the Coulomb parameter and phase-shift).
Noting that u(k,x) satisfies a wave equation of the form (3), we obtain after a

partial integration
R

\u(k2,x)u'(kx,x) — u'(k2,x)u(kx,x)\* +(k2 — k2) u(k2,x)u(kx,x)dx 0, (12)

0

where kx and k2 correspond to two different energies for the same wave equation.
Hence we get

A(k,)A(k2)
k + k1 2

sin(P(k2,R) - P(kx, R)+X2- Xx) + (|) (kx -k2) sin(P(k2, R)
2

+ P(kx, R)+X2 + XJ (k2 — kf) u(kx, x) u(k2,x) dx. (13)
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Taking the limit kx^k2, and dropping the subscripts we obtain

A2(k){[(lr) dp(k, R)jdk + (I) dXjdk] [1 - nj2kR]
R

- (IjAk) sin(2P(k, R) + 2X)} f u2(k, x) dx. (14)

o

Similarly, for the case of a pure Coulomb field (with a cut-off radius R) we get

R

A2(k)[(i) (dp(k, R)jdk) (1 - vj2kR) - (IjAk) sin(2P(k, R)] j u2(k, x) dx, (15)

o

where uc is the Coulomb wave function. We choose its normalization in such a way that
A (k) is the same as in (14). Subtracting (15) from (14) we obtain an equation determining
dXjdk.

A2(k)[(\) (dXjdk)(l - r,j2kR) - (IjAk) [sin2(</>(/5:, R) + X) - sin2^(Ä, R)]

R

+ (njAkRydPjdk)] J [u2(k, x) - u2Jk, x)] dx. (16)

o

The half-life associated with the decay through a barrier in the fission channel can now
be obtained from (9) and (16). These are exact expressions and can be evaluated given a

potential and a computer.
It is easy to estimate that the second and third terms on the left side of (16)

contribute only about 10"22 sec to T for the observed kinetic energies in the actinide
region. In fact, all terms of the order of kr1 on the left-hand side of (16) can always
be neglected so long as we are interested in the half-lives of resonant states. This is
because they constitute the collision time taken to transverse the interaction region.
As for the right-hand side, it is easy to see that, in the interval x0 < x < R (i.e., from the
outer turning point to R), the integral J* (u2 — u2) dx contributes only terms of the
order A2^1. The reason is the oscillatory character of both u and uc. (In the JWKB
approximation, the envelopes of u and uc are equal.) We can, for our purpose, neglect
this contribution. Hence [17, 18]

dX „ r
— ~(2IA2)-\u2(k,x)dx. (17)

o

In the region 0 < x < xx (i.e., from the origin to the first turning point) both u and uc
grow very slowly because q(x) there is very large and positive in each case. For the
purpose of a simple estimation, we can, therefore, use the approximate expression

dX f
— ~(2jA2)\u2(k,x)dx. (18)

xi

We now resort to the JWKB approximation to obtain further information on the half-
lives. The integral in (18) consists of two parts.

a) The region of the formation of the métastable state, i.e., the region xx < x < x2.
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In this region marked as II, q2(x) < 0 and for a métastable state (n an integer)

jq.x(x)dx~ (n +\)tt.

Besides, the wave function w„ is given by [19]

X

)\qii(x)\dx-TTJAm„ 2V2pTrqxxÄ2cos(-iTJ&) cos

where
L*i

|ft,| V(2pjh2)(E-V(x)).

(19)

(20)

(21)

These formulas have been obtained by matching the wave function in the region II
to the wave function in the range (0,xx) at xx. As long as q2(x) is positive (and not too
small) in that range, the JWKB method in the first approximation enables us to see

that the only effect of this region is to impose the form (20) on the wave function in the
region II.

b) The region x2 < x < x0 (i.e., region III of Fig. 3) which is the region of penetration
through (essentially) the barrier. From the matching condition at x x2, the wave
function in this region is

um A2cos(tt/6) ^2jrrqxn exp - j qUIdx\.

Since (22) must match to the solution in the region x > x0,

A kr112 A2exp jqmdx

(22)

(23)

It should be noted that (23) is only approximate because, for a wave function decaying
from region III to region IV, proper connection formulas must be obtained using the
Bessel function Jx/3. However, an estimate has been done showing that a correction to
(23) is not significant.

The only important contribution to (18) is the contribution from the region II to
dXjdk because, the exponent of (22) being very large, the contribution to the integral
of (18) from region III is very small. Thus

dX

dk

"I
~ (A2jA2) k J" cos2(o>! - 7T-/4) dxjqu (24)

with

H j Çn dx. (25)
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For our estimation we can extend the integration (25) to x2 and assume V(x) to be nearly
a constant in the region II. In this approximation

dX x-, — y

~{a2IA)2J_
ak qxi

(26)

(In deriving (26), we have taken care of the difference in definitions of A2 and A.)
Hence the half-lives of the tunnelling processes are given by

¦¦ exp 2 f qm dx

*2

V(2pjE) (x2 ¦VEj(E-V)u, (27)

where Vxx is understood to be independent of x in the region II. The factor \/EI(E — V)IX

can at the most be *J2~• 10 for E ~ 200 MeV and (E — V)n ~ 1 MeV. Since we are interested

only in an order of magnitude estimate, we shall not take this factor into account.
Omitting this term we get

T ~ exp
"0

2 j qmdx V(2pjE)(x2-xx)2.

Bohr and Wheeler [4, 5] proposed to use

T ~ exp

We note that

u

j qmdx

(28)

(29)

a) For the fission half-lives the shape of the potential in the region II, i.e. the region
where the métastable state is formed, is not critical. The critical point is that there
should be such a region characterized by E > V(r), so that one can form a
métastable state which, upon entering the barrier in the region III, can decay. Without
such a region one cannot have a resonant state decaying through the region III.
This provides the qualitative insight as to why the QMF model has been successful.

b) The width [ (x2 — xj | does not influence the half-lives to any reasonable extent,
provided that it is broad enough to contain a métastable state (or rather broad
enough for the wave function to have a negative slope at x x2).

c) The critical parameter governing the half-lives is the difference (V — E) in the
region III, i.e. effectively the maximum of the barrier height and the available
kinetic energy of a daughter pair in a given mode. Since the half-lives are sensitive
to this parameter, it is easy to understand why fission in various decay modes
have different half-lives. This is because both the Coulomb energy and the available
kinetic energy are different for various mass splittings of the parent nucleus.

d) Of course, the more appropriate expression is (24) or (27), which depends on the
detailed shape of the potential in the region II. If we are satisfied with an accuracy
of two orders of magnitude these expressions are to be used.

e) Clearly, the energy E in any decay formula including the B-W one, i.e. (29), must
be equal to asymptotic kinetic energy.
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f) It is impossible to determine barrier heights uniquely from the measured half-
lives alone without other pieces of information.

IV. Synthesis and Discussion
A. Compatibility of the half-life and the kinetic energy

It is worth emphasizing that the assumption underlying the above analysis is
that 'the parent' nucleus has already been 'prepared' to a particular stage from which
it can be described by a simple tunnelling phenomenon. Therefore the total half-life
tx/2 associated with the decay in a particular daughter pair is given by

p/2 p-i T, (30)

Where P is the probability for a nucleus to come to a fissioning channel from which its
motion is governed by a simple tunnelling process of the type described by equation
(3). A model must be built to estimate P but in any model max(P) should be unity.
In the QMF model P is designated as the preformation probability and estimated to
be larger than IO-7. A reasonable value seems to be 10~]\

Clearly in (27) the factor *j2pjE(x2 — xj (ljc-^2pc2jE(x2 — xx) (c: velocity of
light) is of the order of 10-22 sec for the fission of the actinides because E ~ 150 to 200
MeV and p ~ 50 times the nucléon mass. This cannot change to any appreciable
amount (i.e. by more than one order of magnitude) for the fission of different heavy
elements and is not sensitive either to the reduced mass of the decay channel or to its
kinetic energy.

The other factor, exp (2 J qdx), is sensitive to E and must be evaluated explicitly
in every case. However, it is easy to see that the observed total half-lives of the spontaneous

decay in the actinide region and the observed kinetic energies are compatible
with each other. The value of (V — E) in this region is between 20 and 40 MeV and 2pjh2
~ 3F-2 MeV"1. Consequently, the average value of \7(2pjh) (V - E) is 8 to 10F"1.
If the mean value of (x0 — x2) ~ A to bF the exponent is 64 to 100 yielding T ~ (1027-
1043). IO"22 sec ~ IO5 to IO21 years.

A preformation probability between 1 and IO-5 yields spontaneous fission half-
lives

t1'2 ~ 10° to IO21 years. (31)

This is in good agreement with the observed spontaneous fission half-lives of even-
even nuclei from uranium to californium. Thus, we conclude that a) the values of the
spontaneous fission half-lives and of the observed kinetic energies are compatible in
our model, and b) the observed half-lives demand a relatively thin barrier of an average
width of about bF. The QMF model parameters are in accord with this.

B. Discussion on the initial condition

It is legitimate to argue that we have presented a somewhat simplified description
of the tunnelling step in the B-W or the B-W-S mode. As a first refinement, one should
include an effective mass parameter B(ß) which varies with deformation. However,
this parameter, which is in general positive, multiplies in a first approximation the difference

(V — E) in the equation and therefore cannot change the sign and hence does not
nullify the above objections to the last step of the B-W and the B-W-S model.
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Figure 3
Schematical plots of the wave function for the B-W or the B-W-S barrier in a model where the
boundary conditions at the start of the tunnelling phase are changed. The tunnelling starts at a time
t t0 when the nucleus has a deformation ß ß,. Prior to t0, the detail of the fission process is
arbitrary but for t > t0 the fission is described as a tunnelling through a potential surface of the B-W
or the B-W-S type. As discussed in the text, five initial conditions on the wave functions are possible.
The wave functions corresponding to these five cases are schematically shown in figures below the
potential energy surface. The case (ii)b has not been plotted separately because it is essentially a
mirror image of (ii)c. There is no métastable state at a deformation ß.

Another way out in restoring the B-W or the B-W-S fission barrier is to question
our boundary condition at a time t 0 when the tunnelling starts. As shown in Figure 2,

one may argue that a sophisticated version of the B-W and the B-W-S tunnelling
process starts at a certain time t0 when the system reaches ßx which is not far from the
saddle point. Therefore the potential between 0 (or equilibrium deformation /3eq.)

and ßx, which is computed at a time previous to t0, is irrelevant for the computation of
the tunnelling process, and so is any wave function computed at t < t0 and between
/3eq. and ßx. At the time t t0 and ß ßx, when it is possible to conceive a simple
tunnelling model, one has to choose boundary conditions on u(ßx) and u'(ßx) which are
imposed by 'the history of the system' at all previous times. In simple words we may
say that at t < t0 we have a complicated many-body system which is difficult to treat,
i.e. we have a black box at t < t0. But from t t0 we may treat the system as a simple
tunnelling phenomenon epitomized by a Schrödinger equation and it may be possible to
choose u(ßx) and u'(ßx) in such a way that the half-life in the fission channel is correct.

Unfortunately, this model of a 'black box' at t < t0 still presents several difficulties
with regard to the experimental values of the kinetic energy and the half-life as long as

q2(ß) remains positive in the interval ßx < ß < ß0, ß0 being the turning point. The reason
is that there cannot be any maximum of \u(x)\ since u"(x)ju(x) is positive everywhere.
Suppose that u(ßx) is positive, we have either i) u'(ß0) > 0 or ii) u'(ß0) < 0.

For the case i), the wave function will still grow if (V — E) > 0 everywhere up to
the external turning point ß0 and there cannot be any métastable state in the region
ß < ß0, and the objection raised above still holds.

In the case of the alternative boundary condition ii), we may have effectively four
situations : a) The wave function may decrease rapidly and be nearly zero before the
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penetration can take place - in that case there can hardly be any fission (the lifetime is

extremely large). b) The wave function goes to zero, has then an inflexion point with the
/3-axis as a tangent and becomes negative. This case is analogous to the following case,
c) The wave function and its second derivative remain positive for ß < ß0, can decrease
for a while and then turn around and start increasing. Since u"(x) > 0 everywhere
inside the barrier if (V — E) > 0 everywhere, the maximum of the wave function will
then be outside the barrier in the region ß > ß0 and, hence, the probability of the presence
of the system is larger outside the barrier than inside of it. This is obviously not compatible

with the concept of a métastable state, d) The wave function continues to decay
to ß0, and the particle comes out with the observed kinetic energy. However, in this
case the tunnelling is through a very large barrier. From Figure 3 we see that the area
of the barrier to be included in computing the penetration factor is at least 3 to 4 times
larger than that usually taken and yields a half-life of IO80 to IO300 sec. This is far in
excess of experimental measurements. (The use of the Bohr-Wheeler penetration
formula (29) in conjunction with a factor to take care of the number of assaults also yields
a large number in this case, e.g. for a parabolic barrier shape

t1/2 (2-rrco)-1 exp(27r(F - E)jhco) sec IO"20 exp(300 to 100) sec ~ 10100 to IO300 sec

since the largest hco ~ 0.3 to 0.4 MeV and the average value of (V — E) > 20 MeV
within the barrier. To get a correct tx/2 in this case, we must use hco 2 to 4 MeV which
is in sharp contrast to the ß-vibration frequency currently admitted in heavy nuclei).
The other alternative will be to extend 'the black box' well beyond the saddle point
and close to 'the scission point' (whose abscissa is smaller than the outermost turning
point). This procedure, however, renders meaningless the attempts to compute the
potential surface starting at ßect. (or /5 0) and using a minimum principle because
the relevant potential surface lies beyond the saddle point.

Clearly, there is no room for any métastable state of the Strutinski type in this kind
of barrier penetration problem in all cases discussed above because the wave function cannot
have any maximum inside the barrier.

C. Complex barrier

The B-W and the B-W-S model may be induced to accord with the observed
half-lives and kinetic energies by using a complex barrier, which is a manifestation of
the effect of other channels. This reflects the well-known fact that even if all channels
but one are closed, a quantum mechanical problem is not the same as if there was only
one channel (e.g. in some typical case one can even have bound states of positve energy).
Naturally a complex barrier may also be ascribed to the thin QMF barrier. In the context

on the QMF model, the off-diagonal coupling terms between the different channels
are expected to yield an effective complex potential similar to the one used to describe
the ion-ion collision. Although empirically there is some indication that the imaginary
part of this potential is small in magnitude, conclusive evidence is lacking. Non-local
potentials can also be used to describe the fission phenomenon.

V. Conclusion

If one wants to describe the later stage in the spontaneous fission as a single-channel
tunnelling process through a static and real potential barrier, it seems difficult to reconcile

the observed kinetic energies and half-lives with the B-W or the B-W-S barrier.
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These experimental quantities clearly demand a 'thin barrier with a hole', i.e. a relatively
thin barrier inside of which the asymptotic kinetic energy is larger than the potential
energy at some point. Once such a barrier is assumed, it is easy to perform model
calculations which can correctly predict the fission half-lives and kinetic energies of daughter
fragments simultaneously. For example, the barrier used in the QMF model of fission
meets this criterion.

On the other hand, our analysis of the fission barrier is invalid if one demands that
in a refined version of the B-W theory there is no important region prior to the fission
which admits a simple tunnelling description in one variable. In fact, it is a decay
process of a 'coupled system as a whole through a multidimensional surface'. In that case,
however, the decay formula (29) of Bohr-Wheeler demands further investigation.
Similarly, if the coupling terms between different channels in the QMF theory are large
both in magnitude and in range, our analysis cannot make a definite statement. However,

if one can uncouple such a set of equations through a similarity transformation,
as is done in [11] and [12], our analysis holds for the effective diagonal potential barrier
obtained after the system is uncoupled.

The present analysis further indicates that in its entirety the fission phenomenon,
despite being a complex many-body problem, can be described in three distinct steps.

The first step deals with the preparation of the nucleus to prefission in a given
channel - thus we need to estimate 'the probability of bringing the nucleus up to the
final stage of tunnelling'. A nuclear model will always be needed to estimate this -
in the QMF model this is called preformation probabilities - in the B-W model this is

synonymous with 'the number of assaults'.
The second stage refers to the métastable state formed in a 'hole' in the barrier -

there is no mechanism in the B-W or the B-W-S model to describe this stage. In the
QMF model this part exists and originates from the attraction of the two daughter
nuclei prior to the separation because the density in the overlapped region is less than
the saturation density of the nuclear matter. Contribution of this stage to the half-life
is ~10-22 sec and this number is not very sensitive to the details of this attractive well.

The third stage consists of tunnelling through the barrier and is sensitive to the
kinetic energy of the process.
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