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Analytic Representations of the Conformai Group in Four and

Five Dimensions Connected with Differential Equations

by Jlirg Muggli1
Institute for Theoretical Physics, Academy of Sciences, Ukr. SSR, Kiev

(21.XII.72)

Abstract. The conformai group Cd is represented by analytic spinor representations in the
complex symmetric domain corresponding to the group. In four dimensions for every spin there
exists one irreducible representation solving invariantly a wave equation, thus describing a massless
particle. For massive particles non-linear differential equations in five dimensions with the proper
time as fifth coordinate are found which are covariant under the conformai group C5 and invariant
under the invariance group for massive particles G<nC5 containing the Poincaré group P(4),
dilatation, and proper time translation. The most simple system of equations is tentatively ascribed
to the electron-positron system connected with electromagnetic and gravitational fields. The
Lorentz group L(i) can be extended by adding Lie elements from Cs to the direct product of L(i)
and SO(2,l) probably connected with isospin.

1. Introduction

The homogeneous Maxwell equations are invariant under the conformai group C4,
i.e. the group which leaves invariant isotropic differentials in Minkowski space [1, 2, 3].
It was shown that in fact most equations describing massless particles are conformally
invariant [3, 4, 5], Since the conformai group C4 is the invariance group of a four-
dimensional complex domain [6] it is expected that massless particles should be
described by analytic tensor fields in this complex domain. In this domain, however, all
Casimir operators operate on analytic fields as a constant and thus no invariant
differential operator exists. It will be shown that the Casimir operator A Pt P* of
the Poincaré group (a subgroup of C4) determines a differential equation which is

invariantly fulfilled by certain analytic fields. To every spin there exists one representation
which is just the one described by Gross [3] allowing for a conformally invariant

norm.
Wyler [7] suggested the use of the five-dimensional conformai group Cs in order to

describe massive particles. But beside a scalar field no analytic representations fulfil
an invariant differential equation. It will be argued that the form of the differential
equation need only be invariant under the group G consisting of the four-dimensional
Lorentz group L(A), the five translations, and the dilatation, but that the equations
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should be a 'representation' of the conformai group Cs. Such equations are then
constructed, the most simple probably corresponding to the electron-positron system
connected with electromagnetic and gravitational fields.

In the second section the conformai group Cd and its analytic representations in
the complex domain are described. The representations for massless particles fulfilling
the equation Af=0 invariantly are derived in the third section and it is shown in the
following section that in five dimensions only a scalar field solves invariantly such an
equation. Considering Cs in more detail it is found that the Lorentz group L(A) can be
extended to the group L(A) x SO(2, 1) c Cs, describing perhaps the isospin, since this
new group is only an approximate symmetry. In Section 5 analytic functionals on
analytic vector and spinor fields are considered. A non-linear differential functional
equation is then found which is a representation of C5. The lowest order in the
parametric fields corresponds to equations containing fields of spin 0, \, and 1.

2. The Conformai Group and its Analytic Representations

The conformai group Cd of the rf-dimensional Minkowski space Md leaves invariant
the isotropic differential forms gijdxtdxJ 0 with the metric gn (+ ...—) (summation

convention is used). The group Cd contains as a subgroup the rf-dimensional Poincaré

group P(d) which is the semi-direct product of the Lorentz group L(d) with the Lie
elements Lis —Ln and the translations (elements Pj). In surplus Cd contains the
dilation D and the special conformai elements V{. A representation as differential
operators in Minkowski space is as follows

9

L,j x.Pj — Xj Pt

D x'P,
Vi 2xiD-XjxJPt (1)

The special conformai elements can be constructed from the translations with the help
of the inversion /' : xt -> —xJxJXj by the formula Vt PPtP reflecting the symmetry
between the translations and the special conformai elements. On the other hand the
conformai group Cd is also the transformation group of the (d — l)-dimensional spheres
[7]. Explicit construction of these transformations shows that it is the projective group
PO(d, 2) which is isomorphic to the orthogonal group SO(d, 2) divided by its centre
Z {I, —1} (I identity). The groups Cd and PO(d, 2) are isomorphic and the
connection of the Lie elements of the two groups is [8]

Jii^Lu
J,ä+i -Jä+u i(Pi-Vt)
Jiä+2 -Jä+2i^i(Pt + Vi) l<i,j<d

Jd+2d+l — —Jd+ld+2 — D. (2)

The elements Ju fulfil the commutation relations of the Lie algebra of SO (d, 2) with the
metric g'it (+ ...-+)

UtjJkii -g'lJji + g'nJjk -g'jk Ju + g'jiJik- (3)
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The Casimir operators are constructed with the help of the totally antisymmetric
tensor e,1...,J+2(e12...d+2= 1).

Cn= T, PlllAl — iMc,^2 Jt,t2J € *JlJll3-..U+i
(A)

^4 J l,l2J l,ltJ J e *llJ2J3J4is...tt+ 2

and so on. Indices are lowered and highered with the metric g'u. There are thus [d + 2/2]
Casimir operators. In the case of four and five dimension this number is three. The most
important operator C2 is (beside the factor 2(d — 2)!)

C; =JuJ,J Lkl Lkl + PtV + VtP'- 2D2. (b)

The largest compact subgroup of PO(d, 2) is S0dxS02jZ. It is natural to look at
the symmetric space S PO(d, 2)j(S0d x SOJZ) because representations of PO(d, 2)
can be constructed as representations induced by the largest compact subgroup on the
domain S [9]. This domain is described by Piatetsky-Chapiro [6]. It is symmetric and
the largest group leaving invariant this domain is again PO(d, 2). There exist compact
and non-compact realizations of S. The compact realization, which is a symmetric
space of type IV according to the classification of Cartan [6], is a domain in ^-dimensional
complex space

Dd {z\\z,zi\2+l-2ztzl>0, |*(2(|<1} (6)

with euclidian metric. The Silov boundary Qd, i.e. that part of the boundary of Dd on
which all analytic functions in Dd take the maximum of their module, is

Qi {xei"\xixi l,xreal}. (7)

The non-compact realization is a Siegel space of first kind [6] in ^-dimensional complex
space namely

Td Md + iVd, Vd {y\ytyi>0,yx>0} (8)

with the metric of Minkowski space gtJ. The Silov boundary of Td is just the real
Minkowski space Md. The two realizations Dd with points u and Td with points z are
connected by an analytic transformation which takes the point u OeDd into the
point z Q (i,0,...,0)eTd

ut (l-zx+\liz2-2zx)jT
2

uk zkjT k>2 (9)

1+i 1-i r- fiT —=- r=-zx + V2 V 2 2? - 22,
V2 VI f

or by the inverse transformation

zx (-2V2iux + 1 - f «? + *(1 + 2 rt))lT'
i i

zk 2V2iukjT

r « « (10)
T 2V2iux + l-2u2-i(l + Z uf)

i i
T'T 2\[2i.
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The representation of the elements of the conformai group be differential operators
in Minkowski space (1) can be prolonged to a representation in the domain Td in the
following way. In expression (1) xx is replaced by z, and then the Lie elements are defined
by

J'tj^Jtj+J,j (H)

where/ means the complex conjugate. These elements/' have the same commutation
relations as J(x) or J(z). On analytic functions the second term of (11) has no effect.
The Casimir operators can now be expressed as differential operators in Td. The
operator C2 corresponds to a second-order differential operator A'

A' $C2 PtVt + V, P' + Lu LiJ - 2DD

-(*, - zt) (A - z') Pj Pi +2(zt- zt) (zj - zj) P> Pi (12)

Terms containing only derivatives according to z, or to zt disappear. This operator is

just the Laplace operator described by Helgason [10], which corresponds to the
conformally invariant line element in Td

1
ds2 — (-ytyl dzjdzj + 2yiyjdzldz')

iy>y) (i3)
y i lmzt.

Functions fulfilling A'f= 0 are called harmonic. A special class of harmonic function
is constituted by the analytic functions.

In the symmetric domain Dd and Td there exist three kernel functions. For Dd
they are given by Hua [11]. The Bergmann kernel k expresses the identity operation
for analytic functions/by an integral on the domain, the Poincaré kernel^ expresses
every harmonic function g by an integral over the Silov boundary and the Szegö (or
Cauchy) kernel h gives every analytic function/as an integral over the Silov boundary.

r 1

f(x) k(z,w)f(w) dw, k(z,w) —(1 + I z, zl |2 -2ztz')-
Vd

1 (l + lZrZ'^^ZlZY'2

f(z) f A(z,©/(D dt h(z,\) -L[(*, - e-»zt) (x' - e-i«A)]-«2

lA 27Td/2+1
V° ¥^lr V°—fW (U)

with the volumes VD and VQ of the domain and the Silov boundary, respectively. For
the unbounded domain Td the Szegö kernel is of the form c((zt — xj) (zl — xl))~dl2 since

it must be invariant under real translations (for d A see [12]).
According to the construction of the domains the subgroup leaving invariant an

interior point is the group SOd x S02jZ. Since the conformai group acts transitively
on the domain it is sufficient to consider a special point, e.g. OeDd and QeTd. In Dd the
group SOd is just the linear orthogonal transformation of the whole domain. S02 is the
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multiplication by the phase factor e'*. In Td the isotropy group of Q does not act
linearly on the whole domain but only in the tangential space of the point Q. The group
SOd is established by the elements Jik with 2 < i, k < d + 1 which in fact leave invariant
the point Q. The only element of SO(d, 2) which commutes with all elements of SOd is
then /ld+2 i(Px + V,). It acts as S02. The transformation of the domain produced
by the element Jxd+2 is

dzi !/, I 2

^=2(1 + ?*?

dzt
— =zxzk k 2,...,d (15)
d9

which has the general solutions

1/. l9-9i\ /V-<P2
zx — tan + tan

2\ \ 2 / \ 2

^cjtan|^-tan(^i)| (16)

where 9x, cp2, ck are complex numbers. Thus /ld+2 acts as S02 and in the tangential
space at Q as the phase factor e1". The group acting effectively in the tangential space
at Q is then SOd x SOJZ because the element —Id of SOd has the same effect as the
element ein —1 of S02. The element of S02 leaving invariant the point Q'
(X + ip) 0,..., 0) (p > 0) will be used, too. It is

F -±-((X2 + p2) Px - 2XD + Vx). (17)
2p

One can transform directly into the operator leaving invariant the point of the form
(A + ip) (ax,...) with real at fulfilling ata' 1. Defining P a,Pl and V at V one has
to change in expression (17) Px and Vx into P and V, respectively.

Representations of the conformai group are constructed by determining the
representations of the isotropy group. In the following only analytic representations
are considered. That means that the isotropy group of an interior point has to be
considered and not the isotropy of a boundary point, which is, e.g., for a point in Md the
Weyl group, i.e. the Poincaré group together with dilatation. For the representation
induced from an interior point is also a representation on the boundary, but there
could exist representations on the boundary which cannot be prolonged into the
interior and thus would not be analytic. The irreducible representations of the compact
group SOd are well known. They consist of tensors with all traces vanishing and
corresponding to a Young diagram [13]. In physics one considers ray representations
which, however, are equivalent to vector representations for SOd but they are not
necessarily single-valued. According to Weyl the representations are at most double-
valued. Single- and double-valued representations are described by spinor representations

[14]. A spinor has the dimension 2Cd/2]. General representations are then constructed
by considering tensors with spinor indices and normal vector indices. The case of four
and five dimensions will be dealt with in the following sections. The irreducible
representations of S02 transform as einv and can be described by the one constant n
which is integer for single-valued representations.
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An irreducible representation of the isotropy group induces a representation on
the domain. A spinor representation induces a field/„(z) where a stands for all indices.
In order to define the representation one has to find how the Lie elements act on the
field. This is carried out in the unbounded domain where the action of the Lie elements
on simple functions is given by (1) and (11). Translations and the Lorentz elements act
in the usual way on spinor fields

L(f) Jz) =fjz) - eLßJß(z) _/.pl cV. (18)

The indices et and ß are composite indices and the expression Lßafß means the sum of
the infinitesimal operators acting on the different indices in ß. The minus sign and
summation over the left index of L accounts for the fact that the tensor indices
transform according to the transformation of the derivations djdz1, i.e. as the vectors
in the tangential space. For the dilatation operator usually the dimension n' of the field
is introduced

D(f).=f* + *n'fa-fa48z>. (19)

The conformai elements can be divided into an antisymmetric part T acting as the
Lorentz transformation and a dilatation

Vi(f)r,=fx - eTßJß -/McV + 2en"ztU (20)

The three constants n, n', and n" are equal, as is shown by direct calculation. The
element F for the group S02 leaving invariant the point Q' (17) transforms the spinor
representation field at this point in the following way :

F(f),=L + -( X(n"-n')+in')fx\Q,. (21)

The transformation according to the antisymmetric part T cancels out at this point.
The element F is therefore the operator of S02 for the point Q' which is possible only
for «' n". Clearly the dimension n' is then equal to the constant n of the representation
of S02. Thus the representation induced by an irreducible representation of the isotropy
group is constructed.

The question arises now if such an analytic representation is irreducible. Commonly
it is assumed to be the case (e.g. [10, 12]). Tsu [15], however, has given an argument
that this might not be true. The Casimir operators, which constitute the set of the
invariant operators, do not act as differential operators on analytic representations.
Thus there can be no splitting of the analytic representations by different eigenvalues
of the Casimir operators in addition to the splitting by the Casimir operators of the
isotropy group. A subgroup of the conformai group containing a Casimir operator
which does act non-trivially on analytic representations is the Poincaré group. Its
second-order Casimir operator is

A PtPl. (22)

The higher-order Casimir operators of P(d) need not be considered since their
eigenvalues are defined by the eigenvalue of A and by the irreducible representation of
SOd. The operator A is, of course, not invariant under the group Cd but one can construct
a differential equation which might be invariant

Afa 0. (23)
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The problem is then to find those induced analytic representations for which equation
(23) is invariant. These special representations then split into two parts. The large part
not fulfilling (23) and the very small part solving equation (23). In the next section it
is shown which representations in four dimensions fulfil (23) invariantly and can therefore

be interpreted as massless particles. For the five-dimensional conformai group it
will be shown then that only a special scalar field splits according to (23). This, however,
does not prevent the group C5 to be physically significant. It seems that the four-
dimensional case is outstanding, since one can show that for all dimensions higher
than four of all analytic tensor fields only the scalar field with dimension n 1 — dj2
leaves invariant the equation (23) and is split thus into two irreducible parts. Spinor
fields have not been considered in dimensions higher than five because of complexity.
It is, however, improbable that there exists a double-valued representation of SOd

fulfilling (23) invariantly.

3. The Four-Dimensional Case and Massless Particles

Most equations describing massless particles are conformally invariant [3, 5, 16].
One can even begin by postulating that a theory of massless particles should be conformally

invariant according to the following reasoning. A massless particle travels with
the speed of light, i.e. on an isotropic trajectory in the four dimensional space-time.
The group which transforms the set of all isotropic, not necessarily straight, trajectories
into the same set is just the conformai group. On the other hand massless particles
starting at time tQ at the sitex0 in any direction are found at a later time on a sphere
in three-space. This suggests that the set of all three-dimensional spheres describes
massless particles. The group transforming this set into the same set conserving
tangential spheres tangential is again the conformai group [7]. In the following it will
be shown that the analytic representations in 774 are on the boundary M4 the
representations given by Gross [3] (beside the spin 0 field), for which Gross has shown
that they are unitary. There are no other analytic representations fulfilling (23).

The spin representation has the following form in Minkowski metric after
renumbering the coordinates [14]. Define the 4x4 matrices S andS(j- (i, j 0,1,2, 3)

s04°. :), Sl-/° H s2S(.° H s3=/0 ia>

.—i 0) \icTi 0 J \ia2 0 / Wo-3 0

S„ -S^sS.S,, »Vj (24)

where the at are the usual Pauli matrices. The matrix S0 is hermitic whereas the
remaining S, are antihermitic. The spinor px is four-dimensional and a Lorentz
transformation LtJ acts on the components as

ti-Wvh. U'ß iSiJxßL». (25)

The matrices S j andSfJ- have the following properties

StSJ+SJSi 2gtJ

S,jSkl ietJkl K - gikSj, + gnSJk -gjfitt + gJkSu -~glkgj, + gt,gJk

K'{1 -°i) <¦»
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It is useful to divide the matrices and the spinor into two-component parts

«Pi i c, /o s2\ (S,j 0\ IT /U1 0

?./¦ ' \1 o,s"-[o s;}v'{o u>j- <2"

The additional equations are then valid

SLxßSlyJi + S!SyäS% 281(-28xS8fly + 8r.ß8ye), 1=1,2. (28)

Under pure rotations the irreducible representations are D'p/2„/2, i.e. tensors/a ..„ >p ..^
where the a, transform as cp1 and the ß3 as tp2 and the tensor is symmetrized separately
in the ct, and in the ßy If mirror operations are considered, too, the irreducible
representations are Dpl2ql2 D'pl2ql2 + Dq/2p/2 for p =£ q and for equal p and q
there are two representations DP'/2p/2 and Dp/2p/2 which differ in sign under mirror
operations [14].

The operator A PtPl is invariant under the Poincaré group and the equation
(23) is also invariant under dilatations. It is thus only necessary to consider invariance
of (23) under a special conformai element V b' Vt. The transformation of the
coordinates by V is

8Zi e(z, bJ -zJb, + zk bk 8,J) z} etJzy (29)

The covariant transformation is thus effected by the tensor tu whereas contravariant
vectors are transformed by the matrix

d8z,

t'<J=Jz-7=2tu (30)

Writing the matrices U' in terms of tu one finds the transformation law for the spinor
representations

ftz,...ßq=fct,...ßq + « 2 P<zkvftz1...y...xPtßl...ßqA- e 2 UßlSfx,Xpf,...s...ßq
k ' I

-ef*l...ßt,i8zl + 2enbiz%i_ßq. (31)

One has now to show that the operator A applied to the function /' is zero under the
condition that Af= 0. Using this condition the following new equation is found which
must be fulfilled in order that equation (23) is conformally invariant

2 U xky,sfx1...y...tz„iß,...ßq,S + 2 C7ßio.sfat,...tzp,ß1...6...ßq'S

l+(2 + 2n)bsfai...ßq;=0 (32)

where g,s means the derivative according to zs and in the last term it has been used
tkk (2 — d) bt and d A. Equation (23) is thus only conformally invariant if equation
(32) is fulfilled invariantly, too. Thus a new conformai transformation F'(b') is used.
The transformed functions/' V'(f) are introduced in equation (32) instead of the old
/and it is used that the tensors/fulfil equation (32). Then a new condition is found for
the representation fields/to fulfil (23) involving no derivations.

2 2 UXky,s U'rirf, fct1y...S...tzp_ß1...ß,A- 2, c7tzky,s U,yisfal...ö...ap,ß,...ßn

k*-2 Z(nb" UltJ,t + (« + b°U.\rJftl... *...„,,...,, (33)
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+ analogous terms in U2 acting on ß,

+ Z 2, iUXky,s Ußlgs+ U'Ay7 C^ß(ä,S)/a1...y...0[l„J1...Ä.../J4

+ An(n + l)btb-'fXl._.ßq 0.

This has to be fulfilled for any b andb'. Equation Ga/M b'S,, and equation (28)

simplify (33) considerably. There remain mostly terms containing btb'1. Only the
mixed term UlU2 contains b,b'} (i=£j). Choosing special valuesb andb', e.g. bt 8i0,

b'j 8JX, a non-trivial linear equation is found. Since the representation/ is irreducible
under the isotropy group this would mean that / disappears. Thus non-zero solutions
of (23) are possible only with either/ or q zero [16]. The remaining equation, e.g. for
q 0, reads then

b,b"(An(n + l)-p(p + 2))fai..,a=0. (34)

This is fulfilled when the bracket disappears. Integer or half-integer solutions are first

» _l-£=-l_s (35)
2

where s is the spin. The irreducible representation, including mirror operations, is
then Z)s0 Dj>0 + D'0

>s the direct sum of the tensorsfl a an(l/jjj...j8 •

Using the connection (35) between the spin and the dimension the first-order
equation (32) has to be fulfilled for any b. This gives

2Slsi;iyf!l'v..ly...Zp;- + pfv...Xp,i 0 i 0,...,3 /' 1,2. (36)

Equations (36) are easily shown to be equivalent to the equations

SSxlyfytz2...Xp,s=0 (37)

because of the symmetry of the tensors according to the indices and because of the
special value/ as multiplication factor in the second term of (36). Equation (37) is the
usual Dirac-form equation as given, e.g. by Gross [3]. The fields fulfilling (37) fulfil
Af=0, too. Thus the tensors fulfilling (37) with dimension n — 1 — s are the only
possible analytic representations solving (23). The scalar field fulfils no first-order
equation but invariantly equation (23). The equation (34) has a second solution
n //2. However, equations (36) are then not equivalent to one equation. Direct
calculation shows that all derivatives disappear, i.e. only a constant fulfils (23).

The wave equation has two different kinds of solution. First, the solution for free
massless particles fulfilling equation (37) and, second, the solution coupled with a
massive particle. If this massive particle is at rest at the origin the solutions of (37)
are independent of time and a representation of the three-dimensional rotation group.
Such a classical field is possible only for integer spin. The representations Ds>0 for
integer spin have a natural representation as tensors of rank 2s corresponding to a
Young diagram with two rows and s columns. The spin one, i.e. the photon field, is
then a second-order antisymmetric tensor. Time-independent solutions f1 and f2 can
be clearly combined since they fulfil the same differential equations. Space inversion
corresponds to the operation f1 ->¦ f2, f2 ->- f1. Thus the linear combinations/* ..a
fl....ct ±f£....tx correspond to positive and negative parity. Both these fields are a
representation d3 of S03, i.e. they can be represented by symmetric tensors of rank s
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with vanishing traces in three-space. The spin-one field, for example, is represented as

spinor field f\e @f2d or as tensor fik —fki, which splits under S03 into the electric
field E and the magnetic field H. Static solutions fulfil the equations

f2x2...x„,l — V2x2...xp,2 +/la2...ap,3 0
/og\

flx2...xp,l + lflx2...xp,2 —f2x2...xp,3 0

for all et2 _jtp 1, 2 (p 2s). From (38) it follows that the tensors are solutions of the
Laplace equation. Therefore they can be expanded into the forms glm Ylmr~l~l with
the spherical harmonics Ylm. Since the fields constitute a representation of S03 around
the origin the series are divided according to different indices /. It is now shown that
forms with I <s cannot be combined to solve equation (38).

Equations (38) can be combined to

fllx3...xp,l + if11 xi...xp,2 +f22x3...xp,l —tÎ22xi...xp.2=^- (39)

Expanding the tensor/into a series of functions glm

/ll...l= 2 almglm, f22U...l 2a2n,glm-f22...2 2as+lmglm (40)
m=-l

and using the fact that glm is of the form glm (x + iy)" hlm (r,z) equation (39) determines

connections between the coefficients arm

arm-i ar+im+i, r=l,...,s, m -s + l,...,s-l. (41)

A special chain of equations is then

al-l a2-I+2 a3-!+4 ••• #s+ll- (42)

Obviously a non-zero solution is possible only for / > s. For other chains derived from
(41) to be non-zero the index / must be even higher. In the case l s the elements
entering in (42) are the only non-zero elements. The following solution of (38) is now
found. The tensors/ are not yet normalized. The normalization factor is c ((2r)\
(2s — 2r)\)~112 where 2r s — mis the number of lin/, _2s, i.e./'m=/12r_12...2Cl. transforms
as a spherical harmonic Ylm. Therefore it is expected that the tensor field Fsm=f'sm
Ys_mr~s~y is a solution of (38). This tensor field transforms as the identity under
rotations around the origin, i.e. it is the 'monopole' and all solutions of (38) can be
found by differentiating the monopole field. It suffices now to show that, for example,
Fss and Fss_, fulfil (38) since the remaining elements can be obtained by rotation.
Using the forms of the spherical harmonics Yss c(x + iy)s and Yss_, —c \/2sz(x +
iy)'-1 direct calculation shows that equation (38) is fulfilled. Thus every integer massless

spin field can produce a monopole and higher multipole fields. The monopoles are,
written in real space,

1

r
scalar

f ~X-AIi rr3
vector

flj ~ (Xl Xj -i8,j r2)jr5 rank-two tensor (43)

and so on. Possible interpretations of the scalar and vector fields are the gravitational
and electric fields, respectively. Higher spin fields are not ruled out by the conformai
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group. However, even if they exist it would be hard to detect them, since it is impossible
to create a homogeneous static field out of a spin-two or higher rank field. This can be
seen, e.g. by looking at an equal distribution of such 'monopoles' on a plane. Then
the resulting field above the plane cancels out.

Gross [3] has shown that the particles with non-zero spin produce a unitary
representation of the conformai group on real Minkowski space. In the complex
domain 7"4 an invariant norm exists for scalars with dimension n < —2 [12]

ii/f={ l/(z) I^yr4-"^ (44)

which can be taken over to the domain Z>4. In a limiting procedure Rühl shows that
even for n —2 the norm can be defined. According to Graev [17] the conditions for
the dimension n remain the same for general spinor fields. Since the isotropy group is
504 x S02 the expression entering the integral is positive definite. This is for integer
spins expressed by tensors

2 ft1...i2sA...i2s(yty,r4-ndz. (45)sn)
=0

For spinor fields the expression looks just the same when interpreting the indices ik as
spinor indices. The analytic functions can be expressed by an integral on the boundary.
In the case of spin one one can use the fact that the fields fulfil equation (23). Then the
norm can be transformed into the double integral over three-space of Gross [3] using
the formulae of Courant-Hilbert [18] for the solution of the wave equation. The two
norms differ thus only by a constant for fields for which both norms are finite. The
norm of Gross is equivalent to the usual norm defined with the help of the Fourier
coefficients. The scalar field/has no invariant norm. However, its four gradient/( is a
vector field allowing for a norm since its dimension is the same as for the photon field.
The half-spin field seems to have an invariant norm only as an integral on three-space
[3].

The group SO(A, 2) is contained in the enveloping group SU(2, 2) with the same Lie
algebra. On the other hand SO (A, 2) contains the group PO(A, 2)^C4 as a subgroup.
Thus one has the chain PO(A, 2)c=50(4, 2)czSU (2, 2) where the lower group is the
factor group of the higher group divided by a two-component invariant group. This
gives the following behaviour of the representations. In SU(2, 2) all representations
are single-valued. In 50(4, 2) there are single- and double-valued representations,
namely spinor representations. In PO(A, 2), however, there exist single-, double-, and
four-valued representations in dependence of the behaviour of the representations of
50(4, 2) under the element —7 —74 x —12. The inversions —74 and —72 are real
rotations because of even dimension. The inversion —72 corresponds to a rotation of tt,
i.e. a multiplication with einn. The inversion —74 is S0 Si S2 S3 iK. The representation
of PO(A, 2) of the spin fields solving equation (23) is then as follows. Integer spin: For
odd spin the inversion —74 acts as —1 but the dimension n is even whereas for even
spin —74 acts as the identity but n is odd. Thus in both cases a double-valued representation

results unifying (f1, f2) and (—f1, -f2). Half integer spin: The representations of
50(4,2) are already double-valued unifying (f1, f2) and (-f1, -f2). The operation
—74 x —72 transforms f1 into if1 and f2 into =Ff2 where the upper and lower sign
correspond to (s — ¦§-) even and odd, respectively. Thus a four-valued representation of
the conformai group results unifying (f1, f2), (-f1, -f2), (f1, -f2), and (-f1, f2). The
multivaluedness of half integer spin representations does not disturb physical inter-
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pretation. However, fields with classical interpretation should be single-valued.
Considering the spinfields as representation of the conformai group C4 this seems to be
impossible. But in the following sections it will be shown how it is possible to interpret
at least the scalar and spin-one field as single-valued representations using the con-
formal group C5.

4. The Five-Dimensional Case and Massive Particles

According to the suggestion of Wyler [7] the group connected with massive
particles is the five-dimensional conformai group Cs. There are different arguments
for it. In relativity theory the proper time s of a particle plays an important role since
it determines all time-dependent actions connected with the particle as, for example,
atomic fission. The proper times of different particles travelling with different speed
on not necessarily straight lines are comparable when the particles meet. Thus
differences in proper time can be measured in general (e.g. the twin experiment, where
one of the twins is flying fast for a while and remains, therefore, younger than the second
twin at rest). It is therefore not unreasonable to consider representations in a five-
dimensional space with the proper time s xjc as fifth dimension. The metric is that
of five-dimensional Minkowski space since the proper time is determined by

dx\ dx% — dx2 — dx2, — dx\. (46)

Particles travel on isotropic curves in this five-dimensional space. A single particle can
be described, for example, by a plane wave

/=*<**, k'kt 0, k=U^,px,p2,p3,mc\. (47)

Combining different k with k2 0, i.e. allowing also for an uncertainty in the mass,
localized states can be constructed which travel in space-time-proper-time without
spreading since there is no dispersion, just as for massless particles in four dimensions.
The group leaving invariant the set of isotropic curves is the conformai group. Analogous
as with the massless particles one can consider particles starting from a point x0 at
time t0 and proper time s0 in any direction with any speed. They are found at a later
proper time s > s0 on a hyperboloid in four-space with 'radius' c(s — s0). The transformation

group for hyperboloides conserving tangent hyperboloides tangent is again
the conformai group [7]. Instead of the hyperboloides for given proper time one can look
at the spheres in space-proper-time with given time. The transformation group is
again C5. Thus one could guess that the conformai group C5 should be the invariance
group for massive particles. However, this is not correct.

The movement of a particle can be described without knowing the proper time.
The scattering of different particles at different times is well defined in space-time.
Thus physically admittable transformations should not change the sequence of such
events except an eventual turn in time. This condition means that straight lines
parallel to the proper-time axis should remain parallel lines. The subgroup G in C5

fulfilling this condition consists of the four-dimensional Poincaré group P(A), the dilatation

D and the translation P4 along the proper-time axis. Thus it seems at first sight
that little is won by introducing the five-dimensional space. But the conformai group
is still important. It transforms the world into a different but equivalent one. The
situation is similar to the problem of an electron around two nuclei (H2 molecule) in
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quantum mechanics. The invariance group for the electron Hamiltonian is 502.
However, the three-dimensional rotation group S03 transforms the Hamiltonian into
a different but equivalent one. Thus the Schrödinger equation is a 'representation' of
503 which transforms as the identity under a S02. Wave functions are written in the
space connected with 503 not 502. In a similar manner it seems meaningful to look
for fields in five dimensions and for equations which are invariant under G but co-
variant under C5.

The two Lie elements D and P4, which the group G contains in addition to the
Poincaré group, are connected with the dimension of the fields and with mass. The
question arises which Lie groups exist in Cs containing G and thus serving as an approximate

symmetry. The group C4 does not contain G because of the element P4 in G. There
is essentially only one possibility, namely to add an element V alVt to the group G

where a is any fixed real five-vector fulfilling a'at 1. The three elements V, D,
and P aiPi can be added to leave the point va. invariant. Formula (17) gives this
operator which is integrated to the Lie group S02 in the conformai group. The
three elements constitute the Lie algebra of the group S0(2, 1) as the commutation
relations show.

[P,D] P, [V,D]=-V [P,V]=2D (48)

which gives the normal basis for S0(2, 1)

Ix iLx i(V-P), Iy iLy D, IZ LZ \(P + V). (49)

The elements L, are the operators corresponding to 503. For fixed a to any complex v
corresponds an operator F for S02. The numbers v can be thought of as points on a

hyperboloid in three dimensions dual to the half-sphere. The operator F corresponding
to this point is then the 'rotation' element of S0(2, 1) leaving this point invariant.
Instead of looking at these different operators V and P for different a interpolating
operators can be constructed which act on all 'real' lines va, as the corresponding S0(2,1).
They are

P' -Lm Pt -r=f=A V -JL. V, V7z~jD, D. (50)
' zJz, VzJZj

These new operators constitute 50(2, 1), too, but are no more Lie elements of C5. For
50(2, 1) can also be chosen the elements P4, F4 and D. These last two possibilities are
in so far special as the thus constructed group S0(2, 1) commutes with the Lorentz
group 7(4). Solutions of conformally covariant equations are thus expected to be
approximate representations of the direct product 7(4) x SO(2, 1). This suggests the
possible interpretation of 50(2, 1) as the isospin group since representations of
S03 cz SU2 can be transformed into representations of 50(2, 1).

The analytic representations of the conformai group in the domain Ts are spinor
fields. A spinor for 505 has four components as for S04. There is one new antihermitian
matrix S4 corresponding to the new coordinate xA and then S0- is defined as before (24)

S* (o -X Sii -Sjt=SiSji iH
SßJ+S]Sl 2gl]. (51)
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The matrices do not fulfil an equation of the form (28). The irreducible representations
Ep/2, r are tensors fa,...x i,...«, which are in the spin indices etk symmetrized and in the
vector indices ik symmetrized with all traces vanishing [14]. Under the subgroup 504
the representation Epl2< r reduces out into

Ep/2,r (Pp/2,0 + P{p-l)/2, 1/2 + ¦•• + ¦D(/2,(p-I)/2)

x (Dto + F>Xn,i,2 + - + Dt/2,rl2), t [//2] (52)

which can be reduced out according to the formulae of Cartan [14].
Just as in four dimensions it is useful to determine those representations which

fulfil equation (23) invariantly. The formula for the transformation of a field
fa,...x t,...t is similar to (31). The indices etk run from one to four, the indices ßt have to
be replaced by ik running from zero to four, and U2 has to be replaced by 2T. The
condition for invariantly fulfilling (23) then results in a formula analogous to (33), which,
however, cannot be simplified in the same manner since an equation of the form of (28)
does not hold. It suffices now to consider special cases. For bi b[ 8i3 the following
equation is found for the indices ct, 1, ik 4

c/l 1.44 - 2/r(î/31 1>344 + if3i X.044 + »Al 1,144 +/411,244) 0. (53)

Since / is an irreducible representation of S0S it follows that pr 0 and c 0, i.e.
either / or r disappears. For p 0 a second equation is found considering the five cases
bt b'i 8U (j 0,...,A) and adding the five equations. This new equation is proportional

to b, bl and its coefficient must disappear.

47r + Ar2 - 15« - 10«2 0

c 9r-3n-2n2 0. (54)

This can be solved only for r 0, i.e. a scalar field. The dimension n —3/2 gives then
the field invariantly solving equation (23) whereas n 0 gives only a constant because
of the first-order equations. The case r 0, pA=0 is treated by regarding bi 8ii-,
b', 8U-, with i'y^j'. There remains then an equation

225iS 5^ / j o. (55)
k + l k

In contrast to the four-dimensional case this gives in fact equations for the fields in
default of an equation of the form of (28). Thus only scalar fields of dimension n —3/2
fulfil invariantly Af 0.

As has been argued at the beginning of the section it is not necessary to find
conformally invariant equations. The equations need only be invariant under G but it
must be possible to prolong them continuously to equations after conformai
transformations. Therefore the fields must be representations of Cs. In the next section
differential equations are proposed which are indeed conformally covariant. They are
then generalized to functional differential equations producing an infinite series of
covariant differential equations for multipoint functions.
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5. Covariant Differential Equations

Introducing the vector field A and the spinor field d/ on five-dimensional space the
following non-linear partial differential equations prove to be covariant.

(StxtPl + iSiaßA')Pß 0 a)

fikk+9~'Jz)S0ißSißyP; 0 h) (56)

fik — Aik — Aki. c)

Under the five-dimensional Poincaré group equation a) transforms as a spinor, equation
b) as a five-vector, and equation c) as an antisymmetric tensor. In equation b) it has to

(o2 0\
he used that S0ib transforms asCtb (C in the representation (24) and (51) of

the spin) [14] and thustb*S0<b as a scalar and d^SoSjt]; as a vector. Therefore the set of
equations (56) is invariant in the sense that with the fields A and <b fulfilling (56) the
transformed fields A' and d/ fulfil the same set of equations. Under dilatation D the
equation a) is invariant only if A, has the same dimension as Pj, i.e. minus one. Then
follows from c) the dimension minus two for fik and from b) that the dimension of «b

must be —3/2. The fields transformed by the infinitesimal special conformai element
V b, V1 do not fulfil (56) any more, but equations with A, changed to A t + 2bt in a)

and/ik'tj changed to fikk + 2bkfik in b). This transformation of the equations can be
continued to a representation of the whole group C5 by writing

iSi.ßpi+iStaßAi)(g-P'ß)=0 a)

ig'f,k),k+grxSOlßSißyP'y 0 b) (57)

fik At,k— AkA. c)

The function g is a simple scalar under the group G and has the dimension one under the
special conformai elements V :

g' 2(btx')g-g,k8zk. (58)

The representation g is, however, not an analytic representation, since the dimension
is different under dilatation and a special conformai element. Thus equations (56) are
invariant under G and are a 'representation' of the conformai group C5.

The matrices S( do not yet correspond to the usual matrices yt. The element S4
should be the identity matrix since it gives the element I-m for functions dt~ eims

(m mass). It is impossible to arrive at this matrix by unitary transformations of dt
alone. The following procedure leads to the usual form of the Dirac equation from a).

/1 0
With the matrix K I equation a) is multiplied from the left and the new

matrices S,' KSj are defined. The vector in b) can be rewritten as d/*S0S(d/
—d/*S0S'(4/ sinceS0K —KS0 and K2 1. Then new spinors i\t are introduced by the
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unitary 4x4 matrix U

1/1-1
u=\7i\i i
«b=Ud/
Yisius;u* iUKs(u*

Equation (56) can now be rewritten with the help of the usual matrices y,. This new
form corresponds better to the form of the Dirac equation. The form is no more
invariant under the five-dimensional Lorentz transformation but only under the
four-dimensional one since multiplication with K corresponds only for S0,.... S3 to a
unitary transformation. It is possible to use gauge transformations for the field A and
the spin field. Introducing the new field p' by p pe'x(z) with the real function in real
space x the equations do not change the form if A is replaced by A\ A, + x,t- If
one chooses such a gauge that A kk disappears the following equations result (the prime
has been omitted)

HVtxßPl-YiIßA>)pß 0 a)
(6o)

Ai,kk + ipxYoxßYißy9y 0- b)

Under the four-dimensional Poincaré group the five vector A is split into the scalar AA
and the four vector a (A0, Ax, A2, A3). This four vector can directly be interpreted
as the electromagnetic potential looking at equation (60a). For a solution of a) with
the proper time dependence e,ms the Dirac equation results with the only difference that
in addition a scalar field A4 appears. It is natural to identify it with the gravitational
field. The vector components of equation b) correspond to the inhomogeneous Maxwell
equations. In particular the charge density is represented by p pjpa. In the usual
representation of the y, the first and second components correspond to the electron, the
third and fourth components to negative energy states which are interpreted as positrons
after charge conjugation. Charge conjugation changes the relative sign of a and p thus
justifying the above expression as charge density. The mass density corresponding to
the inhomogeneous scalar equation for the gravitational field is pm pipi + p2p2 —

p3p3 — pip* which is indeed a scalar under the group P(4). The non-linearity of the
equations does not allow the introduction of normalization constants for the fields. If
one wants to normalize them in some way a constant factor has to be introduced, e.g.
in equation b). It is expected that only for certain values (perhaps only one) of this
factor non-zero solutions exist.

The vector field A and the spinor field tb belong to analytic representations of the
conformai group PO(b, 2) with dimensions —1 and —§¦, respectively, as follows from
the invariance condition for equations (56). They are connected with massless particles
Setting A to zero in (60) and regarding massless particles, i.e. fields not depending on
proper time, equation a) is just the Dirac equation for a massless spin-half particle whose
dimension is —§ as it must. On the other hand the scalar field A4 has the correct
dimension —1 as the scalar massless field and the spin-one field corresponding to the
antisymmetric tensor fik Aik — AkA has the dimension —2 of the spin-one massless
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field. Solutions of (60) seem to have therefore a strong connection to massless fields of
spin 0, \, and 1. Since the subgroup G of the group P0(5, 2) is considered the elements
7 and —75 x —72 should be identified analogously as in the four-dimensional case. The
inversion —75 turns the sign of a spinor and of a vector. The dimension of the vector
A is —1 and thus 72 turns the sign, too. Therefore the spin zero field A± and the spin-one
field a are single-valued representations in contrast to the four-dimensional case. The
difference lies in the additional inversion of the proper time. The spin half field remains
four-valued but in a more trivial way. Spins multiplied by one of the four numbers
(1,-1, i, —i) belong to the identity.

It seems to be impossible to generalize directly equations (56) by introducing
higher spin fields. E.g. if the field dt contains more indices the infinitesimal element V
introduces in (56a) new terms with factors b,, where the indices i 'act' on all indices in
dt. It is then impossible to prolong the equations as a 'representation' of C5 by
introducing the function g. New covariant equations involving multipoint functions which
are coupled together are found by considering analytic functionals on spinor and vector
fields.

Analytic functionals on analytic functions of one or more complex variables have
been described by Pellegrino [19]. The general multidimensional case is much more
complicated than the one-dimensional case since integrals over different curves have
to be considered. This results in possible multivaluedness of the expressions. The
situation is simplified in the case of symmetric spaces as Td and Dd since a Szegö
kernel exists which allows to look at volume integrals on the surface of the domain
instead of independent integration over different curves. In spaces with a dimension
higher than one as argument of a functional can serve not only a function but also
analytic tensors or spinors. The case of functionals on analytic functions in five dimensions

is considered first. All formulae are given as obvious generalizations of the
formulae given by Pellegrino [19]. Exact proofs for these generalizations seem not to
exist in the mathematical literature. For the domain of analyticity of the functions and
tensors serving as arguments of the functionals the domain T~=—T5 dual to T5 is
chosen (ze T~ oz e T5).

A linear functional F[f] can be expressed by an integral over the boundary, i.e.
over real Minkowski space. In order to derive this form the value of F for the Szegö
kernel (14) for TJ is considered. This function is called indicatrice and determines
completely the linear functional

u(z') F[h(z,z')], zeT~, z'eT5. (61)

The function/can be written as an integral over Minkowski space with the help of the
Szegö kernel. Because of the linearity of F integration and application of F can be
reversed in order and thus with (61) the linear analytic functional has the form

F[f]= j u(x)f(x)dx. (62)

The first variation 8G[f, 8f] of a non-linear functional G[f] with respect to the variation
8/of the function is best defined as this part of the variation (G[f+ 8f] — G[/]) which
is linear in 8/[19]. Thus G is for any function/a linear functional in 8/and can thus be

expressed by an integral defining the functional derivative G'[/, x]

8G[f, 8f] j G'[f,x] 8f(x) dx. (63)

J*5
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Comparing it with formula (61 the derivative can be determined in the following way

G'[f(z),x]=-
de

G[f(z) + eh(z,x)]. (64)

The second derivative, e.g., is then given by

d2
G"[f,xx,x2]

dex de2
G[f(z) + e,h(z,xx) + e2h(z,x2)].

Using these derivatives a formula analogous to a Taylor expansion, called by
Pellegrino Fantappiè expansion, is found

G[/] G° + 2 -J[ \ G™(xx,...,xn)f(xx)...f(xn) dxx...dxn (65)

where in G<n) the argument /0 0 has been omitted for simplicity. The functions
Gi")(z1,..., z„) are symmetric in the n arguments and are analytic for allzteT5.

A functional V[y] on a vector field v can be looked at as a functional on five
analytic functions (in Tl). The partial functional derivative V',[y, zx] is then defined by

V'i[y,zx] - V[v° vi(z) + eh(z,zx),...,va] (66)

and analogously for higher derivatives. The Fantappiè expansion then reads

V[y] F° + 2 ^ J V«l.lii(xi,...,xn)vti(x1)...v'°(xAdxx...dx„ (67)

n-l
where the functions V are symmetric for simultaneous interchange of xk <-r xp and
ik <-> ip and transform under the Lorentz group as a tensor. Functionals <^>[tp] on
spinor fields need more care. According to Cartan [14] the form t|>*C4> is a scalar

(°2 0\
(u> spinor) where C is of the form C 1 in the representation (24) and (51).

Therefore is is useful to choose for cp a field which does not transform as a spinor dt but
as the dual field Cuv. Then the indices of the partial derivatives transform as spinor
indices since the resulting expression for the variation is a scalar. Defining the derivatives
analogously as in (66) the Fantappiè expansion reads

P(<p) =pw +jpi j 9^l...Mii---^i)9xxi^i)...9xn(^n)dXi...dxn. (68)

In analogy to the equations (56) for fields there can now be written down equations
for the functionals and their functional derivative.

iV[v]StxßP< + iSlteV->[v,z])9ß[<p,z]=0

#<p]#<p]7V+ V[v]9~'J_<p(z1),z]S0aßSißyP'y[<?,z]=0

a)

b) (69)



Vol. 46, 1973 Analytic Representations of the Conformai Group 271

The invariance under the group G and the covariance under the conformai group can
be shown in the same way as for equations (56) assuming that functional and partial
derivation can be interchanged. Invariance under dilatation requires the dimensions
—1 and —f for V and cp', respectively. This means that the parametric fields v and <J>

have the dimensions —4 and —J, respectively, since the functionals V and p are of
dimension zero.

Instead of equations (69) different equations with different powers of the
functionals V and p could be looked at. They seem to be less important. The most simple
equations would be those without any factor p or V. Introducing the Fantappiè series
it is readily seen that then only equations (56) would result. Equations (69) are special
since they are homogeneous in the functionals. It is then possible to introduce normalizing

constants for the functionals to set, e.g., the constant terms V° and p° to one
representing thus a unique 'vacuum'. Equations (69) for the functionals are expanded
into an infinite series of differential equations for the multipoint functions V and p" by
introducing the Fantappiè series and setting zero the factors of the different powers of
v and tp of the equations. The lowest order equations corresponding to the constant of
the series of the functional equations are again equations (56) when setting

1 1 1
A —-Vl, p' —p\ f=—F. (70)

J/0 f p? - yo* ¦ v I

Thus the functional equations (69) produce a series of non-linear differential equations
for multipoint functions. These equations are invariant under the group G and co-
variant to the conformai group C5.

6. Conclusion

It has been shown that non-interacting massless particles can be described by
analytic representations of the conformai group C4 fulfilling invariantly the differential
equation Af=0. The direct generalization to massive particles as representations of
the group Cs is not possible. However, non-linear differential equations have been
found which are invariant under the group G and covariant under C5. They describe
possibly interacting particles. The lowest order equations are differential equations
for a spin half field coupled to spin zero and one fields. It is hoped that solving these
equations and considering then higher orders of the functionals will lead to an
interpretation of the formula for the fine structure constant given by Wyler [7]. It has
been found that the group G can be extended essentially only in two ways. First by a

group G' which leads to an approximate symmetry group 7(4) x 50(2, 1) and thus
perhaps describing also isospin. The second extension is C5 itself. A connection with
the group SU3 .however, does not seem to be straightforward. States with a very high
number of particles are probably best described by the functionals themselves, not
expanded in a Fantappiè series. They are then described in terms of the fields cb and v
whose interpretation is not yet clear. Perhaps there exists a connection with the many
calculations using the conformai group C4 in the high energy (i.e. also high particle
number) limit.
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