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Analytic Representations of the Conformal Group in Four and
Five Dimensions Connected with Differential Equations

by Jiirg Muggli!
Institute for Theoretical Physics, Academy of Sciences, Ukr. SSR, Kiev

(21.XI1.72)

Abstract. The conformal group C, is represented by analytic spinor representations in the
complex symmetric domain corresponding to the group. In four dimensions for every spin there
exists one irreducible representation solving invariantly a wave equation, thus describing a massless
particle. For massive particles non-linear differential equations in five dimensions with the proper
time as fifth coordinate are found which are covariant under the conformal group Cs and invariant
under the invariance group for massive particles G < Cs containing the Poincaré group P(4),
dilatation, and proper time translation. The most simple system of equations is tentatively ascribed
to the electron—positron system connected with electromagnetic and gravitational fields. The
Lorentz group L(4) can be extended by adding Lie elements from C; to the direct product of L(4)
and SO(2,1) probably connected with isospin.

1. Introduction

The homogeneous Maxwell equations are invariant under the conformal group C,,
i.e. the group which leaves invariant isotropic differentials in Minkowski space [1, 2, 3].
It was shown that in fact most equations describing massless particles are conformally
invariant [3, 4, 5]. Since the conformal group C, is the invariance group of a four-
dimensional complex domain [6] it is expected that massless particles should be des-
cribed by analytic tensor fields in this complex domain. In this domain, however, all
Casimir operators operate on analytic fields as a constant and thus no invariant
differential operator exists. It will be shown that the Casimir operator 4 = P; P! of
the Poincaré group (a subgroup of C,) determines a differential equation which is
invariantly fulfilled by certain analytic fields. To every spin there exists one representa-
tion which is just the one described by Gross [3] allowing for a conformally invariant
norm.
Wyler [7] suggested the use of the five-dimensional conformal group C;s in order to
describe massive particles. But beside a scalar field no analytic representations fulfil
an invariant differential equation. It will be argued that the form of the differential
equation need only be invariant under the group G consisting of the four-dimensional
Lorentz group L(4), the five translations, and the dilatation, but that the equations
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should be a ‘representation’ of the conformal group Cs. Such equations are then con-
structed, the most simple probably corresponding to the electron—positron system
connected with electromagnetic and gravitational fields.

In the second section the conformal group C, and its analytic representations in
the complex domain are described. The representations for massless particles fulfilling
the equation 4f = 0 invariantly are derived in the third section and it is shown in the
following section that in five dimensions only a scalar field solves invariantly such an
equation. Considering C5 in more detail it is found that the Lorentz group L(4) can be
extended to the group L(4) x SO(2, 1) < C,, describing perhaps the isospin, since this
new group is only an approximate symmetry. In Section 5 analytic functionals on
analytic vector and spinor fields are considered. A non-linear differential functional
equation is then found which is a representation of Cs. The lowest order in the para-
metric fields corresponds to equations containing fields of spin 0, 4, and 1.

2. The Conformal Group and its Analytic Representations

The conformal group C, of the d-dimensional Minkowski space M ;leaves invariant
the isotropic differential forms g;;dx'dx’ = 0 with the metric g;; = (+——...—) (summa-
tion conventionis used). The group C,contains as a subgroup the d-dimensional Poincaré
group P(d) which is the semi-direct product of the Lorentz group L(d) with the Lie
elements L;;=—L;; and the translations (elements P;). In surplus C, contains the
dilation D and the special conformal elements V,. A representation as differential
operators in Minkowski space is as follows

i)
ot
sziPi
Vi=2x,D—x;x'P, (1)

The special conformal elements can be constructed from the translations with the help
of the inversion I': x; — —x,/x’ x; by the formula V; = I' P, I’ reflecting the symmetry
between the translations and the special conformal elements. On the other hand the
conformal group C, is also the transformation group of the (4 — 1)-dimensional spheres
[7]. Explicit construction of these transformations shows that it is the projective group
PO(d, 2) which is isomorphic to the orthogonal group SO(d, 2) divided by its centre
Z ={I, —I} (I =1identity). The groups C, and PO(d, 2) are isomorphic and the con-
nection of the Lie elements of the two groups is [8]

Ju=Ly
Juri=—"Jaru =¥ P, - V)
Jiusz="Jar2: =3P+ V) 1<i,5<d
Jar2a1=—Jar1a52= D. (2)
The elements J;; fulfil the commutation relations of the Lie algebra of SO(d, 2) with the
metric g{; = (+——...—+)

VTl =€+ 8uix =85 Ju + &1 i (3)
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The Casimir operators are constructed with the help of the totally antisymmetric
tensor eil...id+2(€12...d+2 =1).

e J1dz2 lyeiigyn
CZ_Jilizj € % €J'1f2i3...i,1+2

e (4)

(.:4 =]i1i2 ]i3i4]h]2.]j“4 eil'“‘“ze'hjzhhis--- fae2
and so on. Indices are lowered and highered with the metric g{;. There are thus [d + 2/2]
Casimir operators. In the case of four and five dimension this number is three. The most
important operator C, is (beside the factor 2(d — 2)!)

Cy=JuJV=L, LY+ PV} + V, Pi — 2D (5)

The largest compact subgroup of PO(d, 2) is SO,xS0,/Z. 1t is natural to look at
the symmetric space S = PO(d, 2)/(SO,; x SO,/Z) because representations of PO(d, 2)
can be constructed as representations induced by the largest compact subgroup on the
domain S [9]. This domain is described by Piatetsky-Chapiro [6]. It is symmetric and
the largest group leaving invariant this domain is again PO(d, 2). There exist compact
and non-compact realizations of S. The compact realization, which is a symmetric
space of type I'V according to the classification of Cartan [6], is a domain in d-dimensional
complex space

D= {z||2;#'|* +1 27,2 >0, |z,2'| <1} (6)

with euclidian metric. The Silov boundary Q,, i.e. that part of the boundary of D, on
which all analytic functions in D, take the maximum of their module, is

Q= {xe'|x,x' =1, xreal}. (7)

The non-compact realization is a Siegel space of first kind [6] in d-dimensional complex
space namely

Td=Md+z'Vd, Vd={y|y,yi>0,y1>0} (8)

with the metric of Minkowski space g;;. The Silov boundary of T, is just the real
Minkowski space M,. The two realizations D, with points u and T, with points z are
connected by an analytic transformation which takes the point u=0eD, into the
pointz=Q = (4,0,..., 0)eT,

[a
=010 —2z,+ N2zt —22)|T
2

,=2/T k=2 (9)
RETE RV, e

or by the inverse transformation
d

2= 2V, + 1— Sk +i(l + 3 ud)/T"

1
zk=2\/§iule’
d d
T =2V2iu, +1—3 u2 —i(l+ 3 uf)
1 1

T' T =22,

(10)
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The representation of the elements of the conformal group be differential operators
in Minkowski space (1) can be prolonged to a representation in the domain 7, in the
following way. In expression (1) x; is replaced by z; and then the Lie elements are defined

by
JusJu+Ty (11)

where ] means the complex conjugate. These elements J” have the same commutation
relations as J(x) or J(z). On analytic functions the second term of (11) has no effect.
The Casimir operators can now be expressed as differential operators in 7, The
operator C, corresponds to a second-order differential operator 4’

—4C,=P,V'+V,P'+ L,,["Y—2DD
— (s~ B) ( —#) P, P4+ 2(5,— 7) (2~ 7) P' PV (12)
Terms containing only derivatives according to z; or to z; disappear. This operator is

just the Laplace operator described by Helgason [10], which corresponds to the con-
formally invariant line element in 7',

1
ds? = (~yuy* dzydz; + 2y19;d7'dz)
(uy')? J ’ (13)
y;=Imz,.

Functions fulfilling A’f= 0 are called harmonic. A special class of harmonic function
1s constituted by the analytic functions.

In the symmetric domain D, and T, there exist three kernel functions. For D,
they are given by Hua [11]. The Bergmann kernel % expresses the identity operation
for analytic functions f by an integral on the domain, the Poincaré kernel p expresses
every harmonic function g by an integral over the Silov boundary and the Szegé (or -
Cauchy) kernel % gives every analytic function f as an integral over the Silov boundary.

- fk(z,v—v)f(w) dw, hz,W)= Vi(l + |2, 21|2 27,24

D

1 (1+ |z2|2—27,2)%2
= , g, oL /
QJ;P(Z E)g(g) 6 p(z E) VQ l(zi_'fl) (Zi— gi)l

1

= [ B S@d b8 = [l —cion) (¢ —eoat))0n
Q

V ,”d 27Td/2+1

=, Vo=—mg— 14
Pgd-1g T2 (9 (14)
with the volumes V', and V, of the domain and the Silov boundary, respectively. For
the unbounded domain 7', the Szeg6 kernel is of the form c((z; — ;) (2! — x!)) =42 since
it must be invariant under real translations (for 4 = 4 see [12]).

According to the construction of the domains the subgroup leaving invariant an
interior point is the group SO, x S0O,/Z. Since the conformal group acts transitively
on the domain it is sufficient to consider a special point, e.g. OeD, and QeT ;. In D, the
group SO, is just the linear orthogonal transformation of the whole domain. SO, is the
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multiplication by the phase factor ¢, In T, the isotropy group of ¢ does not act
linearly on the whole domain but only in the tangential space of the point Q. The group
S0, is established by the elements J;, with 2 <7, 2 < d + 1 which in fact leave invariant
the point Q. The only element of SO(4, 2) which commutes with all elements of SO, is
then J,4,, =4(P,; + V,). It acts as SO,. The transformation of the domain produced
by the element J,,,, is

dz 1 d
_1-_——(1—|-Zz§)
1

dp 2

az

——=ZIZk k=2,...,d (15)
dg

which has the general solutions

2= %(tan ((P ;%) + tan (q);%))
2y =cy (tan ((P _ (Pl) — tan ((P _ %)) (16)
2 2

where @,, @,, ¢, are complex numbers. Thus J,,,, acts as SO, and in the tangential
space at @ as the phase factor ¢'°. The group acting effectively in the tangential space
at Q is then SO, x SO,/Z because the element —I, of SO, has the same effect as the

element '™ = —1 of SO,. The element of SO, leaving invariant the point Q' =
(A+1ip)0,...,0) (u>0) will be used, too. It is
1
F = o (A2 +p2) P, —2AD + V). (17)
°

One can transform directly into the operator leaving invariant the point of the form
(A + i) (ay,...) with real a; fulfilling a;a* = 1. Defining P = a;P' and V = a, V" one has
to change in expression (17) P, and V, into P and V, respectively.

Representations of the conformal group are constructed by determining the
representations of the isotropy group. In the following only analytic representations
are considered. That means that the isotropy group of an interior point has to be con-
sidered and not the isotropy of a boundary point, which is, e.g., for a point in M, the
Weyl group, i.e. the Poincaré group together with dilatation. For the representation
induced from an interior point is also a representation on the boundary, but there
could exist representations on the boundary which cannot be prolonged into the
interior and thus would not be analytic. The irreducible representations of the compact
group SO, are well known. They consist of tensors with all traces vanishing and
corresponding to a Young diagram [13]. In physics one considers ray representations
which, however, are equivalent to vector representations for SO, but they are not
necessarily single-valued. According to Weyl the representations are at most double-
valued. Single- and double-valued representations are described by spinor representa-
tions[14]. A spinor has the dimension 2[4/2], General representations are then constructed
by considering tensors with spinor indices and normal vector indices. The case of four
and five dimensions will be dealt with in the following sections. The irreducible
representations of SO, transform as ¢'*® and can be described by the one constant »
which is integer for single-valued representations.
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An irreducible representation of the isotropy group induces a representation on
the domain. A spinor representation induces a field f,(z) where « stands for all indices.
In order to define the representation one has to find how the Lie elements act on the
field. This is carried out in the unbounded domain where the action of the Lie elements
on simple functions is given by (1)and (11). Translations and the Lorentz elements act
in the usual way on spinor fields

L(f) a(z) =fa(z) - ELBafﬂ(z) _fa.i 821' - (18)

The indices « and B are composite indices and the expression Lg,f; means the sum of
the infinitesimal operators acting on the different indices in . The minus sign and
summation over the left index of L accounts for the fact that the tensor indices
transform according to the transformation of the derivations /92!, i.e. as the vectors
in the tangential space. For the dilatation operator usually the dimension »’ of the field
is introduced

D(f)a=fa+ en’fo—fo,i82". (19)

The conformal elements can be divided into an antisymmetric part 7T acting as the
Lorentz transformation and a dilatation

Vilf)a=fa— €T gofp—fa,102" + 2en" 2, f,. (20)

The three constants #, #n’, and #” are equal, as is shown by direct calculation. The
element F for the group SO, leaving invariant the point Q' (17) transforms the spinor
representation field at this point in the following way:

F(f)g=fa+ ; (A" — ) + i) fil o (1)

The transformation according to the antisymmetric part T cancels out at this point.
The element F is therefore the operator of SO, for the point @’ which is possible only
forn’ = n". Clearly the dimension #’ is then equal to the constant » of the representation
0f SO,. Thus the representation induced by an irreducible representation of the isotropy
group is constructed.

The question arises now if such an analytic representation is irreducible. Commonly
it is assumed to be the case (e.g. [10, 12]). Tsu [15], however, has given an argument
that this might not be true. The Casimir operators, which constitute the set of the
invariant operators, do not act as differential operators on analytic representations.
Thus there can be no splitting of the analytic representations by different eigenvalues
of the Casimir operators in addition to the splitting by the Casimir operators of the
isotropy group. A subgroup of the conformal group containing a Casimir operator
which does act non-trivially on analytic representations is the Poincaré group. Its
second-order Casimir operator is

d=pp 2

The higher-order Casimir operators of P(d) need not be considered since their eigen-
values are defined by the eigenvalue of 4 and by the irreducible representation of
SO,. The operator 4 is, of course, not invariant under the group C, but one can construct
a differential equation which might be invariant

Af,=0. (23)
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The problem is then to find those induced analytic representations for which equation
(23) is invariant. These special representations then split into two parts. The large part
not fulfilling (23) and the very small part solving equation (23). In the next section it
is shown which representations in four dimensions fulfil (23) invariantly and can there-
fore be interpreted as massless particles. For the five-dimensional conformal group it
will be shown then that only a special scalar field splits according to (23). This, however,
does not prevent the group Cs to be physically significant. It seems that the four-
dimensional case is outstanding, since one can show that for all dimensions higher
than four of all analytic tensor fields only the scalar field with dimension #» =1 — d/2
leaves invariant the equation (23) and is split thus into two irreducible parts. Spinor
fields have not been considered in dimensions higher than five because of complexity.
It 1s, however, improbable that there exists a double-valued representation of SO,
fulfilling (23) invariantly.

3. The Four-Dimensional Case and Massless Particles

Most equations describing massless particles are conformally invariant [3, 5, 16].
One can even begin by postulating that a theory of massless particles should be conform-
ally invariant according to the following reasoning. A massless particle travels with
the speed of light, i.e. on an isotropic trajectory in the four dimensional space-time.
The group which transforms the set of all isotropic, not necessarily straight, trajectories
into the same set is just the conformal group. On the other hand massless particles
starting at time ¢, at the sitex, in any direction are found at a later time on a sphere
in three-space. This suggests that the set of all three-dimensional spheres describes
massless particles. The group transforming this set into the same set conserving
tangential spheres tangential is again the conformal group [7]. In the following it will
be shown that the analytic representations in 7, are on the boundary M, the re-
presentations given by Gross [3] (beside the spin O field), for which Gross has shown
that they are unitary. There are no other analytic representations fulfilling (23).

The spin representation has the following form in Minkowski metric after
renumbering the coordinates [14]. Define the 4 x 4 matricesS; andS;; (1,7 =0, 1, 2, 3)

0 1 0 1 0 ¢ -
So = . , S, =1 . ot , S,=| . " , Sy = .0 *73

S,,=—S,;=S,S, i#j | | (24)

where the o; are the usual Pauli matrices. The matrix S, is hermitic whereas the
remaining S; are antihermitic. The spinor i, is four-dimensional and a Lorentz
transformation L;; acts on the components as

ba=4Uspths, Usp=3Si0s LY. (25)
The matrices S; and S;; have the following properties
S:S; +8,8,=2g,; ' _ 4
SiSi = 1€ K — guSj + £0Sp — €nSux + EiSu L& + Lu &

1 0
K_—_(O _1) | (26)
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It is useful to divide the matrices and the spinor into two-component parts

0 S; S, © ut o
$-(*1), s= Y)Sy=| Y , U= : (27)
P Si 0 0 S} 0 U2
The additional equations are then valid
S‘Is .BS! +S‘375 l” 281( 28158ﬂv+8a68v6) l=12. (28)

Under pure rotations the irreducible representations are D, ,/,,1.e. tensors f, R
where the «; transform as ¢ and the f8; as ¢p? and the tensor is symmetrized separately
in the «; and in the B, If mirror operations are considered, too, the irreducible
representations are D, 5o = Dy 02 + Dgsa.p2 for p# g and for equal p and ¢
there are two representations D}, ,,, and D;), ,,, which differ in sign under mirror
operations [14].

The operator 4 = P; P! is invariant under the Poincaré group and the equation
(23) is also invariant under dilatations. It is thus only necessary to consider invariance
of (23) under a special conformal element V = b'V,. The transformation of the co-
ordinates by V is

8z, =€z, b — 2 b, + 2, 0% 8/) 2, = et/ 2. (29)

The covariant transformation is thus effected by the tensor #;; whereas contravariant
vectors are transformed by the matrix

06z,
tiy= Fr i 2ty (30)

Writing the matrices U! in terms of ¢,; one finds the transformation law for the spinor
representations

fal fez, -Bgq + € Z U kvfal...xlf...ap’ﬁl_..gq+ € 21: U;,&falap’ﬂl...él...ﬂq
efal.-.ﬁq,l Szl + zenb! zifa,...ﬁq- (31)

One has now to show that the operator 4 applied to the function f’ is zero under the
condition that 4f = 0. Using this condition the following new equation is found which
must be fulfilled in order that equation (23) is conformally invariant

% U;ky,sfal..-')”c...ﬁp ﬁl ﬂq + Z Uﬂ[ﬂ sJ aj.. ap'ﬂl...;.-.ﬂqjs
+@+2m) 8 . 5, = (32)

where £,°means the derivative according to z; and in the last term it has been used
t* = (2—d) b,and d = 4. Equation (23) is thus only conformally invariant if equation
(32) is fulfilled invariantly, too. Thus a new conformal transformation V’(b’) is used.
The transformed functions f* = V’(f) are introduced in equation (32) instead of the old
fand it is used that the tensors f fulfil equation (32). Then a new condition is found for
the representation fields f to fulfil (23) involving no derivations.

3 k
Z Z Uaky s u,& fa,y ...... ay, Bi.-. + Z Uaky s Uyla,’fa!...é...ap.ﬂl...ﬁq

k#1

—2 2 nb U}z k7?58 + (n + )b Ualky s Cl...?...dp,ﬂl-..ﬂq (33)
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+ analogous terms in U? acting on B,

+Zz ak?SU’ﬁ[JS+U;1;‘ySU S)fal...f...zp,ﬁl...g...ﬁq
+dnint D bbYs, =0,

This has to be fulfilled for any b andb’. Equation Uy , = b'S,; , and equation (28)
simplify (33) considerably. There remain mostly terms contalmng b;6’t. Only the
mixed term U'U? contains b,b; (¢ #7). Choosing special values b and b’, e.g. ; = 6o,
b’; = 8;,, a non-trivial linear equatlon is found. Since the representation f is irreducible
under the isotropy group this would mean that f disappears. Thus non-zero solutions
of (23) are possible only with either p or g zero [16]. The remaining equation, e.g. for
g =0, reads then

b b (4n(n +1) — p(p+2)) fuy..., = 0. (34)
This is fulfilled when the bracket disappears. Integer or half-integer solutions are first

et 2B g (35)
2

where s is the spin. The irreducible representation, including mirror operations, is
then D, o = D], + Dy s the direct sum of the tensors fay...a,and /3.

Usmg the connection (35) between the spln and the dlmensmn the first-order
equation (32) has to be fulfilled for any b. This gives

Zslsa,-y a; ...... S+Pfal i=0 Z=O,,3 l’=1:2- (36)
Equations (36) are easily shown to be equivalent to the equations
S;E:vaa; -dp =0 (37)

because of the symmetry of the tensors according to the indices and because of the
special value p as multiplication factor in the second term of (36). Equation (37) is the
usual Dirac-form equation as given, e.g. by Gross [3]. The fields fulfilling (37) fulfil
Af =0, too. Thus the tensors fulfilling (37) with dimension # =—1 — s are the only
possible analytic representations solving (23). The scalar field fulfils no first-order
equation but invariantly equation (23). The equation (34) has a second solution
n = p|2. However, equations (36) are then not equivalent to one equation. Direct
calculation shows that all derivatives disappear, i.e. only a constant fulfils (23).

The wave equation has two different kinds of solution. First, the solution for free
massless particles fulfilling equation (37) and, second, the solution coupled with a
massive particle. If this massive particle is at rest at the origin the solutions of (37)
are independent of time and a representation of the three-dimensional rotation group.
Such a classical field is possible only for integer spin. The representations D, for
integer spin have a natural representation as tensors of rank 2s corresponding to a
Young diagram with two rows and s columns. The spin one, i.e. the photon field, is
then a second-order antisymmetric tensor. Time-independent solutions f' and f* can
be clearly combined since they fulfil the same differential equations. Space inversion
corresponds to the operation f! — f2, f2 — f!, Thus the linear combinations f;tl...a,, =
fi ay...ap L f(,,1 .2 correspond to positive and negative parity. Both these fields are a
representation d3 of S0;, i.e. they can be represented by symmetric tensors of rank s
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with vanishing traces in three-space. The spin-one field, for example, is represented as
spinor field f1; @f% or as tensor f;, = —f;, which splits under SO; into the electric
field E and the magnetic field H. Static solutions fulfil the equations

fzfzz..‘a,,l_?ffu:z...ap,z +f1a2...ap.3:0 (38)
flaz...a,,.l + I’flaz...ap.z _f2a2..‘ap,3 =0

foralla,  a,=1,2(p=2s). From (38) it follows that the tensors are solutions of the
Laplace equation. Therefore they can be expanded into the forms g,,, = Y ,,,#~'~! with
the spherical harmonics Y,,. Since the fields constitute a representation of SO; around
the origin the series are divided according to different indices /. It is now shown that
forms with I < s cannot be combined to solve equation (38).

Equations (38) can be combined to

f11a3...ap,1 =+ zf11a3...¢p,2 +f22a3...d,,.1 - szZag...apJ = O (39)

Expanding the tensor finto a series of functions g,

4
fir.a= 2 %m&im faz11..0=2 @2mEim-S22..2= D AsiimEim (40)
m=-—1
and using the fact that g, is of the form g, = (x + ©y)" A&, (7,2) equation (39) deter-
mines connections between the coefficients a,,,

Ayt =Criimess "=1,..,8, m=—s+1..,s—1L (41)
A special chain of equations is then
A1 = A 142 =A3_ 144 = ... = Ag411- (42)

Obviously a non-zero solution is possible only for / > s. For other chains derived from
(41) to be non-zero the index / must be even higher. In the case / =s the elements
entering in (42) are the only non-zero elements. The following solution of (38) is now
found. The tensors f are not yet normalized. The normalization factor is ¢ = ((27)!
(2s—27)!)"/2 where 2r =s —mis thenumber of Linf, =, i.e. f(n=f1" 12.. ¢, transforms
as a spherical harmonic Y,,,. Therefore it is expected that the tensor field F, = f,
Y, .7~5! is a solution of (38). This tensor field transforms as the identity under
rotations around the origin, i.e. it is the ‘monopole’ and all solutions of (38) can be
found by differentiating the monopole field. It suffices now to show that, for example,
F and F,_, fulfil (38) since the remaining elements can be obtained by rotation.
Using the forms of the spherical harmonics Y =¢(x +1y)*and Y, =—c vV 2s2(x +
1y)s~1direct calculation shows that equation (38) is fulfilled. Thus every integer massless
spin field can produce a monopole and higher multipole fields. The monopoles are,
written in real space,

1
f~ = scalar
x
fi~ r—; vector
Jij~ (%2, —%8;;7%)/r* rank-two tensor (43)

and so on. Possible interpretations of the scalar and vector fields are the gravitational
and electric fields, respectively. Higher spin fields are not ruled out by the conformal
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group. However, even if they exist it would be hard to detect them, since it is impossible
to create a homogeneous static field out of a spin-two or higher rank field. This can be
seen, e.g. by looking at an equal distribution of such ‘monopoles’ on a plane. Then
the resulting field above the plane cancels out.

Gross [3] has shown that the particles with non-zero spin produce a unitary
representation of the conformal group on real Minkowski space. In the complex
domain T, an invariant norm exists for scalars with dimension # < —2 [12]

1712 = [ 1) iy~ de (44)

which can be taken over to the domain D,. In a limiting procedure Riihl shows that
even for » = —2 the norm can be defined. According to Graev [17] the conditions for
the dimension # remain the same for general spinor fields. Since the isotropy group is
SO, x S0, the expression entering the integral is positive definite. This is for integer
spins expressed by tensors

I = esn j. ) i j_:il---izsfil...izs (yiy') 4 "dz. (45)

l]..-is=0

For spinor fields the expression looks just the same when interpreting the indices 7, as
spinor indices. The analytic functions can be expressed by an integral on the boundary.
In the case of spin one one can use the fact that the fields fulfil equation (23). Then the
norm can be transformed into the double integral over three-space of Gross [3] using
the formulae of Courant-Hilbert [18] for the solution of the wave equation. The two
norms differ thus only by a constant for fields for which both norms are finite. The
norm of Gross is equivalent to the usual norm defined with the help of the Fourier
coefficients. The scalar field f has no invariant norm. However, its four gradient f; is a
vector field allowing for a norm since its dimension is the same as for the photon field.
The half-spin field seems to have an invariant norm only as an integral on three-space
[3].

The group SO4,2) is contained in the enveloping group SU(2, 2) with the same Lie
algebra. On the other hand SO(4, 2) contains the group PO(4, 2)~C, as a subgroup.
Thus one has the chain PO(4, 2)=S0(4, 2) =SU (2, 2) where the lower group is the
factor group of the higher group divided by a two-component invariant group. This
gives the following behaviour of the representations. In SU(2, 2) all representations
are single-valued. In SO(4, 2) there are single- and double-valued representations,
namely spinor representations. In PO(4, 2), however, there exist single-, double-, and
four-valued representations in dependence of the behaviour of the representations of
S04, 2) under the element —I = —I, x —I,. The inversions —I, and —I, are real
rotations because of even dimension. The inversion —/, corresponds to a rotation of a,
1.e. amultiplication with e'*", Theinversion—I,is S, S; S, S; = 7K. The representation
of PO(4, 2) of the spin fields solving equation (23) is then as follows. Integer spin: For
odd spin the inversion —I, acts as —1 but the dimension # is even whereas for even
spin —I, acts as the identity but # is odd. Thus in both cases a double-valued representa-
tion results unifying (f!, f2) and (—f!, —£?). Half integer spin: The representations of
S04, 2) are already double-valued unifying (f!, f3) and (—f!, —f?). The operation
—I, x —I, transforms f' into +f' and f? into Ff? where the upper and lower sign
correspond to (s — %) even and odd, respectively. Thus a four-valued representation of
the conformal group results unifying (f!, f2), (—f', —2), (f!, —?), and (—f!, f3). The
multivaluedness of half integer spin representations does not disturb physical inter-
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pretation. However, fields with classical interpretation should be single-valued.
Considering the spinfields as representation of the conformal group C, this seems to be
impossible. But in the following sections it will be shown how it is possible to interpret
at least the scalar and spin-one field as single-valued representations using the con-
formal group Cs.

4. The Five-Dimensional Case and Massive Particles

According to the suggestion of Wyler [7] the group connected with massive
particles is the five-dimensional conformal group Cs. There are different arguments
for it. In relativity theory the proper time s of a particle plays an important role since
it determines all time-dependent actions connected with the particle as, for example,
atomic fission. The proper times of different particles travelling with different speed
on not necessarily straight lines are comparable when the particles meet. Thus dif-
ferences in proper time can be measured in general (e.g. the twin experiment, where
one of the twins is flying fast for a while and remains, therefore, younger than the second
twin at rest). It is therefore not unreasonable to consider representations in a five-
dimensional space with the proper time s = x,/c as fifth dimension. The metric is that
of five-dimensional Minkowski space since the proper time is determined by

dx} = dx3 — dx? — dx3 — dx3. (46)

Particles travel on isotropic curves in this five-dimensional space. A single particle can
be described, for example, by a plane wave

1 (E
f=e*", kk=0, k= _'h’ (:,Pl,Pz,Ps,mc) . (47)

Combining different k with k? =0, i.e. allowing also for an uncertainty in the mass,
localized states can be constructed which travel in space-time—proper-time without
spreading since there is no dispersion, just as for massless particles in four dimensions.
The groupleaving invariant the set of isotropic curvesis the conformal group. Analogous
as with the massless particles one can consider particles starting from a point x, at
time £, and proper time s, in any direction with any speed. They are found at a later
proper time s > s, on a hyperboloid in four-space with ‘radius’ c(s — sq). The transfor-
mation group for hyperboloides conserving tangent hyperboloides tangent is again
the conformal group [7]. Instead of the hyperboloides for given proper time one can look
at the spheres in space-proper-time with given time. The transformation group is
again Cs. Thus one could guess that the conformal group Cs should be the invariance
group for massive particles. However, this is not correct.

The movement of a particle can be described without knowing the proper time.
The scattering of different particles at different times is well defined in space-time.
Thus physically admittable transformations should not change the sequence of such
events except an eventual turn in time. This condition means that straight lines
parallel to the proper-time axis should remain parallel lines. The subgroup G in Cs
fulfilling this condition consists of the four-dimensional Poincaré group P(4), the dilata-
tion D and the translation P, along the proper-time axis. Thus it seems at first sight
that little is won by introducing the five-dimensional space. But the conformal group
is still important. It transforms the world into a different but equivalent one. The
situation is similar to the problem of an electron around two nuclei (H3 molecule) in
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quantum mechanics. The invariance group for the electron Hamiltonian is SO,.
However, the three-dimensional rotation group SO, transforms the Hamiltonian into
a different but equivalent one. Thus the Schrodinger equation is a ‘representation’ of
S0, which transforms as the identity under a SO,. Wave functions are written in the
space connected with SO; not SO,. In a similar manner it seems meaningful to look
for fields in five dimensions and for equations which are invariant under G but co-
variant under Cs.

The two Lie elements D and P,, which the group G contains in addition to the
Poincaré group, are connected with the dimension of the fields and with mass. The
question arises which Lie groups exist in C5 containing G and thus serving as an approxi-
mate symmetry. The group C, does not contain G because of the element P, in G. There
is essentially only one possibility, namely to add an element V' = a'V; to the group G
where a is any fixed real five-vector fulfilling afe; =1. The three elements V, D,
and P =a'P; can be added to leave the point va invariant. Formula (17) gives this
operator which is integrated to the Lie group SO, in the conformal group. The
three elements constitute the Lie algebra of the group SO(2, 1) as the commutation
relations show.

[P,D]=P, [V,D]=-—V [P,V]=2D (48)
which gives the normal basis for SO(2, 1) |
I,=il,=3(V—P), I,=il,=D, L=L,=3}P+V). (49)

The elements L; are the operators corresponding to SO,. For fixed a to any complex v
corresponds an operator F for SO,. The numbers v can be thought of as points on a
hyperboloid in three dimensions dual to the half-sphere. The operator F corresponding
to this point is then the ‘rotation’ element of SO(2, 1) leaving this point invariant.
Instead of looking at these different operators V and P for different a interpolating
operators can be constructed which act on all ‘real’ lines va as the corresponding SO(2, 1).
They are

2t 1 zi
Pr= _ P, = DYV = V,=+2'2;D, D. 50
7 VT il i (50)

These new operators constitute SO(2, 1), too, but are no more Lie elements of Cs. For
S0(2, 1) can also be chosen the elements P,, ¥V, and D. These last two possibilities are
in so far special as the thus constructed group SO(2, 1) commutes with the Lorentz
group L(4). Solutions of conformally covariant equations are thus expected to be
approximate representations of the direct product L(4) x SO(2, 1). This suggests the
possible interpretation of SO(2,1) as the isospin group since representations of
S50, = SU, can be transformed into representations of SO(2, 1).

The analytic representations of the conformal group in the domain T'5 are spinor
fields. A spinor for SO, has four components as for SO,. There is one new antihermitian
matrix S, corresponding to the new coordinate x, and thenS,; is defined as before (24)

1 0 ;
S4_=(0 _1:), Si_)':_sjizsisj’ i?éj
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The matrices do not fulfil an equation of the form (28). The irreducible representations
E, ;. ,aretensors f ay...a,. iy...i, which are in the spin indices «, symmetrized and in the
vector indices 7, symmetrized with all traces vanishing [14]. Under the subgroup SO,
the representation E,,, , reduces out into

ED/Z,P' == (DP/Z,O + 'D(p“—l)/zy 1/2 + oo b Dl‘/2,(p—t)/2)
X (Dgo + Dijz,12 + . + D7z ) t=[p[2] (52)

which can be reduced out according to the formulae of Cartan [14].

Just as in four dimensions it is useful to determine those representations which
fulfil equation (23) invariantly. The formula for the transformation of a field
—_— ay. iy...i, 15 similar to (31). The indices e, run from one to four, the indices B, have to
be replaced by 7, running from zero to four, and U? has to be replaced by 2T. The con-
dition for invariantly fulfilling (23) then results in a formula analogous to (33), which,
however, cannot be simplified in the same manner since an equation of the form of (28)
does not hold. It suffices now to consider special cases. For b; = b; = §;; the following
equation is found for the indices «; =1, 7, =4

cfi 1,44 — 207(if3; 1,344 T 1fa1 1,064+ 411,104 + /0 1,24 a) =0. (53)

Since f is an irreducible representation of SO, it follows that pr =0 and ¢ =0, i.e.
either p or » disappears. For p = 0 a second equation is found considering the five cases
by=5b;=38;,(1=0,...,4) and adding the five equations. This new equation is propor-
tional to b;b" and its coefficient must disappear.

47r + 472 — 15m — 1012 =0

c=97—3n—2n?=0. (54)

This can be solved only for # = 0, i.e. a scalar field. The dimension » = —3/2 gives then
the field invariantly solving equation (23) whereas # = 0 gives only a constant because
of the first-order equations. The case » =0, p # 0 is treated by regarding b, = &;;,
b; = 8;;-, with ¢"# 7'. There remains then an equation

%*g Sisakv SJ;J fal...¥...¢%...a,, =0. (55)

In contrast to the four-dimensional case this gives in fact equations for the fields in
default of an equation of the form of (28). Thus only scalar fields of dimension #» = —3/2
fulfil invariantly 4f = 0.

As has been argued at the beginning of the section it is not necessary to find
conformally invariant equations. The equations need only be invariant under G but it
must be possible to prolong them continuously to equations after conformal trans-
formations. Therefore the fields must be representations of Cs. In the next section
differential equations are proposed which are indeed conformally covariant. They are
then generalized to functional differential equations producing an infinite series of
covariant differential equations for multipoint functions.
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5. Covariant Differential Equations

Introducing the vector field A and the spinor field ' on five-dimensional space the
following non-linear partial differential equations prove to be covariant.

(Si g P! +1S,,, A) 5 =0 a)
fik +¢’ Soaﬁ Siﬁ !py_‘o b) (56)
Ju=Ai— Ai s c)

Under the five-dimensional Poincaré group equation a) transforms as a spinor, equation
b) as a five-vector, and equation c) as an antisymmetric tensor. In equation b) it has to

. o, 0
be used that Sy¢ transforms as G (C = ( 02 ) in the representation (24) and (51) of
o>

the spin) [14] and thus $*Sy¢ as a scalar and $*S,S; as a vector. Therefore the set of
equations (56) is invariant in the sense that with the fields A and ¢ fulfilling (56) the
transformed fields A’ and ¢’ fulfil the same set of equations. Under dilatation D the
equation a) is invariant only if A; has the same dimension as P;, i.e. minus one. Then
follows from ¢) the dimension minus two for f;, and from b) that the dimension of
must be —3/2. The fields transformed by the infinitesimal special conformal element
V = b,V do not fulfil (56) any more, but equations with 4; changed to 4; + 2b; in a)
and f;,* changed to f;; * + 2b*f;, in b). This transformation of the equations can be
continued to a representation of the whole group Cs by writing

(Si,, P! +iS, , 4Y (g-p) =0 a)
(& fu* + gﬁ-&;soaﬂsiﬂ? $py,=0 b) (57)
fu=Aix— Ag, ;- c)

The function g is a simple scalar under the group G and has the dimension one under the
special conformal elements V:

g =2(b;x) g —g 82~ (58)

The representation g is, however, not an analytic representation, since the dimension
is different under dilatation and a special conformal element. Thus equatlons (56) are
invariant under G and are a ‘representation’ of the conformal group Cs.

The matrices S; do not yet correspond to the usual matrices y,. The element S,
should be the identity matrix since it gives the element I-m for functions Y~ e™*
(m = mass). It is impossible to arrive at this matrix by unitary transformations of ¢
alone. The following procedure leads to the usual form of the Dirac equation from a).

0

1
With the matrix K= (0 1) equation a) is multiplied from the left and the new

matrices S; = KS, are defined. The vector in b) can be rewritten as !.]a’*S S’ =
—q,'*sosixp since So K = —KS, and K? = 1. Then new spinors { are introduced by the



268 Jurg Muggli H.P.A.

unitary 4 x 4 matrix U

& 1 (1 -1
V2l

Y =Uyg’

y, = iUS;U* = ;UKS,U*

e{lo )G 3 ®

Equation (56) can now be rewritten with the help of the usual matrices y;. This new
form corresponds better to the form of the Dirac equation. The form is no more
invariant under the five-dimensional Lorentz transformation but only under the
four-dimensional one since multiplication with K corresponds only for S,....S; to a
unitary transformation. It is possible to use gauge transformations for the field A and
the spin field. Introducing the new field ¢’ by ¢ = 16¢'*® with the real function in real
space y the equations do not change the form if A is replaced by 4;=4;+ x.;- If
one chooses such a gauge that 4, *disappears the following equations result (the prime
has been omitted)

(Vi P Viag A') g =0 a)
Ai,kk + ':ba')’oaﬁ'yim, lﬁ'}' = 0 b)

Under the four-dimensional Poincaré group the five vector A is split into the scalar 4,
and the four vector a = (4,, 4, 4,, A;). This four vector can directly be interpreted
as the electromagnetic potential looking at equation (60a). For a solution of a) with
the proper time dependence ¢ the Dirac equation results with the only difference that
in addition a scalar field 4, appears. It is natural to identify it with the gravitational
field. The vector components of equation b) correspond to the inhomogeneous Maxwell
equations. In particular the charge density is represented by p = ,4,. In the usual
representation of the v, the first and second components correspond to the electron, the
third and fourth components to negative energy states which are interpreted as positrons
after charge conjugation. Charge conjugation changes the relative sign of a and p thus
justifying the above expression as charge density. The mass den51ty corresponding to
the inhomogeneous scalar equation for the gravitational field is p, = 3, + ath, —
(,b3|,[13 Yraip, which is indeed a scalar under the group P(4). The non-linearity of the
equations does not allow the introduction of normalization constants for the fields. If
one wants to normalize them in some way a constant factor has to be introduced, e.g.
in equation b). It is expected that only for certain values (perhaps only one) of this
factor non-zero solutions exist.

The vector field A and the spinor field ¢ belong to analytic representations of the
conformal group PO(5, 2) with dimensions —1 and —3, respectively, as follows from
the invariance condition for equations (56). They are connected with massless particles
Setting A to zero in (60) and regarding massless particles, i.e. fields not depending on
proper time, equation a) is just the Dirac equation for a massless spin-half particle whose
dimension is —3 as it must. On the other hand the scalar field A, has the correct
dimension —1 as the scalar massless field and the spin-one field corresponding to the
antisymmetric tensor f;; = A4;,, — 4, ; has the dimension —2 of the spin-one massless

(60)
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field. Solutions of (60) seem to have therefore a strong connection to massless fields of
spin 0, 4, and 1. Since the subgroup G of the group PO(5, 2) is considered the elements
I and —I5 x —I, should be identified analogously as in the four-dimensional case. The
inversion —/ 5 turns the sign of a spinor and of a vector. The dimension of the vector
A is —1 and thus 7, turns the sign, too. Therefore the spin zero field 4, and the spin-one
field a are single-valued representations in contrast to the four-dimensional case. The
difference lies in the additional inversion of the proper time. The spin half field remains
four-valued but in a more trivial way. Spins multiplied by one of the four numbers
(1, =1, ¢, —) belong to the identity.

It seems to be impossible to generalize directly equations (56) by introducing
higher spin fields. E.g. if the field ¢ contains more indices the infinitesimal element V'
introduces in (56a) new terms with factors b;, where the indices ¢ ‘act’ on all indices in
Y. It is then impossible to prolong the equations as a ‘representation’ of Cs by intro-
ducing the function g. New covariant equations involving multipoint functions which
are coupled together are found by considering analytic functionals on spinor and vector
fields.

Analytic functionals on analytic functions of one or more complex variables have
been described by Pellegrino [19]. The general multidimensional case is much more
complicated than the one-dimensional case since integrals over different curves have
to be considered. This results in possible multivaluedness of the expressions. The
situation is simplified in the case of symmetric spaces as T, and D, since a Szegd
kernel exists which allows to look at volume integrals on the surface of the domain
instead of independent integration over different curves. In spaces with a dimension
higher than one as argument of a functional can serve not only a function but also
analytic tensors or spinors. The case of functionals on analytic functions in five dimen-
sions is considered first. All formulae are given as obvious generalizations of the
formulae given by Pellegrino [19]. Exact proofs for these generalizations seem not to
exist in the mathematical literature. For the domain of analyticity of the functions and
tensors serving as arguments of the functionals the domain T5=—T5 dual to T is
chosen(ze 7- < ze T).

A linear functional F[f] can be expressed by an integral over the boundary, i.e.
over real Minkowski space. In order to derive this form the value of F for the Szegt
kernel (14) for 75 is considered. This function is called indicatrice and determines
completely the linear functional

u(z')= Flh(z,2')], ze€Ts5, z'€T,. (61)

The function f can be written as an integral over Minkowski space with the help of the
Szegd kernel. Because of the linearity of F integration and application of F can be
reversed in order and thus with (61) the linear analytic functional has the form

FIfl= | w(x)fx)dx. (62)

My

The first variation 8G[f, 8f] of a non-linear functional G[f] with respect to the variation
8f of the function is best defined as this part of the variation (G[ f + 8f] — G[f]) which
is linear in 8/ [19]. Thus G is for any function f a linear functional in 6f and can thus be
expressed by an integral defining the functional derivative G'[f, x]

SGf,8f1 = f G'If,x] 8f(x) dx. (63)
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Comparing it with formula (61) the derivative can be determined in the following way

d
G'lf(@)x] = =

€

Glf@) + eh(z,x)]. (64)

€=0

The second derivative, e.g., is then given by

aZ

G f(z) + €, h(z,X,) + €:h(2,X,)].

€= €2=0

G"[fx1,X;] = p

€, Oe,

Using these derivatives a formula analogous to a Tayiof expansion, called by
Pellegrino Fantappié expansion, is found

GIf]=G°+ z % f C™ (X, %) fXy). fX,) dxy...d%, (65)
Lol

where in G the argument f, =0 has been omitted for simplicity. The functions
G (z,,..., Z,) are symmetric in the #» arguments and are analytic for all 2,7 s.

A functional V[v] on a vector field v can be looked at as a functional on five
analytic functions (in 7'5). The partial functional derivative V[v, z,] is then defined by

aE €e=0

V[e°,..., v (@) + eh(z,z,),...,0%] (66)

and analogously for higher derivatives. The Fantappi¢ expansion then reads

|
Vivl]=V1"° +z = f ViR i Xy, Xp) 01(X,) . 00(X,) dxy ..dx, (67)
n=1

where the functions V" are symmetric for simultaneous interchange of x, <> x, and
;<> 1, and transform under the Lorentz group as a tensor. Functionals ¢[e¢p] on
spinor fields need more care. According to Cartan [14] the form $*C4 is a scalar

o 0
(Y = spinor) where C is of the form C = (02 - )in the representation (24) and (51).
M2

Therefore is is useful to choose for ¢ a field which does not transform as a spinor ¢ but
as the dual field G. Then the indices of the partial derivatives transform as spinor
indices since the resulting expression for the variationisascalar. Defining the derivatives
analogously as in (66) the Fantappié expansion reads

2.1
b(ep) =@ + Z = f BT a, Ky X1) @ (K1), Pay(X,) 42y...0%, (68)
n=1

In analogy to the equations (56) for fields there can now be written down equations
for the functionals and their functional derivative.

(V[V]S,,, P' +iS,,,V"i[v,2]) $5[,2] = 0 a)
$lep) @) F i+ VIV] $:[@(2,),Z]S,,, Sy, b3, 2] =0 b) (69)
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The invariance under the group G and the covariance under the conformal group can
be shown in the same way as for equations (56) assuming that functional and partial
derivation can be interchanged. Invariance under dilatation requires the dimensions
—1 and —3 for V' and ¢, respectively. This means that the parametric fields v and ¢
have the dimensions —4 and —7, respectively, since the functionals V' and ¢ are of
dimension zero.

Instead of equations (69) different equations with different powers of the func-
tionals V" and ¢ could be looked at. They seem to be less important. The most simple
equations would be those without any factor ¢ or V. Introducing the Fantappié series
it is readily seen that then only equations (56) would result. Equations (69) are special
since they are homogeneous in the functionals. It is then possible to introduce normaliz-
ing constants for the functionals to set, e.g., the constant terms V° and ¢° to one
representing thus a unique ‘vacuum’. Equations (69) for the functionals are expanded
into an infinite series of differential equations for the multipoint functions V" and ¢" by
introducing the Fantappié series and setting zero the factors of the different powers of
v and ¢ of the equations. The lowest order equations corresponding to the constant of
the series of the functional equations are again equations (56) when setting

1 1 1

- Y1 Fow o A1 e

A=V, ./,_qboqs, t= 5 F. (70)
Thus the functional equations (69) produce a series of non-linear differential equations
for multipoint functions. These equations are invariant under the group G and co-
variant to the conformal group Cs.

6. Conclusion

It has been shown that non-interacting massless particles can be described by
analytic representations of the conformal group C, fulfilling invariantly the differential
equation A4f=0. The direct generalization to massive particles as representations of
the group C; is not possible. However, non-linear differential equations have been
found which are invariant under the group G and covariant under Cs. They describe
possibly interacting particles. The lowest order equations are differential equations
for a spin half field coupled to spin zero and one fields. It is hoped that solving these
equations and considering then higher orders of the functionals will lead to an
interpretation of the formula for the fine structure constant given by Wyler [7]. It has
been found that the group G can be extended essentially only in two ways. First by a
group G’ which leads to an approximate symmetry group L(4) x SO(2, 1) and thus
perhaps describing also isospin. The second extension is Cs itself. A connection with
the group SU; ,however, does not seem to be straightforward. States with a very high
number of particles are probably best described by the functionals themselves, not
expanded in a Fantappié series. They are then described in terms of the fields ¢ and v
whose interpretation is not yet clear. Perhaps there exists a connection with the many
calculations using the conformal group C, in the high energy (i.e. also high particle
number) limit.
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