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Helvetica Physica Acta
Vol. 46, 1973. Birkhäuser Verlag Basel

Die Trägheitswelt der Linearen Feldtheorie

von Willy Scherrer
Bern, Justingerweg 18

(20.1.73)

Zusammenfassung. Die Entwicklung der linearen Feldtheorie führt zum Schluss, dass die
kosmologische Struktur der Welt nicht das Ergebnis von Kräften sein kann, sondern umgekehrt die
letzte Voraussetzung dafür bildet, um überhaupt Kräfte definieren zu können.

In diesem Sinne wird daher eine kosmologische Struktur als ' Trägheitswelt' zugrunde gelegt
und anschliessend darüber die lineare Feldtheorie aufgebaut.

1. Einleitung

In einer vorausgehenden Arbeit [1] habe ich ausgeführt, dass man den einfachsten
Zugang zur linearen Feldtheorie erhält, wenn man von pseudoorthogonalen
Koordinaten

(y°,y\y2,y3) (V

einer Lorentzwelt ausgeht und anschliessend krummlinige Koordinaten-' Parameter''-
x°, x1, x2, x3 gemäss

y*-=y\x»,xL,x2,x3) (A 0,l,2,3) (2)

einführt. Dabei bedeutet y° die Zeit, falls man die Lichtgeschwindigkeit c 1 setzt.
Den Komplex aller Ableitungen

dyx^£ (3)

habe ich als 'Trägheitsmatrix' bezeichnet.
Die Differentialformen

dyk tk\adxu (4)

sind also totale Differentiale.
Die zur Lorentzwelt gehörige metrische Grundform wird gegeben durch

ds2 exdy'tdya (b)

und geht daher nach (4) über in
ds2 Ltllvdx"dxv (6)

mit

L„=eJ*-„t*-. (6')
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Der Leitgedanke der Theorie kann nun wie folgt umschrieben werden : Primär werden
die totalen Differentialformen (4) durch allgemeine lineare Differentialformen

g*.=£*:„**" (7)

ersetzt. Sekundär geht also die Grundform (5) über in

ds2 e.g'-g'; (80)

explizit also in

ds2 G<llydxudxv (8)

mit

G^ e*g*:ug%- (8')

Sekundär wird also eine Riemannmetrik induziert.
Die weitere Entwicklung erfordert, dass man die lineare Gruppe der Formentransformationen

(Lorentzgruppe) von der Gruppe aller Parametertransformationen
trennt. Die der Formengruppe dienlichen Zeiger stehen links vom Komma, die der
Parametergruppe dienlichen rechts.

Die 'Basismatrix' \\gx;J\, also die Matrix der Formen (7), kann natürlich immer
durch den Ansatz

g";» tK;*h:% (9)

auf eine nichtsinguläre Trägheitsmatrix zurückgeführt werden. Offenbar muss man
bei jeder konkreten Aufgabe zuerst die geeigneten Parameter gemäss (2) einbringen
und damit nach (3) auch die Trägheitsmatrix. Die entscheidenden Unbekannten sind
daher die Komponenten des Parametertensors h\k/u. Dementsprechend habe ich die
Matrix

ll*::;ll (io)

als 'Kernmatrix' bezeichnet.
Bedeutet A\k/„ die zum Element h[x-„ gehörige Unterdeterminante und A die

Determinante von (10), so werden durch

2i-xf,

W.*-J- (10')

die Elemente der Transponierten der Inversen von (10) definiert. Die Matrix

l|A;/|| (ÏÔ)

bezeichne ich daher kurz als die 'Transverse' der Kernmatrix (10).
Aus dem Gesagten geht hervor, dass man zuerst die Lorentzwelt mitsamt dem

gewünschten Parametersystem vorgeben muss, um dann anschliessend das Feld
gemäss (9) in die Lorentzwelt einzubetten.

Für das in [1] beschriebene und in allen meinen früheren Arbeiten mit der einzigen
Ausnahme [2] verwendete Modell der linearen Feldtheorie bildet also die Lorentzwelt
gleichsam das kosmologische Knochengerüst. Inskünftig werde ich diesen Sachverhalt
kurz wie folgt ausdrücken: Die Lorentzwelt ist die 'Trägheitswelt' des beschriebenen
Modells.
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Die Notwendigkeit dieses Begriffs kann durch folgende Feststellungen belegt
werden : Verzichtet man auf die Trägheitsmatrix und operiert also nur mit der
Basismatrix, so kann man auf strenge Lösungen stossen, die ganz unwahrscheinlich verzerrte
Räume liefern. Die Vorstellung einer reinen Vakuumsdynamik erweckt also erhebliche
Bedenken. Mathematisch betrachtet : Durch Differentialgleichungen allein kann man
keine globale Entscheidung treffen. Raumverzerrungen kann man vermeiden, wenn
man als Grenzbedingung Anpassung an die Trägheitswelt fordert.

Aus der Literatur [3] kann man entnehmen, dass man auch im Bereich der
quadratischen Feldtheorie auf unwahrscheinliche Raumverzerrungen gestossen ist. Es
wird aber kein Korrektiv erwähnt.

Der Hauptvorteil des beschriebenen Modells beruht offenbar auf der Ebenheit
seiner Trägheitswelt. Ihm steht aber der Nachteil gegenüber, dass die unbezweifelbare
systematische Rotverschiebung nicht hergeleitet werden kann.

Alle Modelle mit systematischer Rotverschiebung gründen sich auf dasFriedman-
'sche Linienelement, dessen räumlichen Kern die S3(3-Sphäre) bildet. Es stellt sich
daher die Frage, ob die lineare Feldtheorie auf solche Modelle übertragen werden kann.
Einen ersten Beitrag dazu habe ich in [2] geliefert, mich dabei aber ganz auf das

Kosmologische beschränkt.
In der vorliegenden Arbeit will ich nun den Gegenstand ausführlicher behandeln

und zwar anhand eines Beispiels von ausgezeichneter Symmetrie, nämlich der Desit-
terwelt. Der dazu passende Titel würde also lauten: Die Desitterwelt als Trägheitswelt
der linearen Feldtheorie.

Aus diesem Beispiel ist dann zu entnehmen, wie man in anderen Fällen vorgehen
kann.

2. Definition der Desitterwelt

Der 'Kegelschnitt'

Q(y) esy2 +y2+ y\ +y\-y2 a2 (10)

im fünfdimensionalen Euklidischen Raum mit der metrischen Grundform

dS2 -Q(dy) (lx)

ist eine metrisch homogene vierdimensionale Riemann'sche Mannigfaltigkeit mit
einer positiven und drei negativen Dimensionen.

Zwecks Parameterwahl setzen wir vorerst

y( «z(CosT (i l,2,3,4)^

y5 a Sin t } (20)

dS ads

und erhalten

to(z) z\ + z\ + z\ + z\ 1 (2X)

und

ds2 dr2 - Cos2 r • to(dz). (22)
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Hierauf führen wir in der S3(2X) Polarkoordinaten ein :

zx x sin p sin ê cos 9
z2 y sin p sin ê sin cp

z3= z sin p cos &

z.=u cos p.

(30)

Die Grundform (22) verwandelt sich dadurch in

ds2 dr2 - Cos2 r da2 (3X)

mit
da2 dp2 + sin2 p(d&2 + sin2 ê dcp2). (32)

Die Desitterwelt ist damit geometrisch definiert und mit den dimensionslosen
Polarparametern t, p, ¦& und cp versehen. Doch das in der Einleitung skizzierte Verfahren
kann nicht zum Ziel führen, weil den 5 Koordinaten y nur 4 Parameter zur Verfügung
stehen.

Um also die lineare Feldtheorie zu übertragen, muss man sich zuerst 4 lineare
Differentialformen der 4 Parameter verschaffen oder - anders ausgedrückt - 4
unabhängige Vektorfelder innerhalb der Desitterwelt. Eines dieser Vektorfelder muss
zeitartig sein, die 3 restlichen dagegen raumartig. Offenbar muss man weiter verlangen,
dass die raumartigen Vektorfelder in jedem Punkt der 3-Sphäre (S3) ein reguläres
Dreibein liefern oder - wie der Topologe sagt - 'parallelisierbar' sind.

Es ist nun ein glücklicher Umstand, dass die S3 diese überaus seltene Eigenschaft
besitzt oder - anschaulich ausgedrückt - wirbelfreie Vektorfelder zulässt.

3. Parallelisierung der S3

Nach Abschnitt 2(2t) und (30) sind x, y, z, u orthogonale Koordinaten einer S3

vom Radius 1 in einem vierdimensionalen Euklidischen Raum EA.
Wir betrachten nun das Vierbein

(1)

das offenbar ein orthogonales Einheitssystem in diesem E4 darstellt.
Wählen wir jetzt u als Radialvektor, so liefern die Vektoren x, n, 3 ein

orthogonales Tangentendreibein, falls man sie parallel mit sich selbst in die Spitze von ù
verschiebt. Um dieses Dreibein vermittels der Parameter innerhalb der S3 darzustellen,
machen wir folgenden Ansatz :

du

J- A1ï, (2X)
da,

du
— X2t), (22)
aa2

y,

-*)y
z, —u,

ü —Xy,
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du
— A35.
da3

Mit den Abkürzungen

\t- P- ~)= iPi'.*i".9t') ii L2,3)
yacTj flo"j ao-j/ J

(2a)

(2')

erhalten wir für jeden Index i 4 homogene lineare Gleichungen vom Range 3 für die 4

Unbekannten p,-, §,•, 9l- und A;.
Setzen wir X, A2 A3 —1, so repräsentieren die Lösungen 3 Einheitsvektoren

in der S3 gemäss folgender Zusammenstellung :

pi'=p':i
sin p&i' =;/>'; 2

sin p sin ê9c =p']3 (i= 1,2,3).

(3o)

Die rechten Seiten ergeben miteinander eine orthogonale Einheitsmatrix \\pl\k\\, deren
Komponenten aus folgender Tabelle zu entnehmen sind.

pl\x sin ê cos 9
pi',2 cos P cos $ cos cp + sin p sin 93

pl\ 3 sin p cos # cos çp — cos p sin 93

(3i)

p2\x sin')? sin 99

p2\2 cos p cos # sin 99 — sin p cos 9?
'

/>2; 3 sin p cos # sin 93 + cos p cos 93

(32

^>3; COS û

',2

^3;3 —sinpsin$.
p3\2 —cos p sin $ (3a)

Bezeichnen wir auch hier die transverse Matrix mit \\pi'k\\ so gilt natürlich die
Gleichung

Pi',k PlA-

Nützlich sind weiter folgende Ableitungsrelationen :

dpl\i sin p dpl\ x\

(Ao)

p''2 cosp-
dff sin# d9

Pl;3 '
3p

(*i)
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Im nächsten Abschnitt benötigen wir die partiellen Ableitungen der pl\k dargestellt
als lineare Kombinationen aus den pl\x pl\2 und^>';3:

spl-,i

dp

dP'li
d&

¥'.i
dcp

dpl\2

dp

de
SPl'.2

de

dp'A

dp

Wa
d&

0

cos ppl\2 + sin pp'-3

sin$(—sinp^>';2 + cosp^>';3)

_pt.

¦¦—cos pp1;.

sin p sin ffp'ix +cosv^p';3

P': \
¦¦—sin pp';.

(«i

(52)

(53)

cospsin^''! — cos-iTp'-2
d9 ' ' J

Schliesslich rändern wir noch die Matrix der pl\k durch die Festsetzungen

£% i; P':o P°:k o,

und erhalten die vierreihige Matrix \\px;u\\ mit der Eigenschaft

PxA=pk:»-
Damit sind Hilfsmittel bereitgestellt, um für die Desitterwelt eine Trägheitsmatrix zu
definieren.

(60

(«i)

4. Die Trägheitsmatrix
Wir setzen

* ,'(1 '-vtP '.vt

mit

L, Cost

L2 Cos t sin p

L3 Cos t sin p sin &

(lo)

(li)
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Dabei ist p bei Lß nur ein Begleitzeiger zum Parameterzeiger p bei p und wird daher
bei der Anwendung der Summationsvorschrift nicht mitgezählt.

Als erste Folge ergeben sich

<% i; t2:o t°:k o. (12)

Weiter folgt

t,-» L»pk;» (20)

mit

L» L-7 (2X)

und

to,° l; ti:o t0;k 0. (22)

Gestützt auf die so festgelegte Trägheitsmatrix definieren wir nun die ' Trägheitsformen'

durch

tx-sP:„dxu (30)

und

x° t; x1 p; x2 §; x3 9. (3X)

Die ' Trägheitsmetrik' ist somit gegeben durch

ds2 ej"-tx-, (A0)

nach (30) also durch

ds2 LtPadx''dx<'

*-,t>a — 6tz1' ,pl
(4i)

(A2)

Die weitere Berechnung aufgrund von (10) ergibt schliesslich

T — T 2- I — —I 2-

L,ea 0 (p#a)

explizit also

ds2 d-r2- Cos2 rda2, (A3)

d.h. die metrische Grundform der Desitterwelt gemäss Abschnitt 2(30), (3,).
Die Formen (30) sind keine totalen Differentiale und eine Aufspaltung der

Ableitungen der P\ „ in yA;„vund ZA;„V führt nicht zum Ziel.
Es empfiehlt sich daher, alle dP\ J dx" ^ 0 linear aus den tx\ u zu kombinieren.

Gestützt auf Abschnitt 3 (AX)-(A3) findet man

dtl-k
-z^; A»kïPn, (bo)
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wobei also rechts über n von 1-3 summiert wird. Für die Koeffizienten rechts ergibt
sich folgende Zusammenstellung :

A»k0 8\Tgrr (b,)

A\22 —sin p cos p

A\33 —sinpcospsin2#\ /5

A233 —sin # cos #

^2i2 ^2ii=cotgp

^3i3 ^33i=cotgp } (6j

^323 ;l332 COtg#

A\23 —A\zi sin2 p sin # |

A2:3X -A2\3 sin# j (54)

A3;x2 -A3;2,=sin-'-ft

Da wir nur die nichtverschwindenden Koeffizienten notiert haben, beachte man
in der Gruppe (bx) die latente Asymmetrie in den unteren Zeigern, nämlich A"ok 0.

Mit der Abkürzung
dP-

*~-S? Wo)

definieren wir noch das Symbol

«-.7^ *.;**!: y- (61)

Seine Auswertung gemäss (50) liefert

H--v Axài. (62)

5. Die Basismatrix
Gestützt auf die Desitterwelt als Trägheitswelt definieren wir nun eine

Basismatrix

g*:„ «*:.*¦% ih)
die gestattet, einen Energieimpulstensor zu konstruiernen.

Dabei bilden, wie schon in der Einleitung erwähnt, die h\x-. einen gemischten
Parametertensor 2. Stufe, den wir 'Kerntensor' nennen wollen.

Aus (10) folgt unmittelbar

gA?^;aÄ;;», (lx)

worin die 'Transverse' h\;\ zu h\\ schon durch Abschnitt 1 (10') definiert worden ist.
Der durch die Basis induzierte metrische Tensor wird gegeben durch

G.^ e.g':„g':, (2o)
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und seine Auswertung liefert

G „ £„*;%*;*; (2X)

gemäss Abschnitt 4 (4X).

Entsprechend folgen aus (lf)
G. *» «*«'«:*«'«: * i2^

und

G-^ L-^h:/.h:„\ (23)

Beachtet man nun, dass in den zugrunde gelegten Polarparametern der Tensor
L pa sich gemäss Abschnitt 4 (42) spezialisiert, so erhält man für den metrischen
Tensor die vereinfachten Darstellungen

G,„, a L „*•%*;% (3o)

und

G'«' L'mÂ;j*^ (3X)

Dabei mögen anschliessend noch die expliziten Koeffizienten Lpp Platz finden:

L -1 ^
^-,00 — l
L 1X —Cos2 t
L 22 —Cos2 t sin2 p

L_ 33 —Cos2 t sin2 p sin2 ê

und

L-'^L:},. (33)

Bezeichnen wir schliesslich die Determinante der Basismatrix mit g und diejenige
der Kernmatrix mit d(h) so folgt aus (20)

g="S~G. (40)

und aus (2X)

g=V^Ld(h). (Ax)

6. Die Feldstärken

Gestützt auf die Basismatrix gA; B
definieren wir jetzt die Feldstärken durch die

Identität

f,.. i(^JjtlA\ (l)f-""-i\dx- dx")' (lo)

Diese Definition stimmt formal genau überein mit derjenigen, welche in [1]
Abschnitt 2 (12!) vorgeschlagen worden ist. Dass in den beiden Fällen verschiedene
Trägheitswelten zugrunde liegen, tritt also formal nicht in Erscheinung.

(32)
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Hieraus ergibt sich die wichtige Folgerung, dass alle Relationen, die man allein
gestützt auf die Basismatrix herleiten kann, von der zugrunde liegenden Trägheitswelt
unabhängig sind. Natürlich muss man dabei stillschweigend voraussetzen, dass in allen
Fällen Trägheitsmatrix und Kernmatrix den Rang 4 haben.

Wie in [1] Abschnitt 2 (122) definieren wir weiter den Tensor

So geschrieben besitzt er auch die eben geschilderten Vorzüge des Tensors (10).

Jetzt aber führen wir gemäss Abschnitt 5 (10) und (lx) statt gXitU explizit P^ „ und
A;Ai ein. Vermittels einschlägiger früherer Formeln ergibt sich folgende Darstellung
für den Tensor (lx):

dh «¦ dh: ?„¦ \
f',k^&,«k\~^~~^r (20)

+t'y,kßA-t\abikßu)
Darin sind die t\x- die für eine beliebig vorgegebene Trägheitsmatrix tx;ß durch
Abschnitt 4 (60) und (6X) definierten Symbole.

Speziell im Falle der Desitterwelt erhalten wir nach Abschnitt 4 (62) statt (20) den
Tensor

'dh;\ dh:*z

/;^fe{ Sx" dx" J; (2l)

M'èiWi-A'.ah-.'.i,
wo nun die ^-Koeffizienten aus Abschnitt 4 (5,)-(54) zu entnehmen sind.

Da wir im nächsten Paragraphen die Feldgleichungen behandeln, empfiehlt es

sich, hier noch die wichtigsten Formeln der Rechentechnik zusammen zu stellen.
Für die Determinante g der Basismatrix gilt

Sg\
Durch

(30)

gx:,gj: K (3i)

resp.

g7ngv." 8l (32)

sind die Zeilen - resp. Spalten - relationen der Basismatrix gegeben.
Weiter gelten die Ableitungsformeln

dg*,ß

dgx:„
"

dG-*ß

-gx'/gj" (Ao)

exMgx:t + 8»ßgx:a) (4x)

-(G'^g^ + G'^g,-») (A2)
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sowie

Sf'AßY

J8ëx7
\ dx"

und mit

SU

A\gVx(8"8;-8"y8l),

(dg¦k,

dx"

hi8lgv:-8ig,:").

(ßo)

(5t)

(52)

Weiter mögen noch die Regeln betreffend die Zeigerverschiebungen Platz finden.
Das Herauf- und Herunterschieben der Formenzeiger geschieht mit Hilfe des

Eisenhardt'schen Tensors

„Xu -

1 0 0 0

0--1 0 0

0 0 -1 0

0 0 0 -1

°nU (60)

für den aber die Abkürzungen

p™ p.^ exx eA (A 0,l,2,3)
für die Hauptdiagonale genügen.

Nach den ausreichenden Mustern

Tx,

und

exTx-

(66)

(6i)

(62

ist also keilte Summation erforderlich.
Das Herauf- und Herunterschieben der Parameterzeiger geschieht wie in der

quadratischen Feldtheorie vermittels des metrischen Tensors nach den Mustern

T-p G-»*T

und

T,p=G,Pr,T'

(7i)

(72)

Die horizontale Zeigerverschiebung habe ich in [4] Abschnitt 2 beschrieben. Sie
ist für die lineare Feldtheorie charakteristisch und soll daher zur Erleichterung des
Lesers hier noch einmal erläutert werden.

In einem voll ausgeschriebenen Tensor der linearen Feldtheorie stehen nie zwei
Zeiger übereinander. Ein einzelner Zeiger beansprucht daher immer eine zweistufige
Spalte, in der er entweder oben oder unten steht. Das Zeigersymbol eines Tensors mit l
Formenzeigern und p Parameterzeigern ist also immer eine Zeile von l + p zweistufigen
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Spalten, von denen die Formenspalten links, die Parameterspalten rechts vom Komma
stehen.

Bei einer einfachen horizontalen Zeigerverschiebung müssen daher immer alle
Spalten starr miteinander um eine Stelle entweder nach links oder nach rechts
verschoben werden.

Dabei kann man es immer so einrichten, dass die der Kommalücke anliegenden
Zeiger auf gleicher Höhe stehen. Man hat dann nur noch den horizontalen Uebergang
über das Komma zu definieren. Zu diesem Zweck geügen die folgenden Muster :

gV,pT,na=Tx,a (8X)

gk;PTx,a=Til>a (82)

gx.pT,pa=Tx.a (gl)

gx'>Tx-°=T-<<°. (82)

7. Die Feldgleichungen

Die wichtigsten Invarianten der linearen Feldtheorie sind drei aus den Feldstärken
aufgebaute quadratische Formen, nämlich

Hi=f;'i-f;a,y, (lt)

H2=f'*h-f-.*a, (12)

H3=f:.i,if-J'i. ih)

Dabei ist die Summationsvorschrift dahin zu interpretieren, dass man die Zeiger et, ß,

y unabhängig von einander die Ziffern 0, 1, 2, 3 durchlaufen lässt.
Jede dieser Invarianten besteht daher formal aus 64 Gliedern, von denen aber

ein Teil nach Massgabe der durch die Trägheitsmatrix und die gewählte Kernmatrix
erzeugten Symmetrien ausgeschieden wird.

Als Wirkungsfunktion für die Gravitation massgebend ist die Kombination.

H, m \H, +H2- 2H3 (2)

Für das Bestehen von kovarianten Energie-Impuls-Gleichungen ausschlaggebend
ist lediglich die Voraussetzung, dass eine invariante quadratische Form der Feldstärken
vorliegt. Mit anderen Worten, jede lineare Kombination mit konstanten Koeffizienten

H=A,H,+A2H2 + A3H3 (3)

liefert Gleichungen der erwähnten Art.
Wir können daher die in [1] Abschnitt 3 (l)-(7) auf die Lorentz- Trägheitswelt

gegründeten Entwicklungen formal ungeändert auf die Desitter- Trägheitswelt
gründen.

Wir wählen also irgend ein H gemäss (3) als Wirkungsfunktion und notieren die
zugeordnete Wirkungsdichte

d^Hg (Ao)

Die zu (40) gehörigen Feldgleichungen haben dann folgende Gestalt :

ds,'"'"
5A.,* -^-SA;" 0. (Ax)
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Dabei bedeuten

%V\ (42)

dx"

die 'Quellentensor-Dichte' und

"-Sc; «•

die Energieimpuls-Dichte des Feldes.
Die zu diesen Dichten gehörigen Tensoren sind

dH
s--""" ~«f¥*l <«

x
dx"

und

Entscheidend für das Bestehen differentieller Erhaltungssätze ist nun die Aussage,
dass der Tensor (42) und mit ihm die Dichte (42) antisymmetrisch sind in den Zeigern
p und v für jedes H gemäss (3).

Bildet man nämlich die Divergenz von 9)'x"t so liefert die Gleichung (4,)

dZy," J2 *vr 9Sa:"_0
dx" ~ dx" dx" dx"

nach der erwähnten Aussage also.

3«..»
0, (5)

dx"

d.h. den differentiellen Erhaltungssatz.
Notwendig und hinreichend zum Beweis der entscheidenden Aussage ist offenbar

der Nachweis, dass diese Aussage für die einzelnen Invarianten Hx, H2, H3 zutrifft. Zu
diesem Zweck muss man den Tensor (42) für jede der genannten Invarianten berechnen,
gestützt auf Abschnitt 6, (30)-(82).

Die Berechnung ergibt

c ,«v Of uv \"lX, 4/A

s2ï"~gx:'(f'"-'-f?-:à\ (ßi)

Hx-r^gx/r-gx-jf''1 I

woraus die behauptete Antisymmetrie unmittelbar ersichtlich ist.
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Für die entsprechenden Energie-Impulstensoren erhält man

Si x\ " -Agx, V. kßif' *" " + gx,"Hi 1

s2a;" -Hxjf;wf:..'. + 2gA;v/:Mf\ßr.Ag,;"H2 \ (62)

Sa,;" *gx\"f\,kßf-ß - zfxf + gx:»^.

Die genaue Uebereinstimmung dieser Identitäten mit den in [1] Abschnitt 3 (6X) und
(62) mitgeteilten war zu erwarten. Unsichtbar aber bleibt der wichtige Unterschied,
dass in die Basismatrix Abschnitt 5 (12) jetzt die Trägheitsmatrix der Desitterwelt an
die Stelle derjenigen der Lorentzwelt gesetzt werden muss.

8. Das Grenzfeld

Wählen wir die Einheitsmatrix als Kernmatrix, setzen wir also

h;x^8x, (1)

so geht die Basismatrix nach Definition Abschnitt 5 (10) über in die Trägheitsmatrix
der Desitterwelt, explizit also in Abschnitt 4 (10) und (10).

Die zugehörigen Feldstärken erhält man, wen man (1) in Abschnitt 6 (2,) einsetzt :

f'.'it^iiÄ^-A'-nA. (20)

Gestützt auf Abschnitt 4 (51)-(52) notieren wir nur alle nichtverschwindenden
Komponenten und erhalten

f:l.ôi=f:26i=f:3ôi $TgT, (2X)

sowie

/; ]23 —sin2 S sin ê

f.23X -sin& } (22)

/•^ii^-sin-1^
Im Gegensatz zu diesem Ergebnis steht die Tatsache, dass in der Lorentzwelt alle

aus (20) entspringenden Komponenten verschwinden. Zwischen den beiden Welten
besteht also ein wichtiger Unterschied, den wir vermittels folgender Definition formulierbar

machen wollen :

Das 'Grenzfeld' einer Trägheitswelt ist der Komplex aller nicht
verschwindenden Feldstärken. (3)

Ist das Grenzfeld einer Trägheitswelt nicht Null, so gehört es nicht zu einer
Lösung der Feldgleichungen, sondern liefert lediglich die Grenzwerte, denen sich die
Feldstärken einer Lösung beim Grenzübergang A;A^ -> 8X nähern müssen.

Es empfiehlt sich daher, den Energie-Impulstensor

Six'," iSili;" + S2x:"-2S3k-" (4)

des Grenzfeldes für den Fall der Desitterwelt zu berechnen. Vermittels der Identitäten
(1), (2X) und (22) muss man also die Invarianten Abschnitt 7 (lx)—(13) und die Tensoren
Abschnitt 7 (62) spezialisieren und anschliessend die letzteren gemäss (4) kombinieren.
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Es ergeben sich folgende Werte :

Sio] 3 (50)

S,o;* 0 (bx)

SIt-° 0 (b2)

Sn'* -h:k (53)

Der Volumfaktor g spezialisiert sich nach Abschnitt 5 (4!) auf

g Cos3 t sin2 p sin §

und für die Tensordichten

ix, —•-'ix, g

reduzieren sich die differentiellen Erhaltungssätze auf die 3 verschwindenden
Divergenzen

aSji-1 d<ZIt-2

~t-+-dt ° ®

Die Gleichungen (50) und (53) gelten nur für die dimensionslose Grundform
Abschnitt 2 (3X) und (32), nämlich

ds2 dr2-Cos2 r da2. (70)

Tritt an deren Stelle die absolute Grundform

dS2=a2ds2, (7i)

so gehen (50) und (53) über in

3
Si°'.0=72 (8o)

und
—t •*

Die kosmologische Konstante der Desitterwelt erscheint also in (80) als Grenzenergiedichte.

Das Vorzeichen der Wirkungsfunktion H, ist durch Abschnitt 7 (2) so festgelegt,
wie es dem Bedürfnis einer reinen Feldtheorie entspricht. Sollte sich aber herausstellen,
dass der phänomenologische Energietensor vorderhand unentbehrlich ist - Gründe
sprechen dafür - so muss das entgegengesetzte Vorzeichen gewählt werden (vgl. [1]
Abschnitt 3).

9. Ergänzende Bemerkungen

Nach dem Vorausgehenden ist klar, dass jede der in [2] angegebenen kosmolo-
fischen Lösungen im Prinzip als Trägheitswelt für die lineare Feldtheorie in Betracht
gezogen werden kann. Jetzt stellt sich die Frage, ob es möglich ist, diese Lösungen zu
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bewerten. Tatsächlich existiert ein Kriterium, das gestattat, die Lösungen geometrisch
zu qualifizieren.

Dieses Kriterium wird geliefert durch die exakte Darstellung einer
elektromagnetischen Welle gemäss folgendem Ansatz. Vom Viererpotential

(r.O^lfjr.1)
sei nur die letzte Komponente von Null verschieden und einzig abhängig vom
Zeitparameter t und vom Distanzparameter p gemäss

9.3 9ir,p). (2)

Für eine beliebige Friedman'sche Trägheitswelt tritt nun anstelle von Abschnitte
2 (3X) und (32) die Definition

ds2 dr2 - R2(T)da2 (3X)

mit
da2 dp2 + sin2 p(dff2 + sin2 &d9). (32)

Dabei bedeutet R(r) den dimensionslosen Radius der 3-Sphäre. Durch diese Angaben
ist die elektromagnetische Welle bestimmt.

Zur Diskussion der Lösung benötigt man noch die Gleichung der Lichtbewegung.
Man erhält sie durch Nullsetzen von (3X) und kann sie wegen des Fehlens von $ und 9
schreiben in der Gestalt

dr - R(r)dp 0. (4)

Die Berechnungen zeigen nun, dass einzig die Desitterwelt im engsten Sinne der
Wortes vor allen übrigen Friedmanwelten ausgezeichnet ist durch einen befriedigenden
Zusammenhang zwischen den Parametern t und p. Dieser Zusammenhang beruht auf
dem Umstand, dass einzig durch die Desitterwelt das Prinzip der konstanten Krümmung

auf 4 Dimensionen erweitert wird.
Ich begnüge mich daher, die Lösung für die Desitterwelt anzugeben. Wir setzen

jetzt also

R(t)=Cost (b0)

und erhalten nach Unterdrückung der Phasenkonstanten die Lösung

p C cos (i>0(arc sin Tgr) — p)). (bx)

Hierin ist v0 die Frequenz der Lichtwelle im Ursprung t p 0, denn für kleine t und
p geht (5jl) über in

P Ccos(v0(r-p)). (bx')

Für die Lichtbewegung ergibt sich aus (4) und (50)

p arctg(Sin t)
und daraus weiter

tg p Sin t
1

COSp -Cost

sinp Tgr
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also schliesslich

p arc sin (Tgr). (b2)

In der nächsten Umgebung desjenigen Weltpunktes, den die Lichtwelle im
Zeitpunkt r erreicht, schreiben wir daher die Lösung in der Gestalt

p Ccos(v0(arcsin(Tg(T + e)) - arcsin(Tg(T + v)))). (53)

Dabei sind e und p sehr kleine Zahlen.
In erster Näherung aber gelten

Tg(r + e) Tgr + ¦

Cos2-

und

aresin [Tgr + arcsin(Tgr) + -—
Cos^ t / Cos ;

Wir erhalten daher für p zur Zeit r die Näherung

P Ccos(vne-^-\ (53')
\ Cos t /

(54

Für die zugehörige Frequenz v gilt also die Gleichung

"o
v

Cost

in der sich nach Max von Laue die exakte Deutung der Hubble'sehen Rotverschiebung
ausspricht [5].

Aus der Gleichung (52) schliesslich ergibt sich als sehr beachtenswerte Folgerung
der Grenzwert

limp(T)=^. (6)

Wir richten daher jetzt unsere Aufmerksamkeit auf die räumliche 3-Sphäre, kurz
die S3, und bezeichnen den Pol p 0 mit P, den Aequator p ttJ2 mit A und den
Gegenpol p tt mit P. Der Aequator teilt also die S3 in 2 Hälften. Diejenige mit dem
Zentrum P heisse HA, die mit dem Zentrum P entsprechend HA.

Aus (6) ergibt sich nun folgende Aussage : Ein Beobachter in P kann mit einem
im Moment t 0 abgegebenen Lichtsignal in einer endlichen Zeit jede Stelle im Inneren
von HA erreichen, jedoch keine andere Stelle der 53.

Entsprechend ergibt sich natürlich das Gegenstück: Ein Beobachter in P kann
im Moment t 0 von einem Lichtsignal erreicht werden, das vor einer endlichen
Zeit an irgend einer Stelle im Inneren von HA abgegeben worden ist, jedoch nicht
an einer anderen Stelle der 53.

Von der S3 bleibt also von P aus eine abgeschlossene Hälfte immer unerreichbar
resp. unsichtbar.

Identifiziert man jetzt jeden Punkt P mit seinem Gegenpol P, so erhält man die
'projektive S3 und verfügt damit über einen Raum, in dem vom Pol P aus nur der
Aequator als Horizont ewig unsichtbar respektive unerreichbar bleibt.
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Durch diese sozusagen vollkommene Durchleuchtbarkeit ist also die Desitterwelt
allen übrigen Modellen überlegen. Hinzu kommt jetzt, dass sie im Rahmen der linearen
Feldtheorie bei einer Belegung durch einen Kerntensor h\ -•. ^ 8X auch nicht mehr leer
sein kann.
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