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Helvetica Physica Acta
Vol. 46, 1973. Birkhiuser Verlag Basel

Die Tragheitswelt der Linearen Feldtheorie

von Willy Scherrer

Bern, Justingerweg 18
(20.1.73)

Zusammenfassung. Die Entwicklung der linearen Feldtheorie filhrt zum Schluss, dass die
kosmologische Struktur der Welt nicht das Ergebnis von Kriften sein kann, sondern umgekehrt die
letzte Voraussetzung dafiir bildet, um iberhaupt Kréfte definieren zu koénnen.

In diesem Sinne wird daher eine kosmologische Struktur als ‘ Trdgheitswelt’ zugrunde gelegt
und anschliessend dariiber die lineare Feldtheorie aufgebaut.

1. Einleitung

In einer vorausgehenden Arbeit [1] habe ich ausgefiihrt, dass man den einfachsten
Zugang zur linearen Feldtheorie erhdlt, wenn man von pseudoorthogonalen
Koordinaten |

02249257 (1)
einer Lorentzwelt ausgeht und anschliessend krummlinige Koordinaten—' Parameter'—
%0, x1, x2, x3 gemiss

h—ph(xP 21 %% 2% (A=0,1,2,3) (2)

einfithrt. Dabei bedeutet y° die Zeit, falls man die Lichtgeschwindigkeit ¢ =1 setzt.
Den Komplex aller Ableitungen

A

), = ?a_ﬁ;_ 3)
habe ich als ‘Trigheitsmatrix’ bezeichnet.

Die Differentialformen

dy* =t dx* ‘ (4)
sind also totale Differentiale.

Die zur Lorentzwelt gehérige metrische Grundform wird gegeben durch

ds? = e dy*dy* (5)
und geht daher nach (4) iiber in

ds?= L ,, dx"dx (6)
mit '

L, =e,t%  t%,. (6)
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Der Leitgedanke der Theorie kann nun wie folgt umschrieben werden: Primdr werden
die totalen Differentialformen (4) durch allgemeine lineare Differentialformen

gh=gh,dx" (7)
ersetzt. Sekunddr geht also die Grundform (5) tiber in

ds® =e,g% g™, (8,)
explizit also in

ds?=G_,,dx"dx’ (8)
mit

G uy =€a8% 8% (8

Sekundar wird also eine Riemannmetrik induziert.

- Die weitere Entwicklung erfordert, dass man die lineare Gruppe der Formentrans-
formationen (Lorentzgruppe) von der Gruppe aller Parametertransformationen
trennt. Die der Formengruppe dienlichen Zeiger stehen links vom Komma, die der
Parametergruppe dienlichen rechts.

Die ‘Basismatrix’ ||g*: ||, also die Matrix der Formen (7), kann natiirlich immer
durch den Ansatz

ghu=thah %, 9)

auf eine nichtsinguldre Tragheitsmatrix zuriickgefiihrt werden. Offenbar muss man
bei jeder konkreten Aufgabe zuerst die geeigneten Parameter gemiss (2) einbringen
und damit nach (3) auch die Trigheitsmatrix. Die entscheidenden Unbekannten sind
daher die Komponenten des Parametertensors 4:%. Dementsprechend habe ich die
Matrix

172 %l (10)
als ‘Kernmatrix’ bezeichnet.

Bedeutet 4:#, die zum Element %:*; gehorige Unterdeterminante und 4 die
Determinante von (10), so werden durch

- A3

b= A (10°)
die Elemente der Transponierten der Inversen von (10) definiert. Die Matrix

;32 (10)

bezeichne ich daher kurz als die ‘Transverse’ der Kernmatrix (10),

Aus dem Gesagten geht hervor, dass man zuerst die Lorentzwelt mitsamt dem
gewiinschten Parametersystem vorgeben muss, um dann anschliessend das Feld
gemiss (9) in die Lorentzwelt einzubetten.

Fiir das in [1] beschriebene und in allen meinen fritheren Arbeiten mit der einzigen
Ausnahme [2] verwendete Modell der linearen Feldtheorie bildet also die Lorentzwelt
gleichsam das kosmologische Knochengeriist. Inskiinftig werde ich diesen Sachverhalt
kurz wie folgt ausdriicken: Die Lorentzwelt ist die ‘Trdgheitswelt’ des beschriebenen
Modells.
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Die Notwendigkeit dieses Begriffs kann durch folgende Feststellungen belegt
werden: Verzichtet man auf die Trigheitsmatrix und operiert also nur mit der Basis-
matrix, so kann man auf strenge Losungen stossen, die ganz unwahrscheinlich verzerrte
Réaume liefern. Die Vorstellung einer reinen Vakuumsdynamik erweckt also erhebliche
Bedenken. Mathematisch betrachtet: Durch Differentialgleichungen allein kann man
keine globale Entscheidung treffen. Raumverzerrungen kann man vermeiden, wenn
man als Grenzbedingung Anpassung an die Trigheitswelt fordert.

Aus der Literatur [3] kann man entnehmen, dass man auch im Bereich der quad-
ratischen Feldtheorie auf unwahrscheinliche Raumverzerrungen gestossen ist. Es
wird aber kein Korrektiv erwdhnt.

Der Hauptvorteil des beschriebenen Modells beruht offenbar auf der Ebenheit
seiner Trigheitswelt. IThm steht aber der Nachteil gegeniiber, dass die unbezweifelbare
systematische Rotverschiebung nicht hergeleitet werden kann.

Alle Modelle mit systematischer Rotverschiebung griinden sich auf das Friedman-
‘sche Linienelement, dessen raumlichen Kern die S;(3-Sphire) bildet. Es stellt sich
daher die Frage, ob die lineare Feldtheorie auf solche Modelle iibertragen werden kann.
Einen ersten Beitrag dazu habe ich in [2] geliefert, mich dabei aber ganz auf das
Kosmologische beschrinkt.

In der vorliegenden Arbeit will ich nun den Gegenstand ausfiihrlicher behandeln
und zwar anhand eines Beispiels von ausgezeichneter Symmetrie, ndmlich der Desit-
terwelt. Der dazu passende Titel wiirde also lauten: Die Desitterwelt als Trigheitswelt
der linearen Feldtheorie.

Aus diesem Beispiel ist dann zu entnehmen, wie man in anderen Féllen vorgehen
kann.

2. Definition der Desitterwelt

Der ‘Kegelschnitt’

Qy)=yt+y;+yi+yi—yi=a (Lo)
im fiinfdimensionalen Euklidischen Raum mit der metrischen Grundform

dS? = —Q(dy) (1)

ist eine metrisch homogene vierdimensionale Riemann’sche Mannigfaltigkeit mit
einer positiven und drei negativen Dimensionen.
Zwecks Parameterwahl setzen wir vorerst

yi=az,Cost (1=1,23,4)
ys =a Sint (20)
dS = ads

und erhalten
wiF=Ad+3+3+24=1 (2,)
und

ds?* =dr? — Cos? 7+ w(dz). (2,)
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Hierauf fiihren wir in der S;5(2,) Polarkoordinaten ein:
z; = % = sin p sin ¢ cos ¢
2z, =%y =sinp sin¢ sing

z3=2z=sinp cos P (30)
Z4 = MU = COS p.
Die Grundform (2,) verwandelt sich dadurch in
ds? =dr?* — Cos® rdo? (3,)
mit
do? = dp* + sin? p(d9? + sin? ¢ d?). (3,)

Die Desitterwelt ist damit geometrisch definiert und mit den dimensionslosen
Polarparametern 7, p, # und ¢ versehen. Doch das in der Einleitung skizzierte Verfahren
kann nicht zum Ziel fiihren, weil den 5 Koordinaten y nur 4 Parameter zur Verfiigung
stehen.

Um also die lineare Feldtheorie zu iibertragen, muss man sich zuerst 4 lineare
Differentialformen der 4 Parameter verschaffen oder — anders ausgedriickt — 4
unabhingige Vektorfelder innerhalb der Desitterwelt. Eines dieser Vektorfelder muss
zeitartig sein, die 3 restlichen dagegen raumartig. Offenbar muss man weiter verlangen,
dass die raumartigen Vektorfelder in jedem Punkt der 3-Sphire (S;) ein regulires
Dreibein liefern oder — wie der Topologe sagt — ‘parallelisierbar’ sind.

Es ist nun ein gliicklicher Umstand, dass die S; diese iiberaus seltene Eigenschaft
besitzt oder — anschaulich ausgedriickt — wirbelfreie Vektorfelder zulisst.

3. Parallelisierung der S,

Nach Abschnitt 2(2,) und (3,) sind #, vy, 2, # orthogonale Koordinaten einer S,
vom Radius 1 in einem vierdimensionalen Euklidischen Raum E,.
Wir betrachten nun das Vierbein

i=(x, ¥y, z W)
p=(y, % % =)
3=1(z —u, —% )
= (u, z, —y, —X)
das offenbar ein orthogonales Einheitssystem in diesem E, darstellt.
Wihlen wir jetzt u als Radialvektor, so liefern die Vektoren x, 1, 3 ein ortho-
gonales Tangentendreibein, falls man sie parallel mit sich selbst in die Spitze von 1t

verschiebt. Um dieses Dreibein vermittels der Parameter innerhalb der S; darzustellen,
machen wir folgenden Ansatz:

du
A (2,)
du
—=A0, (2,)

do,
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du

— = A3 2

e 33 (23)
Mit den Abkiirzungen

L T =(ps, 0 ) (1=1,2,3 (2

(da,- o, do—i) (p er) ( )

erhalten wir fiir jeden Index 7 4 homogene lineare Gleichungen vom Range 3 fiir die 4
Unbekannten p;’, 9;*, ¢;» und A,.

Setzen wir A; = A, = A; = —1, so reprisentieren die Lésungen 3 Einheitsvektoren
in der S; gemiss folgender Zusammenstellung:

pPi’ =pi,’1
sin pdy = p-, (30)
sinpsinde; =p=; (1=1,2,3).

Die rechten Seiten ergeben miteinander eine orthogonale Einheitsmatrix ||p%,]|, deren
Komponenten aus folgender Tabelle zu entnehmen sind.

1, o3
pl:, =sin B cos g

P! 2 = cos pcos P cos g + sin psin ¢ (3)
P! 3 =sin pcos ) cos ¢ — cos psin ¢

p?*  =sindsing
p* , = cos pcosPsin g — sin p cos ¢ 32)
p*r 3 =sinpcosdsing + cosp cos ¢

P* 1 =cos?
p3:, =—cospsind (3,)
P33 =—sin psin .

Bezeichnen wir auch hier die transverse Matrix mit [[p,*|| so gilt natiirlich die
Gleichung

Pk =Py (40)

Niitzlich sind weiter folgende Ableitungsrelationen:

op':y  sinpdp',

00  sind dp
0p':,
_ P .

p'ia=cosp

Pi,'3=
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Im nédchsten Abschnitt bendtigen wir die partiellen Ableitungen der p';, dargestellt
als lineare Kombinationen aus den p*:; $%, und p*,:

oph, )

p
op"; :
_5-33. = cospp’, +sinppt, > (51)
FIRE

g -2 — sin(—sinp pir, + COSpPi:3)}

P

P> _ " b

p 3
op':, .
9 oosPP } (5)
opt, : '
g = sinpsin PPt +cosdpiry )
op':s B P \

p 2
op'; g
,Wii = —sin pp';4 > (53)
0p": 5 : ; ;
K = —cos psin#p':; — cos Pp 2 )
Schliesslich randern wir noch die Matrix der p*;, durch die Festsetzungen
plo=1; pho=p"%=0, (60)

und erhalten die vierreihige Matrix ||p* || mit der Eigenschaft

it =" (6,)

Damit sind Hilfsmittel bereitgestellt, um fiir die Desitterwelt eine Trigheitsmatrix zu
definieren.

4. Die Tragheitsmatrix
Wir setzen
t,=L,p*, (1o)

mit
Ly=1
L,=CosT
L, = Cos 7 sin p

L, = Cos rsinpsin ¢
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Dabei ist p bei L, nur ein Begleitzeiger zum Parameterzeiger u bei p und wird daher
bei der Anwendung der Summationsvorschrift nicht mitgezahlt.
Als erste Folge ergeben sich

Pa=1; Pry=12;=0. (1,)
Weiter folgt

b =Lrpyt (20)
mit

e — L—ul (21)
und

t0=1; 0=k =0 (2,)

Gestiitzt auf die so festgelegte Triagheitsmatrix definieren wir nun die ‘Trdgheits-
formen’ durch

th=th  da® (30)
und

=71, 2l=p; =39, P=¢. | (34)

Die ‘Trdgheitsmetrik’ ist somit gegeben durch
ds? = e t*t%, (4,)
nach (34) also durch
ds*=L ,,dx° dx“}
L po=eqt", 1%,
Die weitere Berechnung aufgrund von (1,) ergibt schliesslich
L,oo = Ly%; L= —Lé;
L ,s=0 (p#0) }
explizit also
ds? = dr* — Cos? rda?, | (4,)

d.h. die metrische Grundform der Desitterwelt gemiss Abschnitt 2(3,), (3,).

Die Formen (3;) sind keine totalen Differentiale und eine Aufspaltung der
Ableitungen der #*: , in y*:,, und /%, fiihrt nicht zum Ziel.

Es empfiehlt sich daher, alle 9¢*; ,/9x” #0 linear aus den #*
Gestiitzt auf Abschnitt 3 (4,)—(4;) findet man

att
=it (5)

x zu kombinieren.
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wobei also rechts iiber #» von 1-3 summiert wird. Fiir die Koeffizienten rechts ergibt
sich folgende Zusammenstellung: :

/1'.'126 =8%Tgr (51)

Aty =—sinpcosp
A'33 = —sin p cos psin? & (5,)

A?;; = —sin ¥ cos 9

A?35 = A%5; = cotgp
M35 = A3, =cotgp (53)
A353 = A35; = cotg H

Alyy =—A%3; = sin® psin §

A?3; = —A%3 =sind (54)
A3 =—-A3;; =sin~1 P

Da wir nur die nichtverschwindenden Koeffizienten notiert haben, beachte man

in der Gruppe (5,) die latente Asymmetrie in den unteren Zeigern, ndmlich A", = 0.
Mit der Abkiirzung

A ata: un

0 = P (60)
definieren wir noch das Symbol

bR =t (6,)

Seine Auswertung gemass (5,) liefert

irhin =t (6,)

5. Die Basismatrix

Gestiitzt auf die Desitterwelt als Trigheitswelt definieren wir nun eine Basis-
matrix

A Y (L)

die gestattet, einen Energieimpulstensor zu konstruiernen.

Dabei bilden, wie schon in der Einleitung erwidhnt, die h;ﬁ; einen gemischten
Parametertensor 2. Stufe, den wir ‘Kerntensor’ nennen wollen.

Aus (1) folgt unmittelbar

Gr=teth : (1)

Y ]

worin die ‘Transverse’ /4 zu k%, schon durch Abschnitt 1 (10°) definiert worden ist.
Der durch die Basis induzierte metrische Tensor wird gegeben durch

G, queaga,’uga:v (20)
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und seine Auswertung liefert
G = L.pak',‘.’.&h’:‘.’i (2)

gemdss Abschnitt 4 (4,).
Entsprechend folgen aus (1,)

G,quE“ga,’"g,:" (22)
und
G"™=LP° E;,‘,‘_‘ l;;;,‘_’. (25)

Beachtet man nun, dass in den zugrunde gelegten Polarparametern der Tensor
L ,, sich gemidss Abschnitt 4 (4,) spezialisiert, so erhdlt man fiir den metrischen
Tensor die vereinfachten Darstellungen

G =L ool (30)
und

G = Ls% Jig s B (3,)
Dabei mégen anschliessend noch die expliziten Koeffizienten L ,, Platz finden:

L g=1

L, =—Cos?*r

L ,, =—Cos*rsin?p (32
L 33 =—Cos? 7sin? psin? ¢

und
Lo =L, )

Bezeichnen wir schliesslich die Determinante der Basismatrix mit g und diejenige
der Kernmatrix mit d(%) so folgt aus (2,)

8= —G, (4o)
und aus (2,)
g=V-Ld(h). (4)

6. Die Feldstirken

Gestiitzt auf die Basismatrix g*: , definieren wir jetzt die Feldstdrken durch die
Identitdt

dag*:, ogh
Pl -—=]. (Lo)
ox* ox’
Diese Definition stimmt formal genau iiberein mit derjenigen, welche in [1]
Abschnitt 2 (12,) vorgeschlagen worden ist. Dass in den beiden Fillen verschiedene

Tragheitswelten zugrunde liegen, tritt also formal nicht in Erscheinung.
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Hieraus ergibt sich die wichtige Folgerung, dass alle Relationen, die man allein
gestiitzt auf die Basismatrix herleiten kann, von der zugrunde liegenden Tragheitswelt
unabhingig sind. Natiirlich muss man dabei stillschweigend voraussetzen, dass in allen
Fillen Trigheitsmatrix und Kernmatrix den Rang 4 haben.

Wie in [1] Abschnitt 2 (12,) definieren wir weiter den Tensor

filiv= gl (1,)
So geschrieben besitzt er auch die eben geschilderten Vorziige des Tensors (1,).
Jetzt aber fithren wir gemidss Abschnitt 5 (1,) und (1,) statt g* , explizit #: , und

h:*, ein. Vermittels einschligiger fritherer Formeln ergibt sich folgende Darstellung
fiir den Tensor (1,):

oh: %  oh°;
Fraosth it or o : (2)
0tk = B

Darin sind die #4,; die fiir eine beliebig vorgegebene Trigheitsmatrix ¢, durch
Abschnitt 4 (6,) und (6,) definierten Symbole.

Speziell im Falle der Desitterwelt erhalten wir nach Abschnitt 4 (6,) statt (2,) den
Tensor

ok, %, k%
f:%ﬁ{rz%ﬁ: A oxk o (24)
+ AP — A b8,
wo nun die A-Koeffizienten aus Abschnitt 4 (5,)—(5,) zu entnehmen sind.
Da wir im nichsten Paragraphen die Feldgleichungen behandeln, empfiehlt es

sich, hier noch die wichtigsten Formeln der Rechentechnik zusammen zu stellen.
Fiir die Determinante g der Basismatrix gilt

og
ey =gg." (30)
Durch
ghogu’ =0 (3,)
resp.
g a8t =984 (32)

sind die Zeilen — resp. Spalten — relationen der Basismatrix gegeben.
Weiter gelten die Ableitungsformeln

0g. "

a, —— . B a, n 4
g , CENE L (4o)
G, ,

o == e, (B4gh 5+ S5Eh ) (4,)
s 0
3G =8

=—(G gy + G gy ) (42)

ag;ti "
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sowie
- of:%By
og*:,
3 .
und mit
fra=f" (54)
of

—
{5
oxt

Weiter mogen noch die Regeln betreffend die Zeigerverschiebungen Platz finden.
Das Herauf- und Herunterschieben der Formenzeiger geschieht mit Hilfe des
Eisenhardt’schen Tensors

=4¢:,%(838,— 845},

=3(85gx" —den™).

1 0 0 O
M= (())_1) (; (()) =e,, | (60)
0 0 0-1

fiir den aber die Abkiirzungen
A=ett=¢,=¢, (A=0,1,2,3) (60)

fir die Hauptdiagonale gentigen.
Nach den ausreichenden Mustern

T4 = ¢ T,, (6,)
und |

T, =¢e, T (6,)

ist also keine Summation erforderlich.
Das Herauf- und Herunterschieben der Parameterzeiger geschieht wie in der
quadratischen Feldtheorie vermittels des metrischen Tensors nach den Mustern

To=GosT,, (74)

und
T,=G T (72)

Die horizontale Zeigerverschiebung habe ich in [4] Abschnitt 2 beschrieben. Sie
ist fiir die lineare Feldtheorie charakteristisch und soll daher zur Erleichterung des
Lesers hier noch einmal erldutert werden.

In einem voll ausgeschriebenen Tensor der linearen Feldtheorie stehen nie zwei
Zeiger libereinander. Ein einzelner Zeiger beansprucht daher immer eine zweistufige
Spalte, in der er entweder oben oder unten steht. Das Zeigersymbol eines Tensors mit /
Formenzeigern und p Parameterzeigern ist also immer eine Zeile von / + p zweistufigen
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Spalten, von denen die Formenspalten links, die Parameterspalten rechts vom Komma
stehen.

Bei einer einfachen horizontalen Zeigerverschiebung miissen daher immer alle
Spalten starr miteinander um eine Stelle entweder nach links oder nach rechts
verschoben werden.

Dabei kann man es immer so einrichten, dass die der Kommaliicke anliegenden
Zeiger auf gleicher Hohe stehen. Man hat dann nur noch den horizontalen Uebergang
uber das Komma zu definieren. Zu diesem Zweck getigen die folgenden Muster:

87T ,o=T, , (81)
gll P T, .= T, pa (82)
gh g T#7 =T (8
g0 Tho =T, (82)

7. Die Feldgleichungen

Die wichtigsten Invarianten der linearen Feldtheorie sind drei aus den Feldstarken
aufgebaute quadratische Formen, namlich

Hy=f %15 (1)
H,=f%1"%,, (1)
Hy=f %411, (1,)

Dabei ist die Summationsvorschrift dahin zu interpretieren, dass man die Zeiger «, 3,
y unabhingig von einander die Ziffern 0, 1, 2, 3 durchlaufen lisst.

Jede dieser Invarianten besteht daher formal aus 64 Gliedern, von denen aber
ein Teil nach Massgabe der durch die Triagheitsmatrix und die gewahlte Kernmatrix
erzeugten Symmetrien ausgeschieden wird.

Als Wirkungsfunktion fiir die Gravitation massgebend ist die Kombination.

H,=31H, + H, - 2H, (2)

Fiir das Bestehen von kovarianten Energie-Impuls—-Gleichungen ausschlaggebend
ist lediglich die Voraussetzung, dass eine invariante quadratische Form der Feldstirken
vorliegt. Mit anderen Worten, jede lineare Kombination mit konstanten Koeffizienten

H=AH, + A,H, + A, H, (3)

liefert Gleichungen der erwidhnten Art.

Wir konnen daher die in [1] Abschnitt 3 (1)-(7) auf die Lorentz- Trigheitswelt
gegriindeten Entwicklungen formal ungedndert auf die Desitter- Tragheitswelt
griinden.

Wir wihlen also irgend ein H gemiss (3) als Wirkungsfunktion und notieren die
zugeordnete Wirkungsdichte

H=Hg (40)
Die zu (4,) gehorigen Feldgleichungen haben dann folgende Gestalt:
s
it = — — S," =0, (4,)

ox’
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Dabei bedeuten
0
st = —'Si
3 ag ‘u : (42)
ox"
die ‘Quellentensor—Dichte’ und
09
S, k= 4
. (45)

die Energieimpuls-Dichte des Feldes.
Die zu diesen Dichten gehérigen Tensoren sind

oH
SAZMET
a s M 4/
(axu) 4,)
und
oH ,
SA:ME_a—g;'_’u + 8 4 H. (43")

Entscheidend fiir das Bestehen differentieller Erhaltungssitze ist nun die Aussage,
dass der Tensor (4;) und mit ihm die Dichte (4,) antisymmetrisch sind in den Zeigern
p und v fiir jedes H gemiss (3).

Bildet man ndmlich die Divergenz von $}* so liefert die Gleichung (4,)

0H " syt 9Sy”

- )

ox*  Ox*0x*  Ox*
nach der erwihnten Aussage also.

&P

=0 | 5
ox* ’ (5)

d.h. den differentiellen Erhaltungssatz.

Notwendig und hinreichend zum Beweis der entscheidenden Aussage ist offenbar
der Nachweis, dass diese Aussage fiir die einzelnen Invarianten H,, H,, H, zutrifft. Zu
diesem Zweck muss man den Tensor (43) fiir jede der genannten Invatianten berechnen,
gestiitzt auf Abschnitt 6, (3,)—(82).

Die Berechnung ergibt

Syt =2f
s =g Y _f:‘-"f&) ’ : (6,)
Ssi =gt —gt "

woraus die behauptete Antisymmetrie unmittelbar ersichtlich ist.
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Fiir die entsprechenden Energie-Impulstensoren erhilt man

Siat =42 apf 0 g Hy
San* =222 a0+ 2807 F a1+ 80 H (62)
San* =28 °f i T = 20 f "+ 8u  Hy.
Die genaue Uebereinstimmung dieser Identitaten mit den in [1] Abschnitt 3 (6,) und
(6,) mitgeteilten war zu erwarten. Unsichtbar aber bleibt der wichtige Unterschied,

dass in die Basismatrix Abschnitt 5 (1,) jetzt die Trdgheitsmatrix der Desitterwelt an
die Stelle derjenigen der Lorentzwelt gesetzt werden muss.

8. Das Grenzfeld
Waihlen wir die Einheitsmatrix als Kernmatrix, setzen wir also

. =6k (1)

so geht die Basismatrix nach Definition Abschnitt 5 (1,) tiber in die Trdgheitsmatrix
der Desitterwelt, explizit also in Abschnitt 4 (1,) und (1,).
Die zugehorlgen Feldstarken erhdlt man, wen man (1) in Abschnitt 6 (2,) einsetzt:

filus= o= AAs) (20)

Gestiitzt auf Abschnitt 4 (5,)-(5,) notieren wir nur alle nichtverschwindenden
Komponenten und erhalten

filei=flea=f23=%Tgr (2y)
sowie

fi133 = —sin? § sin

f3i=—sind (2,)

fi3;=—sin"1 4

Im Gegensatz zu diesem Ergebnis steht die Tatsache, dass in der Lorentzwelt alle
aus (2,) entspringenden Komponenten verschwinden. Zwischen den beiden Welten
besteht also ein wichtiger Unterschied, den wir vermittels folgender Definition formu-
lierbar machen wollen:

Das ‘Grenzfeld’ eimer Trigheitswelt ist der Komplex aller nicht
verschwindenden Feldstirken. (3)

Ist das Grenzfeld einer Trigheitswelt nicht Null, so gehort es nicht zu einer
Losung der Feldgleichungen, sondern liefert lediglich die Grenzwerte, denen sich die
Feldstidrken einer Losung beim Grenziibergang A:#; — 8% nihern miissen.

Es empfiehlt sich daher, den Energie-Impulstensor

Sta “E-}S“_:"+S“;“—2S“1“ (4)

des Grenzfeldes fiir den Fall der Desitterwelt zu berechnen. Vermittels der Identitdten
(1), (2;) und (2,) muss man also die Invarianten Abschnitt 7 (1,)—(1;) und die Tensoren
Abschnitt 7 (6,) spezialisieren und anschliessend die letzteren gemiss (4) kombinieren.
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Es ergeben sich folgende Werte:

Sro)°=3 (50)
Sro2k¥=0 (5,)
S1°=0 (5,)
Srik=—t" (53)

Der Volumfaktor g spezialisiert sich nach Abschnitt 5 (4,) auf
g =Cos3 rsin? psin

und fiir die Tensordichten
Sy =S1"g

reduzieren sich die differentiellen Erhaltungssitze auf die 3 verschwindenden
Divergenzen

86”:1 0S;;:?
3 a9

Die Gleichungen (5,) und (5;) gelten nur fiir die dimensionslose Grundform
Abschnitt 2 (3,) und (3,), nimlich

ds? =dr? — Cos? rdo?. (70)

Tritt an deren Stelle die absolute Grundform

—0 (6)

dSZ EaZdSZI (71)
so gehen (5y) und (5,) iiber in
3
Sro; ) (80)
und
k ~ "
S; i 22 (83)

Die kosmologische Konstante der Desitterwelt erscheint also in (8,) als Grenzenergie-
dichte.

Das Vorzeichen der Wirkungsfunktion H, ist durch Abschnitt 7 (2) so festgelegt,
wie es dem Bediirfnis einer reinen Feldtheorie entspricht. Sollte sich aber herausstellen,
dass der phdnomenologische Energietensor vorderhand unentbehrlich ist — Griinde
sprechen dafiir — so muss das entgegengesetzte Vorzeichen gewahlt werden (vgl. [1]
Abschnitt 3).

9. Ergénzeﬁde Bemerkungen

Nach dem Vorausgehenden ist klar, dass jede der in [2] angegebenen kosmolo-
fischen Losungen im Prinzip als Trigheitswelt fiir die lineare Feldtheorie in Betracht
gezogen werden kann. Jetzt stellt sich die Frage, ob es mdglich ist, diese Losungen zu
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bewerten. Tatsichlich existiert ein Kriterium, das gestattat, die Losungen geometrisch
zu qualifizieren.

Dieses Kriterium wird geliefert durch die exakte Darstellung einer elektro-
magnetischen Welle gemiss folgendem Ansatz. Vom Viererpotential

(6,00.19.29.3) (1)

sei nur die letzte Komponente von Null verschieden und einzig abhingig vom Zeit-
parameter 7 und vom Distanzparameter p gemass

b.3= (7, p). (2)

Fiir eine beliebige Friedman’sche Triagheitswelt tritt nun anstelle von Abschnitte
2 (3,) und (3,) die Definition

ds* = dr? — R*(7)do? (34)
mit
da? = dp? + sin? p(dH? + sin? ddg). (3,)

Dabei bedeutet R(r) den dimensionslosen Radius der 3-Sphire. Durch diese Angaben
1st die elektromagnetische Welle bestimmt.,

Zur Diskussion der Lésung bendtigt man noch die Gleichung der Lichtbewegung.
Man erhilt sie durch Nullsetzen von (3,) und kann sie wegen des Fehlens von ¢ und ¢
schreiben in der Gestalt

dr — R(7)dp =0. (4)

Die Berechnungen zeigen nun, dass einzig die Desitterwelt im engsten Sinne der
Wortes vor allen iibrigen Friedmanwelten ausgezeichnet ist durch einen befriedigenden
Zusammenhang zwischen den Parametern = und p. Dieser Zusammenhang beruht auf
dem Umstand, dass einzig durch die Desitterwelt das Prinzip der konstanten Kriim-
mung auf 4 Dimensionen erweitert wird.

Ich begniige mich daher, die Losung fiir die Desitterwelt anzugeben. Wir setzen
jetzt also

R(7) =Cos T (50)
und erhalten nach Unterdriickung der Phasenkonstanten die Lésung
¢ = C cos(vo(arcsin (Tgr) — p)). : (5,)

Hierin ist v, die Frequenz der Lichtwelle im Ursprung = p = 0, denn fiir kleine = und
p geht (5,) liber in

¢ = C cos(vo(T — p)). (51')
Fir die Lichtbewegung ergibt sich aus (4) und (5,)
p = arctg(Sin 7)

und daraus weiter

tgp=Sin~t
1

COS p =
P Cos 7t

sinp =7Tgr
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also schliesslich
p=arcsin(Tg). (5,)

In der niachsten Umgebung desjenigen Weltpunktes, den die Lichtwelle im
Zeitpunkt 7 erreicht, schreiben wir daher die Lésung in der Gestalt

¢ = C cos (vo(arcsin(Tg(r + €)) — arcsin(Tg(r + 7))))- (53)
Dabei sind € und g sehr kleine Zahlen.

In erster Ndherung aber gelten

€
Tg(r+e =Tgr+@2—:

und

): arcsin(Tg7) + ‘ )
Cosr

Wir erhalten daher fiir ¢ zur Zeit = die Ndherung

arc sin (Tgr +

Cos®r

€—7
=C(Ccos - 5,
¢ (Vo Cos 'r) (55
Fiir die zugehorige Frequenz v gilt also die Gleichung
Vo
- 5
" Cost (54)

in der sich nach Max von Laue die exakie Deutung der Hubble'schen Rotverschiebung
ausspricht [5].

Aus der Gleichung (5,) schliesslich ergibt sich als sehr beachtenswerte Folgerung
der Grenzwert J

o

lim p(r) = = - ®)

t—>o 2

Wir richten daher jetzt unsere Aufmerksamkeit auf die riumliche 3-Sphire, kurz
die 53, und bezeichnen den Pol p =0 mit P, den Aequator p==/2 mit 4 und den
Gegenpol p = 7 mit P. Der Aequator teilt also die S, in 2 Hilften. Diejenige mit dem
Zentrum P heisse H ,, die mit dem Zentrum P entsprechend H . :

Aus (6) ergibt sich nun folgende Aussage: Ein Beobachter in P kann mit einem
im Moment = = (0 abgegebenen Lichtsignal in einer endlichen Zeit jede Stelle im Inneren
von H , erreichen, jedoch keine andere Stelle der Sj. .

Entsprechend ergibt sich natiirlich das Gegenstiick: Ein Beobachter in P kann
im Moment =0 von einem Lichtsignal erreicht werden, das vor einer endlichen
Zeit an irgend einer Stelle im Inneren von H , abgegeben worden ist, jedoch nicht
an einer anderen Stelle der S;.

Von der S; bleibt also von P aus eine abgeschlossene Hilfte immer unerreichbar -
resp. unsichtbar.

Identifiziert man jetzt jeden Punkt P mit seinem Gegenpol P, so erhilt man die
‘projektive Sy’ und verfiigt damit iber einen Raum, in dem vom Pol P aus nur der
Aequator als Horizont ewig unsichtbar respektive unerreichbar bleibt.
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Durch diese sozusagen vollkommene Durchleuchtbarkeit ist also die Desitterwelt
allen tibrigen Modellen iiberlegen. Hinzu kommt jetzt, dass sie im Rahmen der linearen
Feldtheorie bei einer Belegung durch einen Kerntensor %;4; # 8} auch nicht mehr leer
sein kann.
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