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The Maximal Kinematical Invariance Group of the
Harmonic Oscillator

by U. Niederer

Institut fiir Theoretische Physik der Universitat Zirich, Switzerland?)

(29. XI. 72)

Abstract. The largest group of coordinate transformations leaving invariant the Schrédinger
equation of the #-dimensional harmonic oscillator is determined and shown to be isomorphic to the
corresponding group of the free particle equation. It can be described as a Galilei group in which the
time-translations have been replaced by the group SL(2, R) of projective transformations. The
relation between the oscillator group and the spectrum generating algebra of the harmonic oscillator
is investigated. The relevance of the oscillator group and the group SL(2, R) for general quantum
systems is discussed.

1. Introduction

In a recent paper [1] the maximal kinematical invariance group (MKI) of the free
particle Schrédinger equation, i.e. the largest group of coordinate transformations
leaving invariant this equation, was determined and it was shown that the Schrodinger
group, as it was called, could be described as a Galilei group in which the one-parameter
group of time-translations has been changed to the three-parameter group SL(2, R).
The present paper is devoted to a similar analysis in the case of the Schridinger equation
of the n-dimensional harmonic oscillator

mw?

4@, x) (¢, x) = (19, + i O — X, %) (¢, x) =0, (1.1)
2m ~

where X = (x4,...,%,). The MKI of equation (1.1), denoted by HO(n) and called #-
dimensional oscillator group, is defined as the set of all coordinate transformations g,

(t,x) — g(t, %), (1.2)
with the property that
A[g(t, x)][ /ot %) (¢, x)] = 0 (1.3)

for some function £, and all solutions ¢ of (1.1).

4 Work supported by the Swiss National Foundation.
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At first sight, it might seem that in comparison with the free particle case, the
presence of the potential term in equation (1.1), which fixes an origin of space, vigor-
ously limits the number of allowed coordinate transformations. This, however, is not
so and the most surprising result of the subsequent analysis is that the oscillator group
HO(n) and the Schriodinger group Schr(n) are isomorphic. In fact, if appropriate coordin-
ates are used for the harmonic oscillator, the transformations of the two groups are
identical.

In Section 2, we first reduce equation (1.1) by splitting it into two separate sets of
equations for the coordinate transformations g and the companion functions f, re-
spectively. The g-equations are then solved and the group HO(n) is determined. The
f-equations are solved in Section 3 and it is shown that the harmonic oscillator solutions
carry a projective unitary irreducible representation of HO(n). Restricting, for sim-
plicity, our attention to the case » = 1 we then produce a plausibility argument for the
existence of the invariance group HO(l) by connecting its generators to the creation
and annihilation operators of the harmonic oscillator. Section 4 contains a discussion
of the relationship between the harmonic oscillator and the free particle which is
intimated by the isomorphism of the two groups HO(1) and Schr(1). It is shown that
there exists a simple formula connecting the solutions of the two systems. In Section 5,
the algebras SL(2, R) and HO(1)?) are established as spectrum generating algebras of
the harmonic oscillator. Finally, in Section 6, we demonstrate that the algebras SL(2, R)
and HO(1) not only occur in connection with the harmonic oscillator, but are actually
hidden in most quantum systems.

2. Determination of the Group HO(n)

To solve equation (1.3) for the unknown coordinate transformations g and com-
panion functions f,, we use the same method as in the appendix of [1]. We first define
the derivatives

ot ot
u(t,xX) =—=£0, ¢, x)=—,
ot’ {
0x; 0x;
bi(t, X) == dik(t’ X) = e det dik % 0, (21)
ot’ 0%

where (#',x’) = g(¢,x). The differential operator 4(#',x’) of (1.3) is now expressed as an
operator in (9,,d;) and by comparing different orders of space derivatives of the har-
monic oscillator solutions ¢y we obtain from (1.3) the equations

¢; =0, (2.2)

Ay diy = udy, (2.3)

2u0, f, + (d, 0,dy + 2imb,) f, =0, (2.4)

w07 f, + (dy 0, dyy + 2imb,) 8, f, + 2imuf, + m? w?(ux? — x'?) f, = 0. (2.5)
Equation (2.3) tells us that the matrix d;, can be expressed as

dy = u'? Ry, (2.6)

2 A group and its Lie algebra are denoted by the same symbol.
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where R € O(n) is an n#-dimensional rotation. The integrability conditions for (2.4),
(2.5) and the derivatives (2.1) then imply the relations

u=u(l), R, =constant, ;b =31ud,, (2.7)
Qub, — ub, + 2w (W2 %, — uM2 2, R,;) = 0, (2.8)
and as an intermediate result we obtain, after some rearrangement, the equations
fzJ&wH& x’ = wV2[Rx + y(8)],
V+w?y=0, wii—3i?+ 20%u?—1)=0,
aifg'-z @m[R_ly_%; (X =+ R_l y)]!fg! (29)

.oowm ) ) nu
fo= 5 [ — o) (RX 4+ ¥)* + P42 X2 + 42§ — it RX +Y) Y1y + 7 o

where the more convenient vector y has replaced the vector b. The set (2.9) of equations
has the advantage that it decomposes into equations for the coordinate transforma-
tions g and, for known g, into equations for the companion functions f,. We first solve
the g-equations; the solution of the f~equations is given in the next section.

Solution of the g-equations
The solution of the equation for %(f) is

u(t) = (1 + 7)™ (o + B2 + (yn + 8)), (2.10)

where n = tanwt and «8 — By = 1. If (2.10) is used in the expressions for (¢',x’) we
obtain the result that the group HO(n) is the set of all coordinate transformations
of the form

g=(5.a,v,R),
1 octan wit + B 1 + tan? wt e
g(t,x) = | —arctan ;
w ytanwt + 8 | (xtanwt + B)2 + (y tan wt + 8)?
X [Rx + vsin wt + aCOSwt]), (2.11)

Ss(a g)ESL(Q,R); a,veR", ReO(n).
Y

Note that the time-translations, a symmetry which is always present for time-inde-
pendent potentials, are contained in (2.11) if S is a two-dimensional rotation.

HO(n) in oscillator coordinates

The transformations (2.11) take on a much simpler form if a new set of coordinates,
called oscillator coordinates, is used, namely

'y

n=tanwt, &= (14 tan®wf)'’?x = (coswi)™'x. (2.12)
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In these coordinates the HO(n) transformations are

- an + B R§+V7)+a
g, &) = :
yn + 8 yn + 6

(2.13)

and the group HO(n) appears as an enlarged Galilei group in which the one-parameter
subgroup of time-translations has been replaced by the three-parameter group SL(2, R)
of projective transformations. The product and the inverse in HO(n) can easily be
worked out from (2.13) with the result

g3=881 S3=5,S;, R3=R,R,,
33:R2 a1+B1 V2 +81 az, (2.14)
Vi=R,Vi+a;V, + 7,8,
g=g" §=S1 R =R
a’'=—R1(axa — Bv), (2.15)
v/ =—R™1(8v — ya),
where S and R are multiplied as matrices in R% and R" respectively.
The most surprising fact about the group HO(n) is the finding that it coincides with
the Schrédinger group Schr(n), i.e. the MKI of the #-dimensional free particle [1]%).
More precisely, the group HO(n) acts on the oscillator coordinates (n, £) exactly as the

group Schr(n) acts on the Cartesian coordinates (¢,x) of the free particle. This relation-
ship between harmonic oscillator and free particle is discussed further in Section 4.

3. The Oscillator Representation of HO(n)

The general form (2.11) of the coordinate transformations g only solves part of the
equations (2.9) and it now remains to determine the functions f, accompanying a given
transformation g. The two differential equations for f, in (2.9) are easily solved with the
result

folt, X) = u,(t)"* exp {— o hy(t, x)] ,
4u,(t) (3.1)
Iylt, %) = () [RX + (017 — 204,(8) ¥, () [2Rx + ,(9),
where u,(f) is given by (2.10), and
Y, () = (1 + 5*)~Y?(vy + a) = vsin wi + a cos wt. (3.2)
The functions f, satisfy the important relation
Sol81(6, X)) fo, (6, %) = (82.81) fo,4,(8, %), (3.3)
w(g;,8,) = exp[— ¥mw(—oa; vV, Rya, + BV, R, vy —y;2,° R, 2,
+6,a,-R,v,)]. (3.4)
3)  In[1] the subgroup SL(2, R) has been decomposed into the three one-parameter groups of

time-translations, dilations and expansions; but the form (2.13) where the group SL(2, R) is
left as a whole is easier to handle. The generalization of Sch#(3) to arbitrary dimension is
obvious.
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The verification is straightforward but tedious. We can now define a projective repre-
sentation g — T, of HO(n) on the solutions ¢ of the oscillator equation (1.1) by simply
putting

(To) (&%) = flg7 (&, X) 1 (g7 (¢, )], (3.5)

where, by the definition (1.3) of the MKI, the new functions T, ¢ are again solutions of
equation (1.1). The map g — T, satisfies, as can easily be proved from (3.3), the relation

Ty'z T91 = w(g2! gl) nggl ‘ (36)

and hence defines a projective representation of HO(xn). Furthermore, the representa-
tion (3.5) is unitary with respect to the inner product

(i) = | @6, %) a8, %), (3.7)

because the factor #}/# in (3.1) exactly corrects for the non-invariance of the measure
d"x. Finally, the irreducibility of the oscillator representation follows from the fact that
in oscillator coordinates, it coincides with the Schrodinger representation [1] of Schr(n)
which is irreducible.

The equations (2.11) for the transformations g and (3.1) for the companion func-
tions f, represent the complete solution of (2.9) and hence of the condition (1.3) for the
MKI of the #-dimensional harmonic oscillator. In the remainder of the paper we may,
for simplicity, confine ourselves to the case n = 1 because the influence of the dimension
# 1s comparatively trivial.

The Lie algebra HO(1)
The generators of HO(1) are defined by

T(s,a,v)=1—1is-1—iaP +ivK + 0(2), (3.8)
where the parameters s = (sy,s,,5;) of SL(2, R) are chosen according to
s 1 5 +s
S(s) = cosh—=+—sinh— (s1 %2 3) , (3.9)
2 S 32 - S3 _Sl

s = +(s] + 5 + s3)1/2,

In the oscillator representation (3.5) the generators are found to be

) 7 z
I, =——sin 2wt d, — = cos 2wtx 8, — —cos 2wt + Imwx? sin 2wt,
2w 2 4
I, = ——cos 2wt 9, + —sin 2wix 9, + —sin 2wt + tmwr? cos 2wt,
2w 2 4
; (3.10)
I3 =i 5; a', ’

P =—icoswt o, + mwxsin wt,
K =1sin wt 0, + mwx cos wt,
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and the corresponding commutators are
; 1 1
L1 L) =315, [1,, P]=3P, [Fy, K] =~ K,

i i
I, I)=—I,, [I,,P]==K, [I,,K]==P,
[ 2 3] 1 [ 2 ] 9 [ 2 ] 9 (311)

[IB:IJ=_7'I2: [13,P:|=—§K, [Ing]=—2'P,

[P, K] = —imew.

Note that in a true representation the generators P and K commute and that the non-
vanishing of the commutator [P,K] in (3.11) is due to the projective nature of the
oscillator representation.

The oscillator representation on energy states

We obtain a discrete description of the oscillator representation of HO(1) if
instead of arbitrary solutions of the harmonic oscillator equation we use eigenstates
of the energy operator ¢0,. An orthonormal energy basis is given by

1/4
o(t, x) = (n!)~1/2 (ﬁ:,—) exp[—iw(n + §) t — Imwx?] H,(V2mw x), (3.12)

wheren =0,1,2, ... and H, are the Hermite polynomials. On these states the generators
of HO(1) are the ladder operators

Iy, = (I, +1l) 'ﬁn:%\/(fw 1) (# + 2) thnsz,

I_hy= (I, —iL) o= — s Valn —1) s

I3¢’n Z-—%(%“I'-'i‘) l)bm
Pohu= (P +iK) = iV Imaw(n 1 1) s,
Py = (P —iK) iy = —i V2meon s

(3.13)

The form (3.13) of the oscillator representation suggests an argument to make
plausible the existence of the invariance group HO(1) by relating it to the existence of
the creation and annihilation operators (at,4) of the harmonic oscillator. Indeed, we
have

P, =iV2mwe ®at, P_=—V2mwe®a, (3.14)
1, =f2-e-2*wt at, I_— _-’2-@2"»‘ a2, Iy——3}aa" +a'a). (3.15)

The operators P, defined in (3.14) act on solutions of equation (1.1) in the same way as
(a%,a) act on solutions of the time-independent equation, hence they generate a sym-
metry and the only question is whether it is a kinematical symmetry, as opposed to
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internal symmetries which are not considered here. The symmetry is of the kinematical
type, i.e. is a coordinate transformation, if the operators P, can be represented as
first-order differential operators in the coordinates (¢,%), because the corresponding
coordinate transformations are then obtained from the Lie differential equations [2].
Since (a',a) are constructed linearly from @, and x the operators P, do generate a
kinematical symmetry. Furthermore, the second-order operators I of (3.15) again
generate a kinematical symmetry because the wave equation (1.1) serves to convert the
second-order operator 92 into the first-order operator d,. The fourth independent
expression quadratic in (af,a4), namely [,a'], is a c-number; it does not generate a
symmetry but is responsible for the oscillator representation to be a projective repre-
sentation. Neither do higher order expressions in (a',a) generate kinematical sym-
metries because they definitely are of at least second order in d, and d,.

4. Harmonic Oscillator Versus Free Particle

Having seen in Section 2 that the MKI of the harmonic oscillator is the same group
as the MKT of the free particle we now proceed to analyze the connection between these
two systems. We first note that an oscillator motion in Cartesian coordinates implies a
free motion in oscillator coordinates and vice versa:

2
5&+w2x=0¢>ﬁ=0. (4.1)
dn?

Thus, apart from the fact that the oscillator coordinates only describe half a period of
the oscillator motion, the two systems are, on the level of classical mechanics, trans-
formed into each other by a change of the coordinate system. The implication (4.1)
also holds in the framework of quantum mechanics if the coordinates x and £ are
replaced by the expectation values

(o) = | daf(t, ) i, ),
(@, &) = [ AL+ )72 0% (n, &) ol &),

respectively, where i is a solution of (1.1) and g is a solution of the corresponding wave
equation in oscillator coordinates, namely

(4.2)

: 1 in 1 A B

How closely related the two systems indeed are is shown by the existence of a simple
formula connecting the harmonic oscillator solutions to the free particle solutions in

oscillator coordinates. Let y(n, £) be a solution of the free particle equation with mass
mw,

1
(ian +2—3?)x(n. =0, (4:4)

Mw

normalizable with respect to the inner product

(xuxs) = [ déx*(n. &)x (n, 8. (4.5)
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Then to each of these solutions y there corresponds a normalizable solution ¢ of the
harmonic oscillator equation (1.1), given by

B¢, x) = (1 + n?)V4exp (— -}irnwl i 5 52))((”): £). (4.6)
+7

Note that the one-to-one correspondence (4.6) between the solutions i and y is local
and does not depend on the solutions itself. It can also be shown that (4.6) is invariant
under HO(1), i.e. that the mapping ¢ <> y commutes with the transformations T, of
the oscillator and the Schrodinger [1] representation.

What is different for the two systems is, of course, the form of the energy operator
which for the system (4.4), considered as a harmonic oscillator, is not 49, as it would be
for a free particle, but

iw{(1 4+ 79?) 9, + 7€ 0, + 31 — himwé?]. (4.7)

It can be checked that the solutions of (4.4) which are eigenstates of the operator (4.7)
lead back, with (4.6), directly to the solutions (3.12) of the harmonic oscillator.

5. HO(1) and the Spectrum Generating Algebra
It is well known [3] that SL(2, R) is the spectrum generating algebra of the one-

dimensional harmonic oscillator in the following sense: Consider the three Hermitean
operators

L, =—i(2xax+ 1),

1

Ly=— (9% + m? w??), (6.1)
dmw :
ey = L (azﬁmzwzxz)z—-—lH
> amw 2w

which are obtained by closing with respect to commutation the two operators 92 and x2
appearing in the Hamiltonian H of the harmonic oscillator. They form the Lie algebra
SL(2,R) ~S0(2,1) ~SU(1,1) and the corresponding Casimir operator is a c-number,
namely

—I2 —IZ + 12— 316 (5.2)

Hence the Hilbertspace of the harmonic oscillator is composed of one or more of the
spaces of those unitary irreducible representations of SL(2, R) which belong to the
Casimir value — 3/16 and whose L;-spectrum is bounded from above (to guarantee a
lower bound for the Hamiltonian). There are only two representations satisfying these
criteria [4] and if both are combined they reproduce the correct spectrum of H. For this
reason SL(2, R) is called the spectrum generating algebra of the harmonic oscillator.

Now the question naturally arises whether the subalgebra SL(2, R) < HO(1) is
related to the spectrum generating SL(2,R). The Casimir operator of the former
SL(2, R) is obtained from (3.10) and is given by

—I; — I3 + I2=3mx A(t, x) — 3/16, (5.3)
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where 4(t, x) is the differential operator of the harmonic oscillator equation. Hence the
operators I, when acting on oscillator solutions, also generate the spectrum. The bases
I and L of the two spectrum generating algebras are related by a rotation in the 1-2-
plane:

L, =cos2wtl, — sin2wtl,,
L, =sin2wtl, + cos2wtl,, (5.4)
L3 = I3 ’

where in I the operator 9, has to be replaced by —(82 — m? w?x?) [2m.

Thus we have obtained the interesting result that the MKI of the harmonic oscil-
lator incorporates the spectrum generating algebra as a subalgebra. Let us finally
mention an important difference in the spectrum generating power of SL(2, R) and
HO(1). To cover the full energy spectrum of the harmonic oscillator, we need two
irreducible representations of SL(2, R), corresponding to the fact that the generators
I of (3.13) are two-step ladder operators, whereas in the case of HO(1) one irreducible
representation is sufficient because the additional generators P, are one-step ladder
operators. In other words, HO(1) may with even better reason be called the spectrum
generating algebra of the harmonic oscillator.

6. The Relevance of SL(2,R) and HO(1) for Quantum Systems

In the preceding sections the groups SL(2,R) and HO(l) were established as
invariance groups of a wave equation describing a special quantum system, namely the
one-dimensional harmonic oscillator. In the present section, we want to point out that,
independent of a special system and its wave equation, the two groups occur in a
natural way, 1) in all one-dimensional non-relativistic quantum systems, and 2) in all
Boson systems. In both cases the pattern is the same: there exists a given algebra of
two basic quantities and SL(2, R) is the algebra of all expressions which are of second
order in these quantities (hence called the strictly quadratic algebra), whereas HO(1)
is the algebra of all expressions of first and second order (called the quadratic algebra).
More precisely :

(1) SL(2,R) is the strictly quadratic algebra of the Heisenberg algebra [Q, P] =1,
1.e. the three Hermitean operators

I, =3QP+ PQ), I,=%Q*—P?), I,=-}Q*+ P, (6.1)

satisfy the commutation relations of SL(2, R).

(1) The algebra (6.1) can be completed to the algebra HO(1) by inclusion of the
Heisenberg algebra itself because the five operators (I, P, K =(Q) satisfy the
commutation relations (3.11) for mw = 1. Thus HO(1) is the quadratic algebra
of the Heisenberg algebra.

(2) SL(2,R) is the strictly quadratic algebra of the pair (a',a) of Boson creation and
annihilation operators, i.e. the three Hermitean operators

7
I,=—;(@—a", L—}@+a", I,——}@a'+a'a), (6.2)

satisfy the commutation relations of SL(2, R). A similar relation was exploited in
(3.15).
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(2") HO(1) is the quadratic algebra of the Boson operators (a',a), the additional
generators being defined by

L it

P \/Z_(a a), K 73 (@’ + a). (6.3)
There is a different interpretation of SL(2, R) and HO(1) in connection with Boson
systems, namely, SL(2, R) and HO(1) are both spectrum generating algebras of the
Boson number operator a'a. This is clear from (6.2) where ata = —4I; — 1 and
from the fact that the Casimir operator of the algebra (6.2) has the value —3/16.
The two irreducible representations of SL(2, R) with this value of the Casimir
and I;-spectrum bounded from above yield the correct spectrum of a’a. In the
case of the larger algebra HO(1), these two representations together form a single
irreducible representation.

Note that in both the cases (1) and (2) there exists besides the operators I a fourth
linearly independent non-vanishing quadratic expression, namely the commutator of
the basic quantities. This commutator is a c-number hence, strictly speaking, it is not
HO(1) itself but a projective representation (or, in different terms, a central extension)
of HO(1) which is the quadratic algebra of the basic quantities.

We conclude these remarks by pointing out that in the case of the harmonic
oscillator the two statements (1) and (2) collapse into one because the operators (a',a)
are linear expressions of the operators (0, P).
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