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Helvetica Physica Acta
Vol. 46, 1974. Birkhauser Verlag Basel

Fluctuations in Some Mean-Field Models in Quantum
Statistics
by Walter F. Wreszinski')

Seminar fuer Theoretische Physik der E.T.H., 8049 Zuerich
(21. IX. 73)

Abstract. Following the work on the normality of fluctuations in the Dicke maser model in
Ref. [1], we study equilibrium fluctuations and some of their properties in a few soluble (‘mean-
field-like’) models in quantum statistical mechanics which exhibit a phase transition.

1. Introduction

In this article we shall study normality and a few other properties of fluctuations
in some soluble models in quantum statistics. The models are, with one exception, the
imperfect Bose gas-mean-field models. The method of proof is, however, almost identical
in all cases, and certainly not extensible to non-mean-field models as, for instance, the
Heisenberg model. Therefore, we regard this one exception as ‘mean-field-like’ with
respect to fluctuations, and this is the justification for the terminology in the title and
abstract.

The motivation for such a study is three-fold: firstly, intrinsically, normality of
fluctuations plays a role in the axiomatic foundations of statistical mechanics, and
therefore deserves to be studied in its own right (see, e.g., Ref. [13]). Secondly, and
more technically, it involves a much finer type of limiting procedure than the one
associated with intensive and local quantities. This is, in particular, reflected in the
non-equivalence of two definitions of normality introduced (see Remark 3.2) and in
the fact that the ‘asymptotically exact’ [1] Hamiltonians (leading to linear Heisenberg
equations of motion) for local and intensive observables, on the one hand, and fluctu-
ation observables, on the other, are, in general, different [1]. Thirdly, fluctuations have
been studied rigorously to a rather small extent: in particular, Ruelle’s book [12] does
not tackle this subject.

2. Notations and Definitions

We consider throughout models described, in a unified notation, by a Hamiltonian
H, for a finite region, labelled by ‘L’ (which we take, for simplicity, to be the volume
of a cubical box containing the system, ranging over a set which we identify with Z,),
which is a self-adjoint operator on a Hilbert space #,. The trace on 5, will be denoted
by tr; and the number operator for the region L, suitably defined, by N, . Each model

1) Supported financially by the Fundagio de Amparo & Pesquisa do Estado de Sdo Paulo,
Sao Paulo, Brazil.
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exhibits a phase transition, either at a temperature T, for fixed density, or at a density
pe, for fixed temperature. The grand-partition function, grand-canonical density
operator, pressure and finite volume Gibbs state over .of;, = B(#,) are given, res-
pectively, by

Zﬁ,u =tr exp[—B(H — uN)] (2.1)
1
U;,u =7L exp[—B(H — uNy)] (2.2)
B.u
-
P#,u=EL—10gZ,;L,u (2.3)
PF.u(*) = try(k ). | (2.4)

pg. «(X) will also be defined for some unbounded operators X on 5. Let o/ be the
normed *-algebra generated by |J &/;, and & = norm closure of .« be the algebra

LeZ,
of quasi-local observables. In all models we shall analyse (with the possible exception

of the ideal Bose gas), the following equality is seen to hold:
3 lim pj ,(A) = py W(A)VA € oty (2.5)

Hence, p; , extends to a state on &/, with the aid of which one may, under certain
conditions, given in Ref. [6], define the dynamics of the infinite system. These con-
ditions are met in the case of the strong-coupling B.C.S. model [3, 4] and in the Dicke
maser model [1] if the conjecture in Ref. [1], p. 393, holds.

The canonical ensemble corresponds to putting w=0 in (2.1)-(2.4) and the
corresponding notation will be Z, of, —ff (where f; is the free energy per unit volume)
and pf(-). We shall call an operator on 5, extensive if it is an integral of local operators,
suitably defined.in case the local operators are unbounded (as the number operator
N,) or, if the region is a lattice and the operators are bounded in norm, a sum of
operators localized at the sites of L, as

L
S(If) =4 > 0'(:;), o¥,1€{1,2,3},
=1

Pauli matrices on

C3(p) (2.6)

on

HL

I

é C2(). @)

Let J be a subset of Z,. For each model and each L, B, n we shall consider a set of
operators

Si(Bw) ={AP, i e ], all A extensive} _ (2.8)
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and denote with the corresponding small Greek letters the corresponding tnfensive
operators

D =ADIL, fe]. (2.9)

For all B e (0, o) and in all mean-field models we shall analyse the restriction of the
Gibbs state to the quasi-local algebra o/ generated by the spin operators, denoted by
pp, 1s translation-invariant. Hence, if / is the dimension of the Lie algebra generated by
the extensive spin operators 4", it follows from Refs. [15] and [16] that p, is classical.
i.e., for all polynomials P; = P(a{",...,«{>) in the intensive operators, the

lim pg(Py)

L—w

exists. Since the intensive operators are uniformly bounded, it also follows that, for

all polynomials P; = P(a{,...,a)),

Tim pf(Py) = lim py(Py). - (2.10)
As described in Ref. [2], it follows from [15] that there exists a probability measure
Foy OD the ‘phase-space’ R' with support in |«®| < |4, 1 < ¢ </, such that, for all
monomials,

ll.l—l:n p((eD)mD) (ol =J.:“'nﬂ(d°'-) (aD)mD | (oW)m®,

A state p on &/* is pure if yu, is concentrated on one point a = («¥,...,«"’) e R}, and
it is known [15, 16] that p is pure if it is an extremal invariant state of all translation-
invariant states of .o/*. Examples of pure states will appear in Sections 3 and 5.

Given S, (B, 1) by (2.8), we let J =[1, %] and denote

lim py (o) =y, Vie]. (2.11)

L->©

For each A € S, (B,p), 1 € J, we define the corresponding ((8, n)-dependent) fluctu-
ation operator for volume L, denoted by the corresponding small roman letter, by

(“g)u) (A(i) La (” /‘\/_ '\/_ (”-—»cx(i)) (2.12)

Corresponding to each {r,, i €[1,k]} = Z, we define a fluctuation operator for the set
(B, p) by

Fy (v ie[L A =1 (a(as))"™. (2.13)

i-1
Since we shall be computing limits of Gibbs states on operators of the form (2.13),
which are not uniformly bounded in L, rather than products of operators («! — af9,),
the argument for the validity of the analogue of (2.10) when the P, are replaced by

Fg ,({r;, i € J}) fails, and we will eventually provide a counter-example to it. Hence,
we introduce the following definitions:
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Defination 1: pg , has normal fluctuations around of'), i€ J, if for all subsets
{roie]}of Z,,

3 m py (Fyullri, i € J3). (2.14)

Defimition 2: pg,, has a normal approxzmatwn with respect to the set Sp(B, w)
for all subsets {r;, ¢ E]} of Z,,

3 lim pg° u(FﬂLu {riiel}). (2.15)

L-o

We call the limits (2.14) and (2.15), respectively, when they exist, ‘normal fluctuation’
and ‘normally approximating fluctuation’.

Definitions 1 (which is already contained in [2]) and 2 both make precise, in
slightly different ways, the statement that an extensive observable fluctuates around
its average value in the equilibrium state of a system of an infinite number of degrees
of freedom, at a certain (8, ), by a quantity growing no faster than the square root
of the volume.

We refer to [2] for further general properties connected with Definition 1, in
particular for the theorem of stability of normality, as described by Definition 1, under
time-evolution by a Hamiltonian of type Hy = LP(«!V,...,a{), and for the precise
statement that the operators obtained, in correspondence to the fluctuation operators
from the limits (2.14), satisfy boson commutation relations.

In the following Sections 3, 4 and 5 we study the above definitions for three soluble
quantum statistical models. Each section will contain a summary of the relevant facts
about the model considered, one or two theorems proving (2.14) and/or (2.15) for a
suitable ((B, u)-dependent) set of operators, and a section about other properties of
the normal and normally approximating fluctuations. Some general conclusions will
be summarized in the remarks in each section. We refer in particular to Remarks 3.2
and 4.1.

3. Strong-Coupling B.C.S. Model
The Hamiltonian of the strong-coupling B.C.S. model is [3, 4]:

H,=&(L—253)— (4A\/L)St St (3.1)
where

1 Q2
F=SI +1S},

0 <& <2), and L = volume = number of ‘Cooper pairs (fixing the pair density as
unity). The critical temperature is defined by

&/2\ = tanh (/T ). (3.2)

We work in the canonical ensemble. It follows from standard methods that

L (B BB
To=lnl=\1p itB<8.
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where
fi(B) = —g— 4oy (B)* + %1‘% - (211([3))2 -+ 20:(P) arctanh (20,(pB))
1) = ~260x(B) + o V"L 2D a2 )
where

20,(B) = tanh (B€)

and o,(p) is the unique positive root of the ‘gap equation’

20,(B) = tanh (2A8(20,(B)))-

From these formulae, it follows that at 8 = 8, a second-order phase transition occurs

(see [6] for a thorough discussion of the phase transition using spin-waves). It also
follows [4, 7] that

wc (M= &4\ BB, | - (3.32)
7 | oa(B) if B < B. (3.3b)
We define on #[ operators H; and H%®, @ €[0,27], which yield linear Heisenberg

equations of motion for the local and intensive observables, and whose corresponding

Gibbs states, pf; () and pk,,(+), @ €[0,27], are such that, for any local or intensive
Aeddy,

lim pg; (4) if B (0,8,) (3.4a)
ps(A) = lim pf(4) = " d
8 Lowl? nggj' 2_‘: phso(d) if Be (B. ). (3.4b)
0

It also follows that, if f5; and f;5,, ¢ €[0,27], arbitrary, are the unit-volume free
energies constructed from H; and H?:®, respectively,

Lg »
lim £ ifBe(0,B)
fﬂ B limfﬂléa: if B € (Bc: OO)'

L—
Hence, these Hamiltonians are called ‘asymptotically exact’. Their precise form, both
for the B.C.S. and the Dicke maser model, are given in Appendix A. We denote the
limits of the states pf, and p},,, which exist in the sense of (2.5), by omitting the
superscript L.

In the theorems proved, both for the B.C.S. and the Dicke model, it will be
necessary to take S;(B) consisting of gauge-invariant operators (i.e., commuting with
all operators which commute with the Hamiltonian) for B e (8., «). This is a con-
sequence of the fact that, in both models, there is a spontaneously broken symmetry
below T, accompanied by a continuous family of ground-state representations of
the quasi-local spin algebra in Hilbert spaces #2: ¢, labelled by a continuous parameter
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@, which are unitarily inequivalent for different ¢ [1, 4]. To see the reason f0§ th@s
most concretely and clearly, we give a short proof of the following theorem, which is
in fact a consequence of more general results stated in Ref. [2]:

Theorem 3.1: Let

{SL,5P,5) ifBe B

Sc(B) ={{S(3) s2) i Be (B w

Then pﬁ has normal ﬁuctuatlons around {S;=S;=0,S;} if B (0,8,) and around

{S3, 01(B)?}if Be (B.,

Proof: Let ¢ €[0,27] — 14,(-) be defined by

(g =[Pm() EBE©.B)
T - — .
20l =\ o) if B (Ber
Then [3, 4, 7]
75,(SED ... SUmY = ($tanh B&)"n¢ .. .n¢, where n = (0,0, 1) (3.5a)
e o (04(B))"nGp ... nlm, where n,, is given by (A.2) (3.5b)

where S{P = }o{D. Let of? = S{P/L, and S{)} be the fluctuation operators associated to
SV by (2.12). We have, forallr e Z,

L

(—-1)"(;)(1,01(}2?))"7”(2... S S Sf?k) (3.6)

ij=1 br_g=1

Tﬂtp((s(l)) )= LT

=
LM ~

Using the product structure of 7,4, given by (3.5a, b), o'¥’? =1 and the symmetry of
the binomial coefficients, one may see easily that the left-hand side of (3.6) is zero
for » odd. For 7 even, only the term in L"2 in the sum over % in (3.6) contributes, due
again to the product structure of (3.5a, b), ¢{?2 =1, the symmetry of the binomial
coefficients and the combinatorial identity

z": k(n)(’fb)___(_l)mﬁ,,m n=m

k=m

Together with the fact that S} and 5% are gauge-invariant, i.e., their average values
are g-independent, this proves (2.14) in the special case k& = 1. The proof for general %
is identical, and only slightly different if monomials in the fluctuation operators of
type ((S; — L?0,(B)*)/L)" are included. |

Remark 3.1: We may obtain a result similar to Theorem 3.1 using the same set
SL(B) ={SP,SP SP} for all Be (0,) if we use a different definition of normal
ﬂuctuatmns followmg the ideas of N N. Bogoliubov Jr. [14]. This will be developed
in Appendix B. W
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We now prove that p,; has a normal approximation with respect to the set

5,(8) = {ST,5C.Si} ifB<8B, (3.7a)
BT VSE Sy if B> B.. (3.7b)

It might have seemed more natural to take S, (B) = {SZ,S3} for B > B, instead of (3.7b).
However, from Theorems 3.1 and 3.3, and the identity

(8f—L20})/L =((VSE~ Loy)/ VLY + 20, VL((VSZ — Lo)/V'L)
it follows immediately that
3 lim p(((S2 — L20y(B)I/L)), VpeZ,
(and also that
3 lim p,((V'S2— Loy(B))/VL)?), VpeZ.).
Following the lines of Theorem 3.4 of [1], it is easy to prove
Theorem 3.2: Let
Hjy=28b%b — 40V 20,(PB) (b + b%)
be a Hamiltonian on & = L?(R3), the one-boson Fock space. Then if 8 € (0,8,),
Gylrs,72,73) = lim pf((S7/ VL) (St/ VD) ((S2— Loa(B)/ VL))

b*ripra —BH,
R Y £ i 3).(202(3))'1(%—oz(ﬁ)Z)'sﬂ-r(_rs) (3.8)

172 tr, e—ﬁ'Hﬂ

where

if ¢ is odd
teZ, »>7(t)= ¢! if £ is even. (3.9)
2(¢/2)!

Theorem 3.3: 1f B € (B., ),
Gp(r1,7) = Jim pk((V'SE— Loy(B))/ VL)1 ((S2 — L)) [VL)™)
= 7(r)) -7(r2) - (88X "2 (2/Bg"(0,))"'>  (3.10)
where o, = o,(f), and g is the function defined on the interval [0,4] by

g(x) = —y(x) — 4AB*x? (3.11a)
whereby
x€[0,3] >y(x) =—(4+x) log (3 + ) — (3 — %) log (3 — x). (3.11b)
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Proof: The idea of the proof is simple. Let

1 y
Z e~ Lex)-a®)

Py(x) = = (3.12a)

L
< Z e~ Llo(x)— (X))

i=1

)

(x;=1/L,i€e[1l,L]) be one-dimensional probability measures on the interval [0, 1],
where ¢ is a function known to have a unique minimum at x =¥ € (0,1), essentially
by Thirring’s results [4]. The proof may be reduced to demonstrating that the steps
in the following relation

+o
i » p J‘ dx e—1/2x20"(X) 4p
> Pyx)| 2= = : (3.12b)
i—1 L\*i ﬁ L->co + o *

J‘ dx e=1/2520"®
-0

which one expects intuitively, may be made rigorous.?)
Consider firstly the case #; = 0. Let

HE(r;) = p§(((S2 — Luyr)[VL)2 — (8BN) 212 7(r,)) (3.13)

where p,; = p, — 1/(2L) (see [4]). We prove that
;}Lm Hi(r)=0 Vr,eZ,. (3.14)

Using the results of [4], it follows in a straightforward way that

(818)
—opi— 2, B(L.0) Myy(r)

H(r;) = "GZS* (3.15)
L

where the sets S,, S,, form just a net in the triangle

{o, n(0)}; 0 €[0,1], |p(0)| < o}

given in Appendix A ((A.15), (A.16)), and

B(L,0) = eLG(@~sla) ¢, (o) (3.16)
My ,(r2) = Z exp [— (_ £ —8 ML)Z] [(,u ;#IL) — "'("2)} (3.17)
neSz0 L L

%) This method relies on the fact that the function ¢ assumes its minimum value in the interior
of the interval, for B € (B,, »). For B € (0, B.) the minimum is assumed at the boundary, and
this is the reason why we were not able to give a unified proof of this theorem for both ranges
of temperature and had to rely on the method of Ref. [1] for B € (0, 8;) (Theorem 3.2).
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1 — par\?
Zi=5— > B(Lio) D, exp [— (" 8;.# ) ] (3.18)

ces, HES20
where

8. = (2V2LAB)~! (3.19)
and ¢, (-) is defined in Appendix A ((A.17)). The only properties we shall need are:

2g g4bie

$(0) = 120212077 " &(L) (3.20a)
where

Lllrg &(L)=0. (3.20b)

It is readily shown that g has a unique minimum at ¢ = ¢,(f). Hence, and since the
strict inequality 8 > B, is assumed, we may choose & > 0 so small that for |o — o] < §,

(0 —01)?g"(01) < g(0) —gloy) < (0 - 04)?g"(0y) (3.21)
and

oy —8> . (3.22)
We also define

I'={c€[0,%]; |oc — o] <8} (3.23)
Separating the contributions to Hg(r,) from I" and S, /I, we have

Hi(r) =R |Z,+ K, (3.24)
where

1 @y

Ky=— = B(L, o) M ,(r;) <const. L2exp (—L&%g"(a,)/4)
A 2L geS— (51NIN)
(3.25)
as 1s easily seen from (3.21), and
(8 A)—r2/2
Ro= BV S oL o) M, (3.26)
2L2
ces,nr
Now, let

_ a _ 2 _ r,
s 2 o] o



Vol. 46, 1974 Fluctuations in Some Mean-Field Models in Quantum Statistics 853

Let xo=ay and x4 = x; + (by — ay)[n, 1 €[0,n — 1], %; € [, %14,), and {g1}L c £, Dea
sequence of functions defined on (a;, b;) such that: ’

a) dp< w3 (a;,b]= disjoip_ilunion (@;.,0;.], and g, is monotone in (a;,,b;;] for all
te(l,pl,forallLe Z_;

b) dc>0¢€|g.(¥)| <cVxe(a,b),VLe Z,.

Then

bL

> &) (b — ) = [ dxgy (o) + ak

i=0 ay,

where, for some d > 0 independent of L,

ak < d/n.
The functions
x> e~ (7))
x — ¢~ La"(ay) (x—0))%/4
satisfy a) and b). Hence, by (3.21), we obtain the bound
- o+4d
Ry<a{ sup |Mp(r,)| ( J’ do e—Le ey (a—a)?/4 4 la(Ll)l)

ge[o,—5,0,+ 0] o135

0’1+5

+ |a<,f>|( |

" - 2
do_e._Lg (o) (6—0,)*/4 | la(ll.)l)
o—&

< const. L-1/2 sup  |M,(r,)| + const. L=3/2  (3.28)

TELd,~5,0,+5]

where

Ay = su &
- crE[al_a,El_‘_&]S{’L(U’) < const.

by (3.20a, b) and
|«?] < const./L, ©=1,2.

Let 8! = (Lg"(o,))~Y2. Choosing L so large that §, < 8 and §; < 3, we get, by (3.21)
and (3.22), - |

0’1+5

1 AN o—o\?
ot 3 o) (o)
Lue[mL—ZJ,n,L+61 O #5 o

1

3( f dpexp (—((n — p10)/01)?) +YL)'( f daexp[— (G ;’:01) }+BL)'

BiL-8

+ﬁ,_)
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>48, 8, e 2r, + 2y, 8 e vy + 28, e B+ By = fIL, with f> 0 independent

of L, for sufficiently large L (3.29)
where
rp= inf , ¢,(0) = const. >0
lo—0,1<8;

by (3.20a, b), and
|BL| < const./L, |y,| < const./L.

(3.28) and (3.29) yield

R,/Z, <const.LY?  sup  |M,,(r,)| + const. L=1/2, (3.30)
aEla;1 =5, ay+5)
Now,
_ (o—nq1)/ 6 +
Mior)=8. [ dpe™(us —(r)) =8L{ [ | dpe (s —’(’2’)J
~(a+1ty; )5 “
© —(o+uy1 )/ 51 s
—-u2 r i — r
— [ dwern—c) [ dpen —T(”z))}' (3.31)
(o—ny1)/ 6 o
Since
+c0

f dpe™ (ur2—7(ry) =0

by definition (3.9) of 7, and

[+ 0]
f dy g‘—f,yl'z g C‘rze—x2x2rz,

x?
(3.31) entails

sup  [Mp,(r)| <8.Cr, sup {e o0’ [((o+ py ) [8,) 2+ 1]

oelo,—46,0,+48] g€elo,—8,0,+5)

+em T (0 — ) [8,)72 + 1]}
< const. L¢2~12exp (—8ABS% L) (3.32)
since, by (3.22) and the definition of u,;, 0y — 8 —pu,, >0 VL e Z,. (3.32) in (3.30)
implies

lim R,/Z, =0, (3.33)

L—-©
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(3.33) and (3.25) in (3.24) imply (3.14). We now prove that

Ff(ry,2) = ph((VSZ — Loy [VL)" (53 — Ly )| VLY?) 152 e(r) 7(r5) (8BN) 22

(3.34)
where
+ 00
[ dxemrzerapsiyr,
ap(r) = = = 7(r,) (2/(Bg" (o))" (3.35)
By (3.14),

g e
972 - - /2
Z, 212 o‘es%r B(L, o) ( Lri/2 M, (r) o 7(72) (BBA) ™2/ oy (7).

Hence, to prove (3.34), it is easily found that it suffices to prove that

Lr1/2 1
Ntlf("l»’z) = gy Z (L,o)-[((Va(o+1/L) — o)™ — ap(r 7y)[L"/3]

£; 2L* oy
"M p4(r) Tow 0.

Now, by (3.21) and (3.29),
k-1
Lrllz 1 H (7 1 1
NLi(r, — _ L el
| 3(71 72)! ZL ZLSZTE(L O’ {[0 o +z El T
oy ()
B %%]M""(“) S B = R el
gela,~ 6,0,

L1125

L1/25
: ( J do’' exp[—(3g"(o,) 0’2 + O(L~12))]+[(¢' + O(L~1))"r — ag(rl)])

where |C,| < const., by (3.35) and the fact that, by the Lebesgue bounded convergence
theorem,

Ll/25

+00
do' exp[—4g"(0y) 0’ + O(L7V?)] [0’ + O(L~H) "t ——=> f do’ o1 exp[—3g"(oy) 0']

12y
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for all », € Z,. This proves (3.34). From (3.34) we get (3.10) immediately from the
expansion

r2

PE((VSE— Loy) | VL) ((S§ — Luy) | VL))s) = Z (”z)( -3 \/_) Firir.—%). A

Other properties
Let s,4(r) = ((Si — Ls3)/LY?", and

Fi(r) = pg1(Ss(r))

@ €[0,27] — Fy3,(7) = pg3o(Ses())
F(r) = pp(Sps(7))

Gg(r) = G§(0,7) = p5(SLe(r)).

The limits of these quantities, if they exist, will be denoted by omitting the superscript
dos

Lemma 3.4: Let » be even. If 8 < B,

Fy(r) = Fyy(r) = Gg(r). (3.36a)
IfB.<B < w,
f ;—i Fpao(r) # Gy(r). (3.36D)
0

At B =B, and 8 = « we have, respectively:

a) Fy(r) is continuous at 8= f,, while G,4(r) is, in general, discontinuous at this

point; (3.36¢)
b) lim G4(r) = 0, while, in general, lim F4(r) > 0. (3.36d)
B—+ B—

Proof: (3.36a) follows from Theorem 3.2. The continuity of F,(7) follows from
the continuity of s;, defined by (3.3a, b). To prove the remaining assertions, it suffices
to consider the special case 7 = 2. Now, if s} = —}c?,

Fy(2) = Jim po((S2~ LSV = lim 7 s ( 3 51 - LSS)Z)

1 L
=1im{—[(L2_.L)SgZ+L2532 212 532 + ” 1-S3 (3.37a)

L-oo| [

whence, by (3.3a, b),

B>B.=>F42)=%—p2 (independent of B). (3.37b)
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(3.36b) follows from (3.37b) by comparison with Theorem 3.3. (Theorem 3.3 yields
Gy(2) = const./B if B > B..) (3.37b) also entails (3.36d). To prove the second statement
of (3.36¢), let & < /2. Then

Gﬂc+0(2) = : < % < Gﬁc_O(Z) = -}_- _— “’%' .

16

Remark 3.2: (3.36b) of Lemma 3.4 shows that, for a fixed set S (8) ={4P, 7€ J}
({S;} in Lemma 3.4), the two notions, namely, that a state p; has normal ﬂuctuatlons
around a$, 7 € J (Definition 1), and that the same state p, has a normal approximation
with respect to the same set S;(B) (Definition 2) are distinct, in the sense that the
normal fluctuation and the normally approximating fluctuation need not coincide.
Actually, Lemma 3.4 shows that only the normally approximating fluctuation has
the properties:

A) lim Gy(#) =0

B— o

B) Gg(r) is discontinuous at B = B..

A) is expected on physical grounds (absence of thermodynamic fluctuations of —in
this case — the Cooper pair energy at absolute zero, for reasonably defined ‘fluctuations’),
and a property like B) (some ‘anomalous’ behaviour of the fluctuations at the critical
temperature) is also expected. It seems therefore more significant to consider the
normally approximating fluctuations. [}

Remark 3.3: The idea of the proofs of the theorems on the normal approximation
property that follow (Theorem 4.1 and Theorem 5.3, whose proof will be omitted) is
the same as that stated at the beginning of the proof of Theorem 3.3, and which actually
conforms to the conventional ideas of statistical mechanics. The proofs are designed
to write the finite-volume fluctuations (given by the expression on which the lim
operates upon, in (2.15)) in the form (3.12a), and then to prove (3.12b). i

4. Imperfect Bose Gas

Let 4 < R? be an open region of unit volume and smooth boundary, and for
L>1let

Ay ={Lx:xe A} | (4.1)
H# |, = symmetric Fock Space constructed from L2(A;). (4.2)

Let S, be a self-adjoint Hamiltonian on L?(A;) with discrete spectrum and eigenvalues

0=L2E,< L2E, < L?E,... (4.3)
such that
lim [x~32max{m : E,, < x}] = V2/(37?) (4.4)

and let the corresponding eigenvectors be

¢t:k=0,1,2,.... _ (4.5)
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(4.4) is satisfied for S; = —34 for a large class of regions of unit volume with various
boundary conditions [8]. Let the number operator on #; be defined by

o0
N, = Z Ry

k=1
npe=Y*(b%) Y( %)
whereby (f), y*(f), f e L*(A,), are the standard annihilation and creation operators

on #;, and let H,, be the free Hamiltonian constructed from S; in the usual way.
The Hamiltonian we consider is [9]

Hy =Hy + L3f(N, /L3 (4.6)
where
fisC®on (0, ©), f(0) =0, lim f'(x) =+, andf"(x) >0forallxe (0,x). (4.7)

We shall work in the grand-canonical ensemble, and observe that the region L described
in Section 2 is now /; of volume L3. The mean particle density in the infinite-volume
limit is

p(B. ) = lim L~3tr, (of: . Ny). (4.8)

Let o be some negative real number, and P, the projection of #; onto its n-particle
subspace. Define the function y; by interpolation from the formula

try (Pung.u,) = €Xp[—BL>y,(n/L7)] (4.9)
where
. . SXP [—B(HoL — poN1)]
o ey exp[—B(Hor — po N
Let y be the function defined on [0, ) by
(e(®) — po) ¥ — B1(2mB) 732 [g5/5(eP*™) — g5/2(e#9)]
y(x)={ if0<x<p, (4.11)
Y(Pe) — po(* —p;) ifp.<x< o0

(4.10)

where g,(+), p and u(-) are defined by

g.(%) = i x"n®* ifa>1and x€[0,1]

n=1
pe= (2mB)~%2g5,5(1)
X = (2,”3) —3/2g3/2(e£u(x))‘

We take B fixed. p, is the critical density for Bose-Einstein condensation [9, 11].
We shall take in this model

S =Su(p) = (N1}

and study the normal approximation property with respect to this set:

Theorem 4.1: Let w= u(L) be defined by
p=L7tr, (NLog uw) (4.12)
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where 0 < p # p. is the mean density, and 0 < B8 < . Let

GE 5(r) = pF s (Vo — L2 5)/L¥2)). (4.13)
Then
) r/2
G, 5(r) = lim G5 = T 4.14
)= L Onsl) (B(y”(ﬁ) +f"(ﬁ))) ¢ .
where 7 is given by (3.9).

Proof: By (4.7) it follows that (Theorem 4.1 of [9]) if p(B, ) is defined as the point
of minimum of the function

gD =¥(8) +1() + (o — ) % (415
then 0 < p (B, ,u) < o is continuous in u, monotonlcally increasingin u, lim p(B,p) =0
and ;}I_{I:o p(B, w) = +o. Hence, there exists a unique p, such that B

L73tr, (Npog uw) = 6= p(B, 1)
By Theorem 4.2 of [9], llrn try(Npof uy) = p(B, py) and it follows that

lim (L) = o, (4.16)
By definitions (4.9) and (4.10),

exp[—BL3y, (/L] = > (1 — exp[—B(L 2 Ep — o))

X exp [—Ls (f—) B(L2E, — po)]. (4.17)

By (4.17) we see that, for each fixed L, y, may be interpolated to a convex C* function
on (0, ), which we shall denote, without confusion, again by ;. For g # p,, ¥ is real
analytic, and by [9, Lemmata 3.5-3.8] each p has a neighbourhood where y; — vy
uniformly. It thus follows easily that

YO —— yM(x) Vx#p, VneZ,. (4.18)

L=

Let, for x € (0, o),
gl®) = yL(®) + (%) + (po — (L)) x. (4.19)
We have

Gg,5(r) = L2 Z (-—-—p) trr (P 05, ucr)

L¥2[-32S (y _ 5\ exp[—BL3(gL(n) —gi(ny)]
— neTyL (4:.20)
L7312 5 exp[—BL3(gL(n) — gr(ny))] -

neTg
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where 7, is the point of minimum of g;, and T, ={n/L3 n e Z, U |0|}. Now, p is the
point of minimum of g, , whence, given & > 0, 38 > 0 such that, if |x — 5| > &,

8u, (%) — 8, (p) 2 8 (4.21)
and, ifa > p+ &, 3B > 0 such that, Vx> a,

€0, (%) — 84 (5) > 8+ B(x — a). (4.22)
By (4.15), (4.16) and (4.19), every p has a neighbourhood where

gL —> &y, uniformly (4.23a)
and it follows that

ny — p. (4.23b)

We may thus assume that (4.21) and (4.22) hold for g;, for sufficiently large L, with
n replacing p. Hence, we may restrict summations in (4.20) to the set

Tie={neT,:|n—n < &2}

for some & >0, without affecting the limit L — . Let T,={x: |x — p| < £}. By
(4.18) and (4.23b),

d*g.
dx?

d*g
—_— —
L2 gy

=0. (4.24)

X=p

X=ny

By continuity of g; , 38 > 0 and & > 0 such that

dZ

—>8Vxe T,

dx?
By (4.23b), 3L(&) < o such that VL > L(8), T1, < T, Hence, by (4.18), IL(f) <
L(8,8) < o such that, VL > L(3,8),

d’g S _
dsz > VEe Tors. (4.25)

x=X

We make in both numerator and denominator of (4.20) the change of variable
n' = L3?(n — n;) to get

L2 S fir.n',B) + O
Gy 5lr) = ———Ti 3 (4.26)
L2 S f,(0,%,B) + O~

n eTrL,

for some « > 0, and
Tpe={-6L? +k[L*?; ke[O,[L]]}

1d%g,
2 dx?

fulr,n',B) =n""exp {—ﬁ ’ n'? + O(L"3/2)] } . (4.27)

X=np
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By Taylor’s theorem, we may also write, VL > L(8,8),

142 |
Sulr,n',B) =n""exp [—ﬁé dsz ) 'n'z] " (4.28)
x=XxeTLg
(4.28) and (4.25) imply
fulr,w',B) S n'rexp (—B/46n'2) VL > L(8, &). (4.29)

From (4.26), (4.29) and the elementary argument to estimate the remainder given in
Theorem 3.3,

GE5() = ( f dufyr,%,B) + C‘L“/LW) / ( T’ dxf,(0,%,8) + cg)/LﬂfZ)

where |[C{?| < const. VL>1,71=1,2. (4.30)
(4.24) and (4.27) in (4.30) entail, by (4.29) and the Lebesgue bounded convergence
theorem,

[ e exp[-B120y"(B) +/"(7) #
Gp,5(r) = === (4.31)

| dxexp(—Bi2(y" () +/(p) #*

from which (4.14) follows. i

Other properties
Lemma 4.2:
}i_{r; Gy 5(r) =0 (4.32)
Gy, 5(7) is continuous at g = p,. (4.33)

Proof: Using f"(x) >0 Vx>0, y"(p.) =0, the continuity of y” at p. and the
Lebesgue bounded convergence theorem in (4.31), we get

r/2
lim Gy 5()=_lLim G, 5()= ( Bf”2(p )) 7(7)

50,40 ~p.—0
which proves (4.33). Now,

B/
(2m) 732 g4, (exp (Br(p))) ‘

0<p<p.=v'(p) =

As u(p) <0 for all 0 < p < p., we get llmg 12 ,(eP#®) = 0 pointwise in (0,p.), which

yields, together with (4.14), (4.32) for O < p < pg, while, for p > p., ¥"(p) =0 and,
since f”(p) > 0, (4.32) follows immediately from (4.14).
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Remark 4.1. Unlike the ideal Bose gas, this ‘imperfect Bose gas’ has the same
behaviour for the canonical and grand-canonical ensembles, and is moreover stable
under small perturbations [9]. The behaviour with regard to fluctuations is also in
sharp contrast to the ideal Bose gases, which is given in Appendix C for comparison.

Also, we remark that the phase transition (Bose-Einstein condensation) is
characterized by a discontinuity of y” at p = p,, while y” remains continuous at this
point. (4.33) is an immediate consequence of this fact. [JJj

5. Dicke Maser Model

The Dicke Hamiltonian for finite volume is [1]
H,=a*a+ &S+ —(Sta +§£a*)

where A>0,0< & < A%, on # | = HF ® Hyn, wWhere #F is given by (2.7) and #py
is the Fock space for one boson (photon). The operators Si= 37, (S{")? and
Cp = a*a + S§ commute with each other and with H,. In the subspace of #; consisting
of vectors of extensive (i.e., proportional to L) energy of the system (photons + mole-
cules), the a#/ L2 will play the role of intensive observables and the a# the role of
fluctuation observables. With this understanding, we denote by o =S/L and y =C/L
the ‘intensive’ quantities corresponding to the eigenvalues S(S + 1) and C of S} and
C., respectively.
Let p € [—o,[y, o]] (Where [a, b] is the smallest of 2 and b) and

oy, p)=y+(@E-p—22Vy—pVo—p?
flo,y,w) =e(o,y,u) — B~ ¥(0)
where ¥ is given by (3.11Db).
We work in the canonical ensemble. It is shown in Ref. [1] that
f(B=lim ff= min min _min_f(o,yp)

0<0<1/2 pu<y<{ —oe<su<ea

_ {f(cn(B).yl(B),m(B)) if B < B, 5

f(o2(B), v2(B), a(B)) if B2 B,

where { is a fixed real number, for which a lower bound may be obtained from Lemma
2.2 of [1], and B,, a;(B), yi(B), mi(B), i =1, 2 are defined in Appendix A. From these
formulae it follows [1] that at B = B. a second-order phase-transition (from normal to
‘super-radiance’) occurs.

Let p;; and pk,, be the Gibbs states associated (as in the B.C.S. model) to the
‘asymptotically exact’ Hamiltonians for the Dicke model, given in Appendix A, and
let us denote by the superscript R the restriction of these states to &/® = B(#%),
and the limits of these states, if they exist in the sense of (2.5), by omitting the super-
script L.

Theorem 5.1: Let

_ [{S5.5%,5) ifBe(0.8)

Sulf) = (sz) if B (8., ).
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Then p§ has normal fluctuations around {Sz,57,53} (S5 =0), if B € (0,8,), and around
a2(B)* it B & (Be, ).

Proof: By Ref. [1], Theorems 3.4 and 3.13, we have

PR (SE . SUm) if B < B,
A 2n
pR(SYD .. SUmy = { T do _ ik
? ? o Po(SIV...SUm)  if B> B,

0

where pf and pf,, have product structures analogous to (3.5a, b). The proof is then
identical to that of Theorem 3.1, since S is gauge-invariant. [l

Theorem 6.2: Let B € (0,8,) and
Si(B) ={a,a*,Sg,St, 51}, i Be(0,B.).
Then pg has a normal approximation with respect to S, (f).

Proof: This is Theorem 3.4 of [1]. |}

Remark 5.1: Theorem 3.4 of [1] proves that the limit (2.15) for the above set may
be evaluated by comparison with the termal averages for the Hamiltonian

Hﬁ=a*a+é”b*b+)—\(b*a+a*b)

on the Fock space of two bosons, where XA = A\y/Za,(B) < /€ iff B < B.. This condition
on A is necessary to prove Lemma 3.8 of [1], which is an essential tool in the proof.
For B > B, this argument does not, therefore, hold and it seems that more information
on the spectrum of H, is needed to prove the existence of (2.15) for S;(B) ={Cy, Si}
if B > B,. This is an open problem. ||}

For B € (B,, ®) we were only able to prove

Theorem 6.3: Let (&, A) satisty, besides 0 < & < A?, the condition

1/X%(& + 6%/4) > L (5.2)
and let
G(r) = pg(((CL — Ly,(B))/L173)"). (5.3)

Then, for all » even, for all B e (f,, =), there exist two strictly positive constants
¢;(B,7) and ¢,(B,7) independent of L such that

c1(B,7) < Gg(r) < c2(B,7). (5.4)
In particular, there exists a subsequence {1, }; .z, of Z, such that

lim Git(r) > 0.

L=

Proof: We omit the proof, which follows, except for a few details, the lines of
Theorem 4.1. |
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and o,(f) is the unique positive root of the ‘gap equation’
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APPENDIX A
B.C.S. model:

HZ;%=—4)da,(B) Z G,'n,; (on H#f)

pr=1

(A.1)

n,, = ((1 - (£/440,(B))*)"/* cos @, (1 — (£/4A0(B))*)*sin p, & [4Aa4(P)) (A.2)

H} =—2&S} (on J#%).

Dicke maser model:

HE? =btb, +4p(B) (1—-0,-e,) + L(|a(p, B)|* —

1

?Mh

b*¥a* Lo q),B); bL=a_La((P’ﬁ)
p(B) = 2A* a,(B)

a(p, B) = (B) (e

o () —2e$(q))

&x(9) = (1 — 62/p?) V2 cos g, (1 — 62[p?) 2 sin g, —&p).

For the Dicke maser model we have

. =—arctanh—
&

AZ
oy(B) =}tanh /3?6”
v1(B) = p1(B) = —o, (B

20,(B) = tanh (BA% 0,(B))
v2(B) = p2 + A%(02(B)? — pd)

_ &
F2= o
B.C.S. model:

—{k/2L: k[0, L]}
S,,={—o+k/L;ke[0,20L]}, oe€S,

(20 + 1/L) exp

0

X { 4AoB — J dt [arctg + arctg

L/2(1 + 20) +2

0

(A.3)

p(B)[2) (on H'f @ H pn)

(A.4)
(A.5)
(A.6)

(A7)

(A.8)

(A.9)

(A.10)
(A.11)
(A.12)

(A.13)

(A.14)

t 1
L/2(1—20) + 1" —1

951.(0) =

(1 — 20+ 2/L)V2 (1 + 20 + 4/L)3?

9 [L(1-20)1/2 4 L(1+2a)]/2
1 1+
* ( TIa- 20)) ( L+ %))L

(A.17)
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APPENDIX B

As observed in Remark 3.1, we may obtain a result similar to Theorem 3.1 using
the same set S;(B) ={S®, S%),S(:‘”} forall B e ), if we use a different definition of
normal fluctuations, with the aid of the concept of quasi-averages, due to N. N.
Bogoliubov, and developed extensively by N. N. Bogoliubov Jr. [14]. Let

T(C) = &(L — 253) — 4X(CS} + C*S7) + 4A[C)? (B.1)

4\
Iy(r,C) = (L —25) —— (1 — 7) ST S} — 4Ar(CSE +C*SD) (B.2)

where ¢ stands for ‘trial’ in (B.1), 0 < 7 < 1, C € C, and let p{§ and p5;° ® be the Gibbs
states associated to I';(C) and oy respectlvely The limits of these states, if they
exist in the sense of (2.5), will be denoted by omitting the superscript L. Clearly,
I'1(0,C) = Hy, the Hamiltonian for the strong-coupling B.C.S. model of Section 3, and
I' (7,C) contains symmetry-breaking terms for 7 > 0.

Let C be a point of absolute minimum of the infinite-volume free-energy function
for I';(C) ([14], p. 105):

1
FlC)) = —,8‘1 lim .= log tr, e=BrL(©),
Theorem B.1: Let S, (B) ={SP,S® S VB € (0, ©). Then
3 lim lim pzﬂ HFESC(r)) r={r, 7,75} (B.3)

T-04;+L-o

for all subsets {r;, i € J} =.Z, where

F2o8 () = T1((SP — LSY(r, O)) VI)r (B.4)
i=1
and
lim p%7 (0) =SP(7,0), ie[l,3). (B.5)

Proof: It is proven in Ref. [14], p. 129, that for all local elements y € &,
Lim p2"" (y) = p25" (v) = lim pi3(y) = pis(v)- (B.6)

Hence, S”)( ,0) _—_S(B (C:‘) are independent of e (0,1), hence also F? *(r), and
writing F& €(r) = = C(r), (B.6) yields

Py (FLE(r) = pfﬁ(FE’C(r)) (B.7)
and
3 lim p$,(F£- ()
L-w

by arguments identical to those of Theorem 3.1. Hence, by (B.7),

3 lim p53*(F£€ (1)) = lim pfy(F£ (r)). (B.8)
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But I'/(C) does not depend on 7, hence the right-hand side of (B.8) is independent of 7,
whence, trivially

3 lim lim p5;° (F£€(r)) = lim p,(FL€ (1) W

=0+ L=

APPENDIX C

In this appendix, we consider the fluctuations of the set S; ={N} for the ideal
Bose gas, to be compared with Theorem 4.1. The nctation is the same as that of Section
4, with f identically zero.

Let 2(L) = e##® be fixed by

L

p=L7 3 A1)/ — 2(L)).

Since

0<try(ngop uy) < VkeZ,U{0}
we must require

0<z(L) <.
The properties of z(L) are given by

Theorem C.1[11]: For g < p,,

L3 L)/(1-2(L)) -0 and z(L) >{ (C.1)
where 0 < { < 1 is the unique root of the equation

p = (2mB) ™3 g3,2(0). (C.2)
For

p=pe, L32(L))(1 —2(L)) > p—p. and z(L) - 1. (C.3)

Here, g, and p, are given in Section 4. Let G, 5() be given by (4.13) of Section 4, with
all quantities replaced by the ones for the ideal Bose gas. It is easy to prove that,
given any 1 < L < o, p > 2, there exists a real neighbourhood of zero, N, ,(0) # {0},
such that, Vi € N, ,(0), one may define

agn=exp[~B(Hy — (u + 4/B) Ny)]
2y =trp vk,
(Npyw=tr (o5 N | Zg,
Coh) ={(N =N P22
Fulh) = L %log Z5:
and where
@2 £y () dh?) < 0V >0-Vhe Np,(0).

Under these conditions, one can prove
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Lemma C.2: The mean p-variances Cx(h) may be expressed
p
Vhe ) Ny (0) # {0}
k=2

in terms of the successive derivatives of f; by means of the set of recurrence relations:

CL(h)| L3 = d2f, () dR? (C.4)
d L L L
= Co () = Cpua(h) = PC, () C3(A). (C.5)

Using this lemma, one may now prove

Theorem C.3: Let 0 < B < « be fixed. If 7 is even,

Gust) = im kot = (12070 2T can
Ifrisodd and p < p,,

Gy, 5(r) =0. (C.6¢)
Furthermore, if p < p,,

Gp,5(2) = (2mB) 2 £,5(0) (C.6d)

where { is defined by (C.2).

Proof: Tt is easy to prove that, by (C.4), Lemma 2.1 of [9] and bounded con-
vergence,

Gg,5(2) = C5(0)/ L3 = (@ f.(h) |dh?) n-o

3 3 d e~ B(x—u(L))
= L32(L)/(1 —z(L ja TR . Fy(x)dx (C.7)
0
where
Fo (%) = L-3[max{m: L-2E, <} —1]. (C.8a)
Hence,
V2
lim F(x) = — %32 (C.8b)
L-w 317'
and 3% independent of L and x such that
F,(x) < kx32, (C.8¢)

If 5 < p., then u(L) — log{ < 0 by (C.1), and, from (C.7), (C.1), (C.8b, c) and dominated
convergence, it follows that

B 5(2) = (2#B)—3/2 g1/2(0) (C.9)
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which proves (C.6d) and, a fortior?, (C.6a) for» = 2. If 5 > p,, since

7 = Bx—n(L))
dx | (1 — e PG—un)2

}sO VL >1

it follows that

PYRNETR R

1—z( 2Ly &=

by (C.3), proving (C.6b) for » = 2. The remaining assertions follow from application of
the recurrence relation (C.5). In fact, by (C.5), if 7 is even, Gy 5() always contains a
dominating term

const. (>0) LRG0 —s

const. (>0) ((2mB)~2g,,»(1))"2 >0 if 5<p.
+o0 if p > p,
proving (C.6a, b) for general  even. (C.6c) follows from the structure of (C.5), which

relates CE(h), p odd, to CL,(k),..., C5(h), with coefficients tending to finite (possibly
zero) limits. Since

C30 1 &f

[9/2  L32 gp3 0

L=

h=0

the result follows by induction. |}
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