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On the Existence of Light-Like Charges in Quantum
Field Theory

by F. Jegerlehner!')

Institute for Theoretical Physics, University of Berne, Sidlerstrasse 5, 3012 Bern, Switzerland.
(18. IX. 73)

Abstract. We investigate the existence of light-like charge operatorsin the framework of general
quantum field theory. The light-like charges present an important tool for a mathematically
consistent formulation of the connection between local field theory and the generators of broken
internal symmetry transformations. We find that light-like charges exist as unbounded operators
for models with an appropriate behaviour of the long-range correlations in light-like directions
provided the null plane restriction of the current commutator for the good components is defined.

1. Introduction

The purpose of the present paper is to investigate some properties of light-like
charges[1, 2] in the context of quantum field theory. The main interest in these objects
arises from the difficulties for space-like charges belonging to non-conserved currents.
In one form these difficulties are expressed in Coleman’s theorem [3]. In fact the original
idea of current algebra and broken symmetries [4] soon met with serious trouble
related to Coleman’s statement: ‘The invariance of the vacuum is the invariance of
the world’. It had been hoped that the non-conserved charges have similar properties
as the conserved ones: Annihilation of the vacuum, existence as unbounded operators
when represented as a space integral over a non-conserved charge density etc. It
turned out, however, that none of these properties are satisfied in the case of non-
conserved currents [6].

A way out of these difficulties was drawn by the observation [5] that the saturation
of the space-like charge algebra by a few low intermediate states is only possible in a
non-trivial manner between states having infinite momentum, i.e. for matrix elements

L(p’,p,a) = lim {p’ + «a|Q|p + «a}.

By a formal interchange of the singular boost of the states to a boost on the operator
Q one gets a reinterpretation [1] of the infinite momentum limit as a matrix element
of a transformed operator Q! between states of finite momentum:

L(p’,p,a) =<{p’|Q"|p)-

1 Present address: Institut fiir theoretische Physik, Freie Universitat Berlin, Arnimallee 3,
Berlin-Dahlem 33, Germany.
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When @, as usual, is represented as an integral of a charge density over a space-like
plane,

Q= '[ d3xj%(x)  (‘space-like charge’),
Z: x0=const.
then
Q' = lim U(A4,) QU*(4,)

K— o0

has a representation

0! = f do,j*(x) (‘light-like charge’)

X! x04+x3= const.

as an integral of (j° + j3) over a plane tangential to the light cone.

Formal arguments suggest that the light-like charges Q! might have properties
one would like any charge to possess irrespective of current conservation. So we may
hope that a non-conserved charge algebra is meaningful when formulated in terms of
charges Q.

In this paper we define and investigate light-like charges in the framework of
general field theory. It will turn out, however, that dynamical requirements beyond
Wightman’s axioms are necessary in order to prove the existence of Q! as an unbounded
operator in Hilbert space, contrary to the case of conserved space-like charges where
the Wightman axioms are sufficient to prove the existence of the charge operator
[6, 7T]. These requirements, which are compatible with the basic assumptions of field
theory, restrict the class of Wightman field theories where /-charges can be defined.

We will not discuss problems related to the possible self-adjointness of Q*. Hence,
it remains an open question whether Q' can be identified with the generator of unitary
internal symmetry transformations. Furthermore our investigation is restricted to
theories with no zero mass particles.

2. Light-Like Charges in Quantum Field Theory

2.1. Light-like coordinates

For our discussion it will be convenient to use the following conventions for the
coordinates [2]: A light-like plane (I-plane) is characterized by an equation of the form
2 m,x* = constant, where the normal #, is light-like. As a particular choice we take

1
n,=—(1,0,0,1).

ol
It is then convenient to introduce new coordinates
1
X, =n,x*=—(x"+2%; x,=—@x"—2%%; x=(x1,2?).
31 " \/2 ( ) fl \/2 (

The surface X' is determined by a constant value of x, . In these coordinates the scalar
product reads

yx=y°x20—y-X=y,%, +y, %, —y%
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Similarly, we define the new momentum variables as
1 (0} 3. " 1 0 3. 1 2
Pr=5 0= pi=mpt= o (P + 8 p= (")

such that the scalar product takes the form

px=p %, +p,x, — P,

i.e. P, generates translations parallel to X'!. Furthermore, we will write 0, = #n,0*
for the derivative and 7, =#,j* for the current and correspondingly for the other
components. We will also use the abbreviations

f=(x,,2) and p=(p,,p)

for the coordinates and momenta in the planes ¥, = const. and p, = const. respectively.
With this notation the formal light-like charge (J-charge) may be expressed in the form

Q)= [ doyju) = [ d*x8(x,— )5, ().

Ilinx=t

2.2. Basic assumptions

We want to formulate our problem within the Wightman approach to quantum
field theory. As a basic quantity the hermitean current j#(x) represents a tempered
Wightman field, local and relatively local to the other basic fields @,(x) of the theory.
7*(x) transforms according to a unitary representation of the Poincaré group. The
vacuum |0) is a unique cyclic vector with respect to the polynomial algebra 2{®;(f)}
of the smeared fields, such that the domain

Do = P{Di(/)}0),

the set of quasilocal states, is dense in the Hilbert space # of physical states. The
smearing function f belongs to the space & (R*) of strongly decreasing test functions.

Thus
) = [ dxf(x) ()

defines an unbounded operator in # with the stable domain D,,. We are explicitly
interested in non-conserved currents.

9,7"(x) #0.
The current is always adjusted to have vanishing vacuum expectation value
<0[7*(%)|0> = 0.

Furthermore, we assume the strong spectrum condition to hold, i.e. the spectrum of
the translation operator P, is contained in {0} U V,; where

?;0 ={p;p*=>m3; p°>0} and P,|>=0 ifandonlyif | = |0).



Vol. 46, 1974 The Existence of Light-Like Charges in Quantum Field Theory 827

For later use we now specify some notation: The general form of the states |4) € D,
reads

[f> = §1|¢l>"= % del...dx,,f(xl,...,xn) D, (%) ... Du(x,)|0>

with f e & (R*"). By linearity it suffices to consider only states |i/>, instead of | and
we omit the index #. B will denote a quasilocal operator.

b= J- B s s AT (R0 eilg) DB - 5 D)

such that |¢f) = B|0> (B and |} are called local if fhas compact support, i.e. f € D(R*)).
To exploit the spectral condition, we write | in momentum space.

9> = [ dps-..dpu (b1, .10 i) - Bo(£)|0)

where the support of the vector valued distribution

B,(py) - . ol $)|0>

in the variables g, = >, p; is contained in ¢, e {0} U V,, ; k=1,..., n. We exhibit a
transformation of variables p, — g, and since the space 9” is nuclear we restrict our-
selves to states with f(gy,...,¢,) = $,(qy) ... Fa(q.) € F(R*®". These states have a
representation which we will always use subsequently

9> = [ dg.lg)lg.>- (2.0)

Here we introduced the generalized eigenstate of P,,:

~
~

lg:> = jd% ... dg, ‘;Z’Hz(‘b u(qn) D1(q1 — 2) (52(92 —q3)--- 5::—1 (Guti = T)
x D,(g,)]0>.
If |4 # |0> we have g, € V.

2.3 The problem of defining a light-like charge

The main question to be discussed in the present paper is: What meaning can be
given to the formal /-charge

() = | do ()
3!

within the scheme of our basic postulates? Because of the translation property
Q'(x,) = P x-Q!(0) 1P

we need only consider Q*(0) in the following. We write, formally:

Q'=0' de3x¢]|! deg () 74 (%)
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with g(x,,x,,x) =68(x,) ® 1. The assumption of j*(x) being a Wightman field only
guarantees the existence of Q'(g) as an operator for g € #(R*). Therefore the distri-
bution 8(x,) ® 1 has to be approximated by a sequence of test functions of & or .
This is always possible because 2(R*) and & (R*) and by nuclearity also 2(R)®* and
& (R)®* are dense in the space of distributions &’. We will choose parametrized
‘sequences’

de(x) =fd(xj_) gR(xu)gR(z_c) = y or .@
with the limit
lim fe(x) =68(x))

d—0
R—

where the sense of convergence will be specified later on. Within this context the

problem of defining an /-charge operator is formulated as a question of convergence
of the regularized charges

Qur = QUar) = [ 4% fur(x)7,(2).

First of all there is no reason to hope that the convergence properties of the @, are
better than those of space-like charges in the case of conserved currents [6-8]. Therefore
we restrict ourselves to the study of convergence in the sense of densely defined sesqui-
linear forms [7]. This means that on the dense set of quasilocal states <i|Q,z|¢> should
converge to a sesquilinear form Q(ys, ) (i.e. the form is linear in |¢)> and anti-linear in
|>) The sesquilinear form Q(if, ) will define an operator Q provided it is continuous
in one argument, when the other is fixed, as stated by the representation theorem of
Riesz: A densely defined sesquilinear form Q(s,$) has a representation as a scalar
product

O d) = <Wld> |$re
if and only if Q(i, ¢) satisfies the boundedness condition

Q0. 8)| < [F]K,

for some positive constant K, depending in general on |¢$>. An operator Q is then
uniquely defined by the mapping

|$>=0l¢>

such that
Q. ) = P|Q|$.

We point out that the convergence of {i|Q,z|¢> and the separate continuity of the
limit form Q(y,$) are the weakest requirements necessary in order to define a limit
operator Q out of the Q,z’s. Now Schwartz’s inequality applied to the regularized
charge matrix elements reads

|<h1Qur| 2] < |41 Qurlb>l
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or, taking the limit, we have
Q0. @) <[] -lim [Qur| 4]
provided

Qth, ) = Lim (h|Qur|4> (2.1)

R— o0

exists. This shows that the boundedness of Q(if,#) may be assured by the existence
of the limit

Ky = lim [Quel)]. 2.2

R—-

We conclude that the existence of an /-charge operator corresponding to the formal
light-like charge may be guaranteed by requiring the two limits (2.1) and (2.2) to
exist for arbitrary quasilocal states.

2.4. Admitted sequences of testing functions; r-convergence

We have not yet considered a possible dependence of the limits on the sequences
of testing functions f,; [7]. In fact it turns out that the existence of the limits (2.1)
and (2.2) depends on the choice of sequences and, in the case (2.2), on the order in
which the two limits 4 — 0 and R — o are taken. This will be shown in the subsequent
section. It is not unexpected, since this sequence corresponds to a measuring procedure
to be carried out to measure the charge. We expect a reasonable charge operator

i) to annihilate the vacuum weakly Q|0> =0 on D, (2.32)
ii) to have zero vacuum fluctuation ||Q|0>]| =0 (2.3Db)

provided this assumption does not contradict the former basic assumptions. (It turns
out in the case of non-conserved space-like charges, that these assumptions are contra-
dictory (Coleman’s Theorem) [6, 7].) Of course ii) implies i) ; we will however investigate
the two conditions separately as they impose different conditions on the theory.

Thus, we have to specify a class of suitably parametrized test functions {& sz} <
{&4r} and the corresponding notion of convergence

far(®) —— 8(x)); deE{SadR}-

First of all we restrict the class of functions f;z to have the same symmetry and
normalization properties as their limit

far(%) = fa(x,) gr(¥) symmetric, real

(it would be natural even to take f,z in addition to be positive and monotonic in
x; = 0).

@ fux) =15 fux) — 8x) @—>0)

gr0) =1; ge(®) —> 1 (R— o). (2-4)
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The functions f;z € & may have compact support either in configuration space (the
parameters 4 and R may in this case be taken essentially as the corresponding bounds
to the support) or in momentum space (with 4~ and R~! as bounds to the support).

The convergence of a 8-sequence f,(z) = 8(z) must be defined so as to pick out
from an arbitrary distribution 7 € &’ only contributions in the vicinity of z =0 [11].
This is not guaranteed by simply demanding convergence in &’. Rather we have to
require that

i)  «z)f,(s) >0 in&

for all € functions « which are polynomially bounded together with all the derivatives
(i.e. « € 0)) and suppa N {0} = @. This is equivalent to the condition

f@Mﬂﬂ@eO (2.5)

forall T'e &' with supp 7T N {0} = o. Furthermore we require, that in Fourier space
the convergence of the 1-sequence f,(#) = 1 fulfills the condition

i)  B(w)fo(u) - Bu) in

for all B € &. This is equivalent to the requirement

ful) T(u) — T(w) in & (2.6)

forall T € &'. The conditions i) and ii) are independent and compatible. They define
a subspace of sequences {#,} of the space {&,} of all &’-convergent &- -sequences.
An element £, € {&,} is called 7-convergent to a §-function respectively to 1 in Fourier
space. (The notion of r-convergence is of course easily generalized to sequences f,
tending to any distribution with support at one point.) In general # will be a real
positive parameter with » — «. Examples of sequences belonging to {&,} are:

D) =W fin77) with fi) e #; [fdi=1; >0

2/n(2) € with wWﬁCPWﬂWﬂ:fﬁ@ﬁ=l;y>0
Correspondingly we have in Fourier space /() = [ dze™ f(2)

Julth) = fi(n~"w)  with  £,(0) =

f.(u) has in general no simple representation; it is an entire analytic function with
}:,(0) = 1. In particular:

2
1Jal2) = ieXP (—ZZ—) with a>0

ma a

and

1
2fuz) =nCexp| —————| in |z|] <»™' with
1 — (nz)?

-1 __ _ 1
Cl=wn f dzexp( _1—(112)2)
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are sequences of this kind. With these notions we are able to introduce now the class
of admitted sequences f;z to be used in the definition of I- charges

fa1s a r-convergent

P . 8-sequence for d — 0
Jar(%) = fa(¥.) gr(#) is admitted exactly i g is a 7-convergent

1-sequence for R — .

We will often write simply f,z € {Pax}-
If not otherwise stated, we will only consider convergence with respect to
far € {%4r} in the following, taking further £, to satisfy (2.4)

3. The Annihilation of the Vacuum

We first investigate the consistency of the requirements of vacuum annihilation
(2.3) with the assumption of general field theory [12, 13].

1) Weak vacuum annihilation on D,

‘lii_{no <¢’|Qdk|0> =0.

R-

Using the notation introduced in (2.0) for |/> and translation invariance, we have

Jar = |0uxl0> = [ dgf*(9) Fur@)<gl7,0)10%; fur € (S}

The matrix element is a tempered distribution in ¢ with support in 7,r . In momentum
space de( ) = (2)*8(i#) we observe that the d-limit can be taken trivially by (2.6).
On the other hand in the R-limit f,(g) tends to a distribution with support on the line
g = 0 and vanishes in &(R* — {g = 0}) by (2.5). Now because {g|7,(0)|0> has support in
V., the supports of the two distributions touch only at ¢, = @ where §* vanishes
faster than any power. So by the temperedness of {g| 7, (0)|0> the ‘point’ p, = o cannot
contribute. Therefore the two limits may be taken in any order and for arbitrary
sequences fyr € {Fr} With fiz = 8(x,) and the vacuum is weakly annihilated on
Dy :r— £ir£1]dﬂ =0.

ii) - Vanishing of the vacuum fluctuation:
lim [ Quel 03] =0
o

In this case we meet more subtle convergence properties than for weak vacuum
annihilation. A general treatment is however possible by use of the Killen—Lehmann
representation for the two-point function:

O13,)7,%)10> = @m)=> [ @*po(9) {(P;pv

guv) (%) +pupvﬁo(p2)]- emiP 0=,
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The regularized expression then reads

Kax =0l O|? = [ dydz fur(5) far(0)<017, ()7, (%)10>

= (277)-3 J-dlb 0(1”11) {P—" ﬁl(]bz) +Pn PO 2)} |j:R(;b)|2.

The spectral functions g, and j, are positive tempered distributions with support in

p* = mg, so we may write
fi (s +2\|°
d
2p,

with p(s) = s715,(s) + po(s). It is evident that the d-limit cannot be executed for fixed
finite R because we would get the factorized expression

Kir=1%(2m)73 F ds p(s) "?dp I J dz? Py
0

m

8r(£4)1*18R(P)]?

2
0

Kog = 3(2m)~ J ) x [dpypi|gr(p))? x | & plEa(p)? (3.0)

where [ dsp(s) need not converge. Even if

the R-limit of K, diverges if not

0.

I

j dsp(s) =0 ie. (%)

We may parametrize the divergence, e.g. by taking gz € {Zx N &g} real symmetric
with gp(x;) =1 for |x;| < R, such that

_‘. dp, pnlgk(Pn)lz =0(1) and jdzélgk(f)Iz = O(Rz) as R — oo.

Hence even for f;; € {S’dR} we have Kyp 2 O(R?) as R — o and the d-limit can there-
fore not be taken before the R-limit. However, we may easily see that for fixed d # 0
the R-limit annihilates the vacuum, if one considers smearing functions f;z with
compact support in momentum space (Fig. 1a). By the geometry of the supports of
far and p there is always a constant Ry(d) such that

KdR — O fOI' R > Ro(d).

In order to enlarge the class of sequences f:,R to non-compact supports it is useful to
consider the behaviour of the R-limit (4 #0, fixed) for the p, and p integrals
individually. . -

The behaviour of [ 4%p... is not affected by the function fy[(s + $?)/2p,] hence
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this integral diverges, e.g. as O(R?) in the parametrization used above. On the other
hand f;, having a zero of infinite order at p ; = 0, may modify the behaviour of [§ dp, ...
depending on the sequence gp(p,). This sequence has to be chosen such as to com-
pensate for the divergence of the p-integral. In fact for an »-convergent sequence
Fre{Prithep, 1ntegra1 vanishes faster than any power of R as R — o, d # 0 because,
by construction, in the limit g will pick out only contributions at p” =0 where f,
has a zero of infinite order. In this case, the vacuum is again annihilated.

It is essential that f, is taken in the space {# ). The requirement that famodifies
the behaviour of [ dp,... is not fulfilled for arbitrary testing function g € (PR} as
we will show now. (Note that in the space-like case f,(1/s + p?) does not modify the
behaviour of the integral [ d3p|gx(p)|?... which diverges also for every & € {Px} [T].
This is due to the fact that the point p = 0 always gives a non-vanishing contribution
for d < m™1, as can easily be seen if f,x has compact support (Fig. 1b).)

Let gg(x,) be a test function of the type used (among others), e.g. in the standard
articles on space-like charges [6-8].

I'for |x,| <R

x,) € @ real, symmetric; x,) =
grl% ) y gr( ) 0 for Ixnl S R4c

(3.2)

Then gz(#,) may be represented in the form

~

2
gr(2)) =P_{gc(Pu) sinp, R+g(p,) cosp, R}

where

c

gc(]5 ||) = J dx" cosp, x, g(’)(xn) and gs(lbu) = J‘ dx 1 Sil’lpu Xy g(;(x il)

0

are elements of . This leads to a p, integral of the form
4 [ dp, prib(e +62) + 32 —g) cos2p, R +g,g. sin2p, RYFJ2.
0

For d # 0 the first term is finite and independent of R whereas the non-leading terms
vanish by the Riemann-Lebesgue Lemma. Thus with the testing functions (3.2) the
divergence of the integral [ d?p... is not compensated and we get |Q,z|0>|* 2 O(R?)
as (R — «, d # 0). This shows that a restriction of the class of sequences is necessary
in order to get a finite limit. In fact the sequence (3.2) is not an element of {Fy}; it is
ruled out by our notion of convergence.

It is instructive to consider an explicit example of a sequence that does converge
in the class gp € {¥&}. We chose

1for |x,| < R

x,) € & real, symmetric; x,) =
gr(x,) b gr(x,) 0 for Ixul > R(1 +0).

(3.3)
The Fourier transform gz(#,) has the property

gR(an) = R§1(Rpu)-
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After a change of variables p, — R~1p, we have

54 s—l«lbz
ﬁ(%ﬁﬁ

o0 2

[ap,p.l8 (201

0

This integral vanishes faster than any power of R as R — « provided 4 # 0 and we
have the desired result

7 — ;irn Q|0 =0 for (4 # 0 fixed).

There is a simple physical meaning for the need of a restricted class of testing
functions. As the charge measurement is performed within a finite box there are
particle pairs produced at the wall, the density depending on the ‘softness’ of the wall.
As the size R of the box increases, the wall has to be softened in such a way that the
surface effects (which cause the divergence in the former case) vanish.

We summarize the results obtained in i) and ii) by the following:

Stqtemént 1: Let Q4z be a charge operator regularized by smearing functions
fir €{F4r}- If the strong spectrum condition holds the R-limit for fixed d #0
annihilates the vacuum irrespective of current conservation

) 7= lim HlQul0> = 0; |4 € Dy

. ; (3.4)
i) 7~ lim | Qug|0)] = 0.

From (3.0) on the other hand we have

i) #— },i_zré |1Qarly|? = oo (3.5)

except for the case when (3.1) holds.

iv) In the case (3.1) is satisfied however

{r— },iﬂuomlmnz} ~ O(R?) (R — o).

As a consequence an /-charge in general only exists if the R-limit on {& g} is executed
first. The special case (3.1) where the d-limit exists for fixed R we call superlocal [10,
14, 16]. It corresponds to the absence of the leading light-cone singularity.

We have shown that it is possible to give a procedure defining an /-charge such
that the vacuum annihilation requirements (2.3) in the case of a non-conserved current
are compatible with the assumptions of general field theory. This is in contrast to the
non-conserved space-like case.

4. Conditions for the Existence of an I-Charge Operator

We now consider the limits (2.1) and (2.2) for states different from the vacuum.
There are essential differences also in this case between space-like and light-like charges,
as may be seen from the following argument: Let B be a local operator and |} =
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B|0> the corresponding local state. Then. the action of the regularized charge on |
may be written as

Qar|¥> = [Qar> B|0) + BQur|0>. (4.1)

In the space-like case the first term achieves its R-limit for some finite value of R because
of locality and therefore poses no problems in the R-limit. The only trouble then
concerns the second term, i.e. vacuum annihilation. Ignoring the difficulties with the
vacuum, we are left with the problem whether the d-limit exists for the first term.
For the existence of this limit the behaviour of the commutator on the finite inter-
section of the plane ¢ = 0 with the double cone, defined by the support of the smearing
function of B, is relevant. Looking at (4.1) with a single field the behaviour of

[(Qar, P(x)]

in the vicinity of the tip of the light cone determines the behaviour in the 4-limit.
For l-charges however, the intersection of the /-plane =0 with the double cone is
extending to infinity in light-like directions and the behaviour there becomes relevant.
For a single field the plane = = 0 is tangent to the light cone, hence the behaviour of
the commutator on the entire light cone must be known to evaluate the d-limit.

We will see in the sequel that the existence of the limits to be investigated here
depends strongly on the light cone behaviour of the currents.

i) We first consider the limit (2.1) [13]

[ %i’fg <4‘|de|9’5> = Q(‘!’r 96) (2.1)

which should exist as a sesquilinear form on D, (|4}, |¢> # |0>). Notice that in the
space-like case a theorem of Borchers [9] immediately implies the existence of Q(i, ¢).
In our case, related to the former by a singular Lorentz transformation, the theorem
is not sufficient for a corresponding conclusion, because of the light-like directions
involved.

In fact the R-limit cannot exist for arbitrary field theories. By the theorem of
Borchers [9]

Flx,) = [@5]5,0,%,,0|$) € Ou,,.

However, the R-limit only exists if F(x,) is an integrable function, in the sense

+N

131_{130 ;],; dx, F(x,)

<, (4.2)

i.e. the correlation of the current along light-like directions has to fall off appropriately.
Using notation (2.0) condition (4.2) may be translated to momentum space: The
restriction ¢’ = § of the truncated Wightman distribution

WT(g',q) = <'|7,(0)le>T

with supportgq’, ¢ e T7,:,’o is a distribution in the remaining variables. Physically speaking
the light-like R-limit restricts the corresponding amplitude to zero momentum transfer
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t=(q¢" — q)> =0 between ‘in’ and ‘out’ particles. (For one-particle states and a con-
served current it therefore measures the ordinary charge of the states.)

If we exploit locality and the vacuum annihilation property (3.4) for the matrix
element

<‘!’IQdR!¢> = 2, <¢a|[Qde ¢0(X)]|¢a> + <¢’a|QdR|0>;

we may use the Jost-Lehmann-Dyson representation for the commutators to translate
(4.2) to a statement on the corresponding spectral functions § defined by:

<q’l[j!| (x), @(z)} |q> con’™ eiP(x+2) J du e 1#(x=2)

@

x [ds [areu—r 8(m—B*= 95, q. k). 43)

The spectral function g has support in

Q+keVs

(4.4)
V's > Vs = max {0,mo — V(Q + &)%)
where
I + ! P
g=b 8 ang P2 H
2 2

It is immediately seen that (4.2) only restricts the behaviour of 5 at s =0. For |g")
and |¢)> ‘one-particle’ states it follows s > s, = m,/2 and thus (4.2) is only a restriction
to the continuous part of the spectrum. In the following we make the dynamical
assumption (4.2). For the corresponding class of field theories

r— Hm Qa4 = 0, ) = 2m)° [ dg' dgf*@) $@ 8@ D WT(g9)  (45)

exists and defines a sesquilinear form on D,;.

ii) The investigation of the continuity condition which must be satisfied in order
that Q(y, ) is the form of an operator is much more involved. The continuity of
Q(, ) may be assured by requiring the existence of the limit (2.2)

K,=7r— }.-tiI;Izl”Qdelb” <o onD,.

Of course the limiting procedure should not depend on the state | hence by (3.3)
the R-limit in general must be carried out first

Ky =7 — lm{ — lim|Quelyp>|}. 22)

For the vacuum we have K, = 0 as proven in Section 3. For states ) different from
the vacuum we are left to study the connected norm contribution

{Qurl9>1” — [$1710url0|% = [ dg’ dgd*(q) (@)
x [ dy & fur(9) farn @< 151 9) 71 (D)D) con-  (46)
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A condition for the existence of the R-limit is immediately obtained. By the theorem
of Borchers [9] the light-like correlation function

Fly,, x,) = j‘dyl dx Jdz.ydzl‘fd(yj,)fd(x¢)<¢’lju (3) 74 () [gh> 0" (4.7)

has the properties
a) F(yll’xll)ey’yn’xll
b) F(y,,x,) is symmetric and positive
o [dxg) Flx,y,) €0y, forges (4.8)
by assumption (4.2)
+N

d) g\lrim _f dx, F(x,,y,) € &y,

N

Thus a further condition must be imposed for the R-limit in (2.2) to exist:

+N

lim ay,dx, F(x,,y,)

N-oow
-N

< . | (4.9a)

In momentum space we have a corresponding condition on the Wightman distribution
G(q',q,u) defined by

CAVICONE ()@ con = gP 7+ fd“ e O IGy (g, q,u). (4.10)

The support of G is restricted in % to Q+uc 7;0, where Q= (¢ +¢)/2 and P=
(' — g)/2. (4.9) is then equivalent to the existence of the restriction

~
~

(277)68(3)@, _Q)éu 1(¢',9,4,,0) = lim J‘dﬁgk(p-{—ﬁ)gR(P—ﬁ)é“ (g, g, u).

e (4.11)
Provided we demand (4.7) to be absolutely integrable
[ay,dx,|F(y,.2,)] < =, (4.9b)
i.e. F € L'(R?) the restriction
Gy (g9 %) 3-5.50 (4.12)

makes sense uniformly on {551?2} otherwise it has to be defined by (4.11). Our further
investigations are restricted to field theories fulfilling (4.9a).

We are left with the consideration of the d-limit. As a distribution in ¢’ and ¢
we write

~ v

@m°® 3G — ) [ du, futw) G, (g g, 0)  w,>—0Q, (4.13)
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where we have replaced f,(P, +u,) fy(P, —u,) by fi(u,) simply. We see that the
existence of the d4-limit is a matter of the high «, behaviour of G Because f; € {Pa}
the d-limit converges if

f&(zﬁ*, i, 0)du, | < o (4.14)

with an arbitrary constant a > 0, i.e. é(u 1) € LY(R). Assuming a polynomial behaviour
at high %, the condition reads -

Gp* hiu,,0) ~ u D (4, —> )  with (o> 01).

If (4.14) holds the d-limit is uniform on {9?}?2}. Again (4.14) cannot be derived from
first principles. We have to take it as a condition on the models that allow for the

existence of an /-charge. In the configuration space (4.14) is equivalent to the existence
of the /-plane restriction:

J.de_S(fJ_) {Jﬂ dé<ql 17 (g‘) I (— %) I q>|a'=z;} & &,

We summarize the investigations of this section by the following:

Statement 2: Let |> and |¢)> be quasilocal states different from the vacuum and
Qgar the regularized charge, then

QW d)=7— E’T {P|Qur| P>

defines a sesquilinear form provided the current component 7, behaves in light-like
directions |x,| — o such that

F(v,) = [ @2 15,0.9)|$>

is integrable in the sense
+N

lim | dx, F(x,)|<

N—-wx

0.

i) Ky=7— liﬁn |Qar || exists if the distribution

Fly,x) = [dy.de, [ @ydsfly ) i) b7 0)7 D1 co

satisfies
+N

lim dy,dx, F(y,,x,)| < ®

N—o
-N

iil) K, =7 —1limK, < « iff in addition
d-0

F(y)) = [ a2 |3u(50.5) 5,00 DI con
is continuous at y, =0,
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iv) In general » — lim|Q,z|¢>| for fixed R diverges even if all of the above con-
d—0
ditions are satisfied. The special case where » — lim||Q g|4>|| converges is called super-
d—0

local [16].

If a model satisfies the above restrictions the statements 1 and 2 guarantee the
existence of an /-charge operator annihilating the vacuum irrespective of current
conservation. It should be remembered that the divergence of the limit (2.2) would
not necessarily exclude the existence of Q' since convergence of (2.2) is only a sufficient
condition.

We verified the conditions (4.9) and (4.14) to be satisfied in perturbation theory
for specific renormalizable models [15].

It is easily checked that the above conditions are trivially fulfilled for conserved
currents and that in this case the light-like changes coincide with the ordinary ones.
Thus our restrictions only concern the properties of the symmetry-breaking part of
the current. The relation of the above conditions to properties of the divergence
047 ,(x) of the current will be discussed elsewhere. This will also give the bridge to the
local approach to broken symmetries by means of Zimmermann’s normal products
and Ward-Takahashi identities. In the later framework [17-19] the ‘softness’ of the
symmetry breaking has to be imposed, in order to have at high energies an asymptoti-
cally symmetric theory. To a certain extent the softness of symmetry breaking should
be equivalent to our restrictions above.

Apart from the fact that the existence of ‘non-conserved’ I-charges annihilating
the vacuum is compatible with the Wightman axioms it is important to have examples
of models satisfying the existence conditions. As for interacting models in general only
perturbative investigations are possible [15]. We will restrict ourselves here to give
an example of a free field model with broken internal symmetry where exact non-trivial
statements are possible.

5. Existence of Non-Conserved Charges in a Free Field Model

In this section we illustrate our general investigations for a free field model. The
model is non-trivial as it shows all essential features discussed before (apart from a
trivial existence of the R-limit for d # 0). We consider three free hermitean pseudoscalar
meson fields ¢,(x), 7 = 1, 2, 3, satisfying the Klein-Gordon equation ([J + m3) ¢;(x) =0
with different masses m,. The current is defined as usual by

Vui(¥) = € () 3, u Pu(%) (5.1)
The divergence of this current does not vanish:
0, V(%) = €u(mi — m}) : dy(x) y(x): #0

Formally the light-like charge takes the form

o

Q j da, v} (%) = vey,(2m)” Jz—p' j
?_5) (Pusp) k(Purf) al(pllr?)} A (5-2)

x{at(p,
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where we used the following conventions for the fields

_ (2m)- f f P pla(p,,p)ev + at(p,, p) v}

PE
= (2m)3 f E}f {a,(p) e~ P*+ a3 (p) e'P*}, (5.3)

The annihilation operators a,(p,,p) are related to the canonical ones by a;(p,, p)
($°/p,) a;(p) and satisfy the commutation relations

[“i(pns]_b): ay(q,, g)] = (27)%8(p, —¢q,) 8? (f - g) 2p,.

In calculating the momentum space expression of Q} we have simply set

Japiap,s(py+2,)...=0
0

A justification for this simple prescription is given by starting from the definition of
Q/ as limit of a regularized charge. The right-hand side of (5.2) is an unbounded operator
which maps #-particle states into #z-particle states contrary to the corresponding
space-like charge where terms a, 4, and a} a7 are present in the case of different masses.
The latter terms cause the non-existence of the corresponding space- -like expression.

Applying our general investigations to this model we arrive at the following:

Statement 3: In the free field model defined above the I-charge of the non-conserved
current (5 1) exists as a densely defined sesquilinear form which is continuous when
defined in the specific sense 11rn {11m Q) With fie € {Fz} (see 3.1) and hence exists

as an operator. In the momentum representatlon the limit operator is given by
1 . dp I dz + —nt
Q) =ty 515_ f{a,(ibulf) ak(?buxf) ak(Pn’j_)) al(Pu»f)}-
I

Note that the formal configuration space expression
Q= de 8(x ) vy, (%)

is not an operator. Operations with this object may lead to ambiguities. It would be
even worse to try a smeared version like vf,(g) = [ dx8(x,)v;,(x) g(x) with g€ &,
this would mean that the d-limit was carried out before the R-limit. Indeed this leads
to divergent expressions when matrix elements (if|4}(g) v!(g)|¢> on D, are considered
(i.e. the terms with aa and a*a* do not drop out). '

Remark: This shows that one has to be careful when studying /-plane restrictions
of current densities. In fact v,;(g) can only exist as an operator for superlocal currents
and even then, in general, only for the ‘good’ component v,. This will be discussed
in detail in Refs. [15] and [16].
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Clearly, for a free field the difference between the well-defined operator Qf and
the formal ob] ect ! concerns only the pure creation and pure annihilation terms which
are absent in Q} but lead to ambiguities for Q‘ An alternative prescription for the
construction of @} which avoids the use of regularizations is therefore the following:
Write @} in terms of creation and annihilation operators in momentum space and cut
off the pure creation and pure annihilation terms:

Q! = cut{J}. (5.4)

This cutting operation is of course much more convenient than defining Q} by sequences
of regularized charges. Whereas in our case this cutting operation is a local operation,
an analogous procedure for space-like non-conserved charges is highly non-local.
However,

Qu(x°) = cut {(;(x°)}

defines a proper operator and the matrix elements of Q;(x° coincide with those of Q]
in the high-energy asymptote. The operators Q,(x% have recently been used in the
discussion of internal symmetries of strongly interacting particles [20].

Finally we mention that the above statement has its complete analogue in the
renormalized perturbation expansion of Q! for the models we investigated [15]. Also
the cutting operation extends to perturbation theory: Q! (or Q,(x%) are obtained by
dropping all the pure creation and the pure annihilation terms in the corresponding
formal expansion Q,.

6. Conclusion

Our investigations have shown that for a certain class of Wightman field theories
light-like charges exist as unbounded operators when defined in the sense

Ql=7r— hm{r — lim Q e}
R—®

On the other hand there are models where the /-charge cannot be defined. In fact the
existence of Q' requires an appropriate fall-off of long-range correlations in light-like
directions and an appropriate light cone behaviour (strong locality) in addition to
Wightman’s axioms similar to the restrictions one sets on the physical spectrum of
P, (strong spectral condition) in momentum space.

For superlocal models, which behave even smoother on the light cone than the
strongly local ones, /-plane restrictions of the good components of current densities
Q'(g) exist as operators. Q' however is not an operator limit of Q'(g),

Q' #r —%im Q'(gr) (statement 1 iii)).

Light-like charges are not strange physical objects, in fact they coincide with the
ordinary charges in the case of conserved currents. In any case Q' annihilates the
vacuum. We note that the restrictions to the models necessary to guarantee the
existence of /-charges are in fact conditions on the strength of symmetry-breaking
effects. For the strongly local models symmetry-breaking /-charge algebras have a
precise mathematical meaning. They are therefore an important tool for the investiga-
tion of internal broken symmetries.
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