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Experimental Angular Correlation Functions
of Molecules in Liquids and in Crystals

by Bruno Keller and Fritz Kneubiihl

Solid State Physics Laboratory, ETH, Ziirich

(21. VIIL. 72)

Abstract. In this paper we describe the experimental investigation of molecular reorientation
processes with the aid of angular correlation functions. After a brief summary of the theory the
experimental limitations are outlined. Subsequently this method is applied to HCl and DCl dissolved
in liquid tetrachlorides and to OD~-ions in alkalihalides. Models for the short time behaviour of these
dipoles are presented. The applicability of the angular correlation functions is extended to poly-
atomic molecules by group theoretical considerations. Experimental examples are presented.

Zusammenfassung. Die vorliegende Arbeit befasst sich mit der experimentellen Untersuchung
von molekularen Reorientierungsprozessen mit Hilfe von zeitabhangigen Richtungskorrelations-
funktionen. Nach einer kurzen Zusammenfassung der Theorie werden die experimentellen Grenzen
der Methode diskutiert. Als Anwendung werden die Systeme von HCl und DCl in flissigen Tetra-
chloriden und von OD--Ionen in Alkalihalogeniden untersucht. Das Kurzzeitverhalten dieser
Dipole wird an Hand von Modellen gedeutet. Mit Hilfe gruppentheoretischer Methoden wird der
Anwendungsbereich der Korrelationsfunktionen auf mehr als zwei-atomige Molekiile ausgedehnt
und die Resultate an einigen experimentellen Beispielen erliutert.

1. Introduction

Since the days of P. Debye [1] considerable effort was taken to obtain information
on the microscopic mechanism of reorientation of molecules in liquids and solids.
Most of the work dealt with the measurement of spectroscopic line widths and relaxation
times derived therefrom, yielding one single parameter to characterize the complicated
processes [2]. Moreover, different spectroscopic techniques led to contradicting results.

Fortunately in recent years linear response theory [3, 4] provided the tool to
interpret the line shapes of rotating molecules in terms of time-dependent correlation
functions [5, 6]. These correlation functions are obtained as Fourier transforms of the
corresponding line profiles. They give a detailed description of the average molecular
motion over a restricted time range. In addition the introduction of correlation func-
tions allows us to profit from the theory of stochastic processes [7, 8, 9, 10] and to
test many of the deductions of the earlier theories on a more general basis.

The purpose of this study is to demonstrate the fruitfulness of the correlation
function method as well as to discuss the inherent experimental limitations and
difficulties. It is applied to the vibration-rotation spectra of diatomic and polyatomic
molecules in liquids and diatomic impurities in alkalihalides.

A number of excellent theoretical reviews exists on the subject [2, 4, 11-14].
The principal results necessary for the comprehension of the experimental work are
summarized in Section 2. Section 3 is dedicated to the evaluation of correlation and
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memory functions from experimental infrared spectra. The next three sections deal
with the application of the method to diatomic molecules dissolved in liquids, diatomic
impurities in alkalihalides and simple polyatomic molecules in liquids respectively.
Finally, the Appendix presents the angular correlation functions of polyatomic
molecules required for the interpretation of vibrational Raman spectra.

2. Basic Concepts of Correlation Functions
2.1. Linear response theory

For an outline of the basic ideas [3, 11] of the linear response theory we consider a
macroscopic sample consisting of a large number of molecules in thermal equilibrium
described by a Hamiltonian H and a thermal distribution function f. Information on the
expectation value (A (f)> of a microscopic variable A4, e.g. the spatial component
(¢- ) of the electric dipole moment f, is provided by the response of the sample to a
weak force F, e.g. the electric field E, acting on this variable.

In classical statistical mechanics the equation of motion for the equilibrium distribu-
tion f is

8_f= [H,f]=0. (2.1)
ot
The perturbation 4H = A F gives rise to a change Af of the distribution function
oaf
—é-;=[H,AfJ+[AH,f]+[AH,Af]- (2.2)
If the ensemble is in stable equilibrium and if the force F fulfils the condition
|[A-F|<H (2.3)

the second-order term [4H, Af] can be neglected. Hence {A(#)> depends linearly on
F():

A4y = [ dat—t) Fit)ar (2.4)
with the response function:
balt—t) = [[4,fl-A()-dl, 2.5

where I represents the phase space.
In the canonical ensemble

f=e HNT [ | g=BiT g (2.6)
/]

one finds

, 1 [ 24(f) _
¢A(t_t)=_ﬁ fTA(t)dF equil.

— ——aA(t')A(t) il 2.7)
- RT\ o e a
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For a constant force switched off at the time ¢ = 0 the system relaxes according to
AWy =+F [ $ut)at = FO,(1 @58)
t «

with the relaxation or correlation function

)= [$O)d =——(AO AB> — A0 2.9

For a periodic force
F(t) = Fy-cos wt.
the complex susceptibility y A(c;;) defined by
(44> = Rey (w) Fye-iot | (2.10)

is related to the correlation function @ ,(¢) -
yalw) =xa(w) —ixi(w) = P40) —iw j D, (f) eiordt. S (@)
: : 5 :

The relation of @ 4(?) to the quantum mechanical correlation function is discussed in
Section 2.4.

2.2. General properties of autocorrelation functions

Many physical ensembles are stationary and ergodic. Wide sense stationarity is
characterized by a time-independent average {A(f)> and by a correlation function
(A(ty) A(¢,)> which depends only on the time difference £ =¢, — #;

D) =<A[t) A(t,)y = CA0) A®)>. (2.12)
According to Onsager [15] the microscopic reversibility of physical processes requires
D(-t) = D). (2.13)

Moreover any correlation function of a stationary-random process has to be non-negative
definite [7, 9]:

d(0) = |D(¥)|. | (2.14)

The first two derivatives of an autocorrelation function D(f) of a real physical quantity
should exist. Equation (2.13) yields

d

— ()

= (2.15)
dt

t=0
and equation (2.14)

d2

— P0)

— AN A - 2.16
— CA(0) A(9)0 <. (2.16)

t=0
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Ergodicity (8, 10] permits the replacement of the phase-space average by a time average
over a trajectory

T-> 0

Alh = Timy T~ le (2.17)

Since the correlation function @(f) describes the fluctuations of A(f) — (4(¢)) the
relation

lim T~ f () dt =0 (2.18)

T->wo

holds. Therefrom an upper limit for @(¢) can be deduced [7]:

|D()|<K(1 + t7)1 (2.19)

with 0 <y <1, and K as an arbitrary constant.

2.3. Memory functions and Onsager separability

Antecedent to linear response theory the usual procedure for dealing with rota-

tional relaxation phenomena was based on the Langevin equation [11], e.g. for a linear
molecule

— J = —BJ (0 (2.20)

with the notations ] for the angular momentum, N for the random torque and B for
the friction coefficient and assuming N(f) to have a Gaussian distribution and an
infinitely short correlation time:

N(t) =Ny 8(t); (J(0)-N(@©)>=0. (2.21)

The solution of this equation is represented by

®,(t) = (J(0) J(t)> = <J(0)2>- et (2.22)

According to Doob’s theorem [7, 8] the exponential decay of @,(f) defines the process
as Gaussian—Markoffian. The Gaussian distribution of &,(¢) is induced by the one of
N (#). The infinite correlation time of N (#) is responsible for the Markoffian character
of the process: Any value of ] (t) after the time ¢, is independent of all events before
the time #,. Obviously equation (2.22) violates the conditions (2.15) and (2.16). Moreover
the introduction of the constant friction coefficient 8 presupposes [15, 16, 17] the
existence of a time ¢, which fulfils the condition

Teott <70 < 1/B (2.23)

where 7, indicates the time between subsequent collisions of a particle and 1/8
represents a macroscopic time [15]. Equation (2.22) may be considered as a first
approximation for the motion of a very heavy particle in a bath of very light molecules
whose moments of inertia can be neglected [15].
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The meaning of 7, can be understood with the aid of the generalized Langevin
equation [11]:

_] fK (t—7)J(r)-dr + N(t) (2.24)

with the only assumptions

(N@#H>=0 and (J(O)N(#))=0. (2.25)
Consequently the correlation function @,(f) obeys

t

d—tdb,() of K(t—7)-@,(r)-dr (2.26)

and the memory function K(t) equals the autocorrelation function of the random
torque:

—

K(t) = (N(0)-N()). (2.27)

For memory functions K(¢) characterized by a correlation time 7y:

K({t)#0 for0=t= 71,
(2.28)
K({)=0 fort>r,
the solution of the above equation of @,(¢) for £ > 4, is
D, (t) = Py(7o) e77¢~70 (2.29)
with B determined by
To :
e I K(r)-efr-dr. (2.30)
0

If 74 < 1/ this equation is approximated by

= fK df—jK

(f@, T) —UT. (2.31)

If conditions (2.23), (2.28) are fulfilled, the correlation function @,(f) can consequently

be separated into a microscopic and a hydrodynamic component as suggested by Onsager
[15]:

D;y(t) = Dy w(t) + Dy u(d)
D, W(t) 20 fori>r, (2.32)
D, 4(t) = Py(7o) e 8¢=70),
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Hitherto only one system has been rigorously investigated under these aspects:
the heavy particle in a harmonic chain [17]. To find the general solution of equation
(2.26) we introduce the new functions:

Yty = %@,(t) and I'(f) = Of K(t")dt'. (2.33)
We can relate them by a convolution type Volterra equation of the second kind:
0=Y@) + I+ f Y)I(¢—¢)dt'. (2.34)
0
With the aid of [18] we find the solution:
W) ——I'() + éo (1) I'() * () ** I, (2.35)

(24+m) “factors”

Correlation functions @(f) related to special memory functions K(t) are listed in Table
2.1.

Table 2.1 '
Examples of memory functions and their corresponding correlation functions.

K(t) D)
0 1
Ky2-8() ek
K, cos (K}/2-2)
Hora™™ (- (a? — :Ko)l—:z)"’""2"”"2'““’”2’
* %(1 ¥ m)‘"’“"2"“-<«’—4xo>”’> if o? — 4K, #0

o
(1 % 5;)-g-<«-nf2 if 02 — 4Ky =0

Kog—ﬂ.i.cos Qt Al'e_ylt +A2'e_72‘+ A3 E—Yaf

Al: AZ: AS’ ')’1: ')’2’ Ys' w
Y s U —73t i . .
A+ Ay-tee + 4je determined by cubic equations

[A;cos wt+ Aysin wt] e~ 1" + A5 27738

As Wang and Uhlenbeck [19] pointed out, every non-Markoffian process can be
considered as the result of a higher-order Markoffian process. E.g. if @,(¢) is non-

Markoffian, K(f) could be Markoffian. Indeed the @,(f) = (J(0)-J(#)> corresponding
to the Markoffian kernel [20]

K(t) = (NO)N(®)) = Koo (2.36)
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fulfils the requirements (2.15) and (2.16). If 4K, < o2, @,(¢) is separable into a short-
time and a long-time part (Table 2.1). The violation of conditions (2.15) and (2.16)
has been transferred from the angular momentum correlation function @,(f) to the
correlation function K (¢) of the torques. The question now arises as to how many orders
must be included to tolerate this violation? Although this question has not yet been
answered, it seems to be primarily a matter of time scaling, the time scale being
shortened by increasing the order of the correlation function.

2.4. Short-time behaviour

The general form of a correlation function determined by conditions (2.13),
(2.15), (2.16) allows the following series expansion near t = 0:

o}

(2.37)

The coefficients M,, can be related to the molecular dynamics [11, 21]. Considering
linear molecules with the moment of inertia I, and

(J? =2IkT (KT 2% — mean square torque
(J* = 8I2(kT)?
one finds the angular momentum correlation function [10]

OV N 2 (N

D) =——FF—=1-— = g et (2.38)
<J ) J(0)> g o2t JPr
and its memory function
(N <Kf2>)2 <N2>] 2
K,(t) =—— + — -+ —. 2.39)
9 U% [((]2> J%]2! :

On the other hand the angular correlation function @,(f) of the molecule fixed unit
vector #% can be expanded as

i JHeE [T A
D) = GO FOY =1 - o [ ARt ] - (2.40)
and the corresponding normalized memory function as
, _ _ ]2> <N2> t2
K, () = K,(0)[K.(0) =1 — [ ]’->]§_+ + (2.41)

with K,(0) = (j") [I2. Thus M, of ®,(¢) is independent of any interaction.
By comparing the expressions (2.38-2.39) and (2.40-2.41) one finds two interesting
features:

i) In a system of molecules with extremely weak interaction @,(f) is a constant,
whereas @,(f) and K,(¢) decay. This decay is due to the thermal distribution of
the J(#). It implies the assumption of small interactions necessary for the thermal-
ization.
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ii) In a system with strong interactions ‘
(N2> ((JPH)212 = 4(kT)? (2.42)

the normalized angular memory function K, (f) approaches the momentum correla-
tion function @,(f) at least for short times [11]. According to the computer model
calculations by Berne et al. [11] on liquid CO this seems to be also valid for longer
times. Yet no rigorous proof exists.

2.5. Quantum mechanical correlation functions

The quantum mechanical correlation function [3, 4] corresponding to the classical

D,(f):

C.() = <ﬁ(0) ﬁ(t)>qm ‘ (2.43)
is complex and obeys the symmetry relation
Cu(—t) = CiE(2). (2.44)

The symmetrization of this correlation function yields a real and even function:
Cusl) = <{8(0) #(t) } gqm = Cu o(—)- (2-45)

According to Schofield [22] or Egelstaff (23] C,(f) can be approximated by the classical
correlation function with the aid of a complex argument:

ik
C.lt) ~ qb,,(t - Eﬁ) (2.46)
or
h 1/2
C.(H) = CD,,((F = iﬁt) ) (2.46)

Using the second approximation by Egelstaff we find for the real and imaginary part
of C,(¢):

[M2 72 M4]
ReC,(f) =C, () =1 - - 2

21 ' (RT)? 4!
p| My B Mo W M, (2.47)
4! (kT)2 6! (RT)* 8! '
B M A M M
Il = ——2f— 4 1 (2.48)
kT 2! |RT 4! (RT)? 6!

For a linear molecule the coefficient M, of £2/2! in C, (#) is

M’—kT+1k2+h2 N2 2.49)
i 312 24I%(kT)? @.
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in agreement with the result obtained by Nienhuis [24]. Hence if
ET > 23] and (ET)?> (N?)/24 (2.50)
the C, (t) approaches @,(z).

3. Angular Autocorrelation Functions and Vibration-Rotation Spectra
3.1. Basic relations

Each infrared active vibrational transition ¢ — f of a molecule involves an electric
transition dipole moment i, ; oscillating with the frequency w, ;. As the molecule rotates,
the direction of 4, , varies and modulates the spatial component (¢, fi;;). This modula-
tion gives rise to the discrete rotational structure of the vibrational absorption in the
gas phase (Fig. 3.1). In a dense medium the rotational structure converts to a continuous
line shape (Fig. 3.1) and its interpretation in terms of rotational energy levels is obscured.

L{w)

- 1 1 1
2500 2600 2700 2800 2900 3000 3100 v [em™]

i,

2500 BSIOO 2700 2800 25;00 3000 31IOO v lem™]
Figure 3.1 .
Vibration-rotation spectra of gaseous HCI and of HCI dissolved in CCl, at room temperature.

However, linear response theory relates the line shape to the autocorrelation function [14]:

C(t) = {6 fris (0)) (6 fi s (8))} qm

+ E w, + w;
=2 f X' (@' + wif)_T('”"_f) cos (' + w,y) dw’. (3.1)
- (U)’ + wif)

This expression represents a quantum mechanical analogue to equation (2.11). &
indicates the direction of the electric field of the radiation and E r(w) the average thermal
energy of the harmonic oscillator (3.4)

Fhuw
E = 1hw- -coth —- 3.2
r(w) $hw-co okT ( )

The measured absorption coefficient «(w) is related to the imaginary part x"(w) of the
susceptibility

n{w)

X' (w) = c—— a(w) (3-3)

w
where #n(w) is the real part of the refraction index.
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In the near infrared, the inequality

WMw + wip) > kT (3.4)
induces
Ep(w' + wiy) 2 3h(w + w;y) (3.5)
yielding
+ i )
+
C;(t) = f MCOS (w' -+ w!f) tdw'
J (0 + o)
+ o0
- f I(w' + wy) cos (@ + w;j) tdw'. (3.6)

— o0

With respect to
Pip(t) = tdyp(t) prip(t) coswypt with | ()] =0, and |u, ()| =1 (3.7)

C,(?) is influenced by three different processes: the high-frequency oscillation wy,
the vibrational relaxation {u,#(0) u;,()> and the rotational relaxation

(G :£(0)) (Ethis(£))-

The influence of the oscillation can be eliminated by a Fourier transformation relative
to the shifted band centre w,,, whereas in principle the experimental infrared data
do not allow the separation of vibrational and rotational relaxation [81]. However,
the vibrational relaxation functions determined experimentally by Lauberau [82] with
laser techniques and by Konynenburg [83] with Rayleigh scattering usually show an
exponential decay with time constants of a few picoseconds. Therefore most Cy(?)
can be normalized for short times:

Cu,s(t) = <{(Ek ﬁif(o)) (Ek ﬁif(t))}>
= | 1) cosetde / [ 1) do’ (3.8)

which yields an approximate, symmetric rotational correlation function. For isotropic
surroundings of rotating molecules the averaging over all orientations ¢ of the polari-
zation results in

Cust) = (b (0) 1 (8)} - (3.9)

Finally we have to mention that according to Gordon [21] the coefficients M, of the
series expansions in Section 2.4 correspond to the spectral moments:

B fa(wff-i-w') /2 dw’/ J‘ a(w;y + ) o 3.10)
== || ey . ) s -
. d(wtf"'w) d(‘“if“‘“’)
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3.2. Physical limitations

Some of the implicit assumptions inherent to the evaluation of correlation functions
from experimental spectra have to be emphasized:

i) The wavelength of infrared radiation is considerably larger than the molecular
dimensions. Thus the correlation functions measured correspond to domains of
molecules and require, in principle, the inclusion of interference terms between the
molecules of the domain [5]. Thisis particularly true for correlation functions determined
from pure rotation spectra. Fortunately the vibrational states of neighbouring mole-
cules can be assumed to be uncorrelated with respect to the phase in liquids which
allows the average of the individual correlation functions to be measured. In molecular
crystals however, vibronic coupling between adjacent molecules is possible and may
obscure the physical meaning of @,(¢).

ii) The average shape of the molecule generally depends on the vibrational states
¢ and f, this leads to different moments of inertia I, and I, as well as to different inter-
molecular forces. Because this effect is caused by anharmonicity the lowest vibrational
transitions should be investigated [25].

iii) The transition frequency w,, is usually shifted by molecular interactions.
Since errors in the choice of w;; in equation (3.7) induce serious phase shifts in the
correlation function C, ((¢) special methods had to be developed for its determination
(Section 3.3).

iv) Hot bands corresponding to the vibrational transitions from higher states
may distort the band shape of the transitions from the ground states. In the near
infrared the thermal occupation factor suppresses the hot bands at room temperatures.

v) During molecular collisions dipole moments may be induced by multipole
interactions. They give rise to a weak and very broad absorption. Fortunately the
collision induced absorption appears in the far infrared as demonstrated for liquid H,
and N, [26].

vi) Because the determination of the correlation function requires a Fourier
transform over the whole band, overlapping absorption lines are excluded. This usually
restricts the method to small molecules. The method can be extended to complex
molecules if there exists at least one well-separated transition. However, this raises
the problem of relating the motion of the transition dipole to that of the entire molecule.

3.3. Experimental evaluation of autocorrelation and memory functions
Cy s(?) is determined from the measured absorption profile

a(w;y + w')/ J' a(w;r + o)

(wiy + ') o (wir + @)

Fwiy + o) = d (3.11)

by the full cos-transform

Caslt) = | I(w) cos wtdew (3.12)
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With the symmetrized band shape

-~

Ifw) = Iy + o) = 3 (@i + &) + L{w;; — o)) = 31 + ") I(w,, + ).

(3.13)
C, +(t) can be expressed as
C, <(f) = Reetoist f I (w)coswtdw +1 f I (w)th|— fiey sinwidw |. (3.14)
’ B 2kT |

Because an absorption band usually does extend over a spectral region larger than
300 cm™! the second integral is small at temperatures above 200°K. Its main contribu-
tion lies at times shorter than about 104 sec. For longer times the second integral
can be neglected, which yields

C;,s(t) g CoS CUift f f(w,f + w') cosw'tdw'
band

& cosw;pt-C, ((?). (3.15)

Hence a precise value of w,;; can be determined from the mean period of C; ((?).

For the evaluation of w;y from broad bands measured at low temperatures another
procedure is recommended. Since the derivative of /,(w) vanishes at w, ir the I (wir)
satisfies the relation

i i

w;; is determined by numerical substitution in the above equation. The result is
checked by performing the sin-transforms of f(w) and I (i + ).

Another problem concerns the choice of the integration limits w};, and wp,,.
According to equation (2.40) the second moment M, is given by

M, =kT|I

for linear molecules in the classical approximation. Occasionally this relation was used
to numerically determine the integration limits [25]. Unfortunately the moments of
inertia of a molecule in a dense medium and in a gas may differ. In addition, for strong
molecular interactions the above relation must be corrected according to equation
(2.49). For this reason we determine the zero-absorption level and the related wy,;y,
and w},,, by numerical extrapolation from the parts far outside the wings of the
absorption band.

For the numerical transformation of the measured spectrum the frequency has to be
digitalized into equidistant steps Aw. This approximation modifies the proper correla-
tion function to a periodic function with the period 7 = 27/4w. The calculated correla-
tion function is therefore only reliable up to times #/dw. The spectral resolution
Awg, of the spectrometer limits the minimal value of dw to

dow > 24w,
E.g., for the Beckman IR 12 spectrometer the time range is restricted to £ < 1.6-1071 s,
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The time resolution for the determination of C, ((f) is given by the width of the
studied band shape. If the experimental data expand from w;; — wy to w;p + wy,
the time resolution 4¢ is restricted by

At z 7w,

As an example the broad band of HCl in CCl, (Section 4) with w; =300 cm™! allows a
time resolution of 4¢ = 0.5-10713 s,

As shown in Section 2.3 the memory function K,(t) is of basic interest. Thus we
evaluated K,(f) numerically from the integro-differential equation (2.26) by:

K, (0) = s 13
_ u( )_E u,s() o
K, (ndt) = i m) A8) C, (mAb) + K, (#) C, ((nAt)
2 d
+ = Cuslndl). (3.17)

The differentiation is performed by the usual Lagrange formalism with relatively
high precision. Unfortunately the form of the integro-differential equation forbids
the application of integration algorithms more sophisticated than the trapezoidal rule.
With the choice of time steps 4¢ < 0.5-101* s the stability range of K, (f) was brought
to about 10712 s. The stability of this numerical procedure was checked by varying 4.

4. Experimental Correlation Functions of Diatomic Molecules in Liquids

4.1, Introduction

The molecular motion in liquids can be studied by the determination.of the
correlation functions either of molecules of pure liquids or of small molecules dissolved
in liguids. Diatomic molecules are well suited for the latter. As probes they yield
information on the structure of the holes in the host liquid [27-29]. Moreover the
interpretation of the correlation functions of diatomic molecules is straightforward.
In comparison the understanding of the correlation functions related to more complex
molecules demands additional computations (Section 6).

For some years it has been known in infrared spectroscopy that the vibration-
rotation spectra of diatomic molecules (HCl, HBr) dissolved in simple liquids (CCl,, CS,)
display structures indicating almost free rotation (Fig. 3.1) [30, 31]. The many attempts
to derive the parameters of motion from the continuous spectra had only limited
success. Therefore we applied the correlation function method to this problem.

In addition these liquids represent the opposite of the model systems adapted to the
Langevin equation. The probe molecules are much lighter than their neighbouring
host molecules. Because of the relatively large cavities in the liquids, the time interval
between collisions equals or exceeds the duration of the collisions. The force fields
acting on a probe molecule are weak due to the high symmetry of the host molecules
and their strong covalent bonds.

In order to avoid confusion arising from steric effects the investigation was restric-
ted to lLiguid tetrachlorides: CCl, SiCl,, TiCl,, GeCl,, SnCl, [28, 29]. This essentially
varied the cavity size of the liquid.



1140 Bruno Keller H.P. A.

HCl, DCI and CO, whose data [32] are listed in Table 4.1, were selected as probe
molecules. The data of the tetrachlorides [33] are summarized in Table 4.2.

Table 4.1
Properties of HCI, DCl and CO.

Moment of inertia,

Mass [10-4° cgs) Bond length [A] Fos1 [cm™1]
HCl 36.47 2.65 1.275 2885
DCl1 37.47 5.16 1.275 2040
CO 26 14.3 1.128 2170

4.2. Interpretation of the correlation functions

To start we describe the correlation functions of diatomic gases (e.g. Fig. 4.2).
The correlation functions drop to a minimum below zero indicating an almost complete
reversion of the initial direction of the molecules, and they approach zero for long times.

co/cal,

ost x —
" \\ ./'/./
J — HCI /CCl,
\

s M N i -
iy G 5 8 t[0™"3sec)
\ 7
~

Figure 4.1

Angular autocorrelation function @,(¢) of HCland CO:
indicate the value of the mean time of flight.

dissolved in CCl, - ---- gas. The arrows

DCl /CCl,

HCI/CCla

1110 ®sec]

_Q3:
Figure 4.2

Angular autocorrelation functions @,(¢) ( ) and normalized memory functions K'(f) (----- ) of

HCI and DCI dissolved in CCl, at room temperature. The arrows indicate the value of the mean
time of flight.
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1

os}
\ SnCl,
A n L et T
L\~~~ 758 8 110" %ecl
-02t h
Figure 4.3

Angular autocorrelation functions @,(z) ( ) and normalized memory functions K’(¢) (----- ) of
DCl in the tetrachlorides at room temperature.

The correlation functions of HCl and DCl in the liquid tetrachlorides are shown in Figures
4.2 and 4.3 and that of CO in CCl, in Figure 4.1. The correlation function of HClin CCl,,
Figures 4.1, 4.2, 4.3, reveals the following features:

1)  The variation of the average angle of rotation of HCl in CCl, is smaller than that
of gaseous HCIL.

ii) The minimum of the correlation function occurs at an earlier time 7, than for
the HCI gas.

iif) The minimum of the correlation function at 7, is followed by a maximum at

TmaX'

Feature i) and equation (2.40) give evidence for the existence of torques hindering
the rotation of the diatomic molecule in the liquid. The magnitude and the fluctuation
of the torques determine the deviation of the correlation function from the ideal-gas
shape [6]. These torques are influenced by

i)  the life-time of the cavity limited by the translational and rotational motions of
the host molecules,

ii) the vibrations of the host molecules,
iii) the rattling frequency of the HCl in the cavity.

The rotational and translational motions of the CCl, molecules are slow due to the
large mass and moment of inertia. Hence contribution i) can be neglected. The com-
parison of the correlation functions of HCl and DCl in CCl, in Figure 4.2 yield a precise
1sotopic shift proportional to (I/kT)Y? for times smaller or equal to Ty, From this
observation we conclude an almost free rotation for times t < Tpip.
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Table 4.2
Properties of the tetrachlorides

Lowest transitions

Moment of Bond [em™] ) .
inertia length # {(circumscribed sphere)
Mass  [10%cgs]  [A] S, 84 v Va # (central atom)
CCl, 153.8 520 1.76 217 313 459 760 4.62
SiCl, 169.8 640 2.02 150 220 425 607 3.18
TiCl, 189.7 760 2.21 120 144 385 496 2.95
GeCly 214.4 660 2.08 132 171 397 451 3.18
SnCl, 260.5 850 2.30 105 132 368 403 2.75

Table 4.3

Parameters of the motion of DCland HClin their cavities. The cavity diameter for CCl, is calculated

according to reference [34] and those for the other tetrachlorides are derived from the corresponding
Tmax-

Range of
Tmax Tmin Tvibr Cavity, ¢
[10-13 5] [10-13 5] Isotopic [10-13 5] (A
shift mmnasmmen el ¥ e

HCI DCl HCl DCl LHCy-DEl_ 14  min max [107'cgs] DClI HCl
CCl, 2.40 3.1 1.43 2.05 1.43 044 15 9.1+09 44 44
SiCl, 30 38 1.5 22 1.48 0.55 2.2 64407 54 5.5
TiCl, 28 3.8 143 2.15 1.50 0.67 2.75 6.5+ 0.7 54 5.14
GeCl, 25 355 159 215 1.35 0.74 2.5 72408 50 4.6
SnCl, 2.1 305 14 29 2.07 0.83 3.7 81+0.8 4.3 3.8

However, the half periods 7.;,, of the four ground state vibrations are in the rangé
of interest (Tables 4.2 and 4.3):

044-107P s <7, <15-10713 g,

Fortunately, Narten et al. [34] investigated liquid CCl, by x-ray scattering and suc-
ceeded in constructing a lattice model of the average liquid structure. In this model the
cavities are approximately octahedral with chlorine atoms at the corners (Fig. 4.4).
Introducing the average velocity 7 of the HCI molecule:

72~ o2 = 3k T m (4.1)
and the cavity diameter 4, we can deduce a mean time of flight of the HCI between the
collisions with the walls:

Tu=dfv (4.2)
in the range

1.8:-1008¥s < 7,<3.1:10713 5,

In the time domain near 7, 2 7,,, collisions with the wall occur and interrupt the
motion. Between the collisions, ¢ < 7, the rotation of the HClis only slightly disturbed
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by weak fields within the cavity. This hypothesis is supported by the correlation

function of CO 1n CCl, (Fig. 4.1). The size of CO is not very different from that of HCI
(Fig. 4.4) in agreement with

1610783 s <7, <2103,

However, the moment of inertia is much larger. Therefore the CO rotates through a
much smaller angle between the successive wall to wall collision. The period of almost
free rotation is too short for a distinct minimum of the correlation function (Fig. 4.1).

In considering the other tetrachlorides, increasing the size of the central atom
(Table 4.2) causes the structure of the tetrachlorides to become more open allowing a
denser packing. This results in a reduction of the mean time of flight r,,. On the other
side the vibrational modulation of the torques slows down (Table 4.3). The lower limit
of 7., corresponding to the stretch vibration is smaller than 7;, whereas the upper
limit related to a deformation vibration lies above 7,,,,.

§§
§§

Flgure 4.4
Cavities in liquid CCl, occupied by HCI and CO molecules respectively.

%@% %@%

These qualitative arguments do not allow a rigorous description. Yet from the
experimental correlation functions it follows that the cavity diameter determines the
molecular motion for times ¢ > 7,;, and the torques within the cavity for times 7 < 7,;,.
On this basis we conclude the cavity diameter in SnCl, to be considerably smaller than
in CCl, while for GeCl, to lie in between. At first glance, inconsistent with this model,
SiCl, and TiCl, show more pronounced minimas and maximas of the correlation func-
tion. However, the study of SiCl, by x-ray scattering [35] and of SiCl, and TiCl, by
high resolution Raman spectroscopy [36] provided evidence for the existence of dimers
in the liquid. The dimers cause larger holes in the liquids and thus increase the time
T, between the wall collisions of the diatomic molecules. They also diminish the mean
torques acting within the cavity in agreement with our experimental results: smaller
mean square torques and larger cavity diameters for SiCl, and TiCl, than for the other
tetrachlorides (Table 4.3).

4.3. Memory functions

For all experimentally determined memory functions K,(¢f) of the diatomic
molecules in the tetrachlorides the main variation is observed to occur during the time
7., between the wall collisions. This variation is mainly caused by the torques within



1144 Bruno Keller H. P. A.

the cavity. At the times 7,,, corresponding to the wall collisions, K, (¢) rapidly drops
to zero reflecting the memory destroying effect of wall collisions. The oscillating structure
of the K,(¢) for TiCl,, GeCl, and SnCl, seems to mirror the oscillation of the inter-
molecular fields due to the ground state vibrations of the host molecules.

For additional information on K,(¢) the mean square torques N* were determined
from the band shapes (Table 4.3) according to equations (2.38) and (3.10). The intro-
duction of these data into inequality (2.42) demonstrates the (N2> to be almost equal
to4(kT)2. Therefore K, (f) must not be interpreted as the angular momentum correlation
function @,(%).

4.4. Long-time behaviour of the correlation and memory functions

Finally consider the long-time behaviour of the measured correlation and memory
functions on the basis of Section 2.2. As an example, the logarithmic plot of @,(¢) of

Ofr
0’05’_ 1 .1 1 L 1 | b L -
(0] 1 5 1[10"3sec]
Figure 4.5
Semilogarithmic plot of the angular autocorrelation function @,(¢) of HCI dissolved in CCl,. The
exponential approximation for ¢ > 4-10~12 s is given by (----- ) @, () ~ 0.38 ¢—t/3.3 107135,

HCl in CCl, in Figure 4.5 exhibits an exponential decay at times larger than 410713 s,
i.e. after a few wall collisions. It can be approximated by

D (t>4-10"3s) = Be-tte, B=038, f{,=3.310"13s,

Hence the long-time component of the correlation function shows an astonishingly
short relaxation time #,. The onset of the exponential decay at 410713 s agrees well
with the fact that K (f) simultaneously approaches zero.

5. Diatomic Impurities in Alkalihalides
5.1. Introduction

Diatomic ions in alkalihalides have attracted considerable interest in the past
ten years [37-51]. Usually they occupy the site of an anion in the fcc host lattice. The
fields acting on the ions in the alkalihalides are far stronger than on molecules in
liquids or molecular crystals presenting new features in the microdynamics which
require further investigation. Since the determination of angular correlation functions
from vibration-rotation spectra is not bound to low temperatures it adds new informa-
tion on this problem. From the point of view of correlation functions these impurities
are of special interest the strong crystalline fields allowing the approximate evaluation
of the angular momentum correlation function @,(¢) according to Section 2.3.
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For reference we summarize the latest data on OH~ and OD~ in alkalihalides

obtained by different methods:

Infrared

Stretching vibrations at wy = 3600-3700 cm~! for OH™ and wy = 2600-2700
cm™~! for OD~ [40-42].

Sidebands at wq + wy;p, With wy;p, = 260-350 cm~? for OH™ and wy;,, = 170-
230 cm™1, attributed to a two-dimensional libration in accordance with the isotopic
shift of w;y, [40—42].

Sidebands at wg + w,p With w,p = 10-30 cm™! [41], incompatible with the
Devonshire model of an octahedral potential and thus labelled non-Devonshire.

Far infrared

Direct observation of wy;,, and w,p [39, 43—45].

Microwaves

Resonances at wp,, = 0.1-1 cm™! indicating a local C,, symmetry [47].

Field and stress induced dichroism

Observations in the infrared and in the ultraviolet [37, 38, 42, 43].

Thermal conductivity

Indication of a strong phonon scattering at temperatures corresponding
to w,p [46].

5.2. The two-dimensional off-centre librator model

The experimental facts mentioned in the foregoing Section 5.1 and the temperature

dependence of the correlation functions presented in Section 5.4 inspired our proposal
of a simplified model of OH~ and OD~ in alkalihalides [52]. A more detailed discussion
is given for clarity [53].

The microscopic situation is sketched in Figure 5.1. The important features of

the model are:

i)

ii)

i)

The diatomic ions are considered to be dipoles with finite distance / between the
centres of negative and positive charges.

The centre of mass (cm) does not coincide with the centres of the charges. It is
therefore not identical with the centre of interaction defined as the point whereupon
the various forces act [53].

There is a negative net charge —e.

To simplify the mathematical problem we restrict ourselves to fwo dimensions

and a repulsive intermolecular potential of the Lennard- Jones 6-10 type. The multipole
expansion of the potential V(r,7,, «, y)
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1s given by:
V=c¢ 2) {M2"[P,,(cosa) + P,,(sine)] — (1 4 A) 7' 2"[P,,(cosy) + Pa,(siny)]
+ k72" [C/®(cos y) + CL/¥(siny) ]} (5.1)

with the Legendre polynomials P,, and the Gegenbauer polynomials C$}) [564] and the
abbreviations

p : 2¢*e C o \*
ri=7r/b, ¥ =7r[b, e= - szg Ak

where o indicates the sum of the ionic radii and % = 10.

Figure 5.1
Parameters used in the two-dimensional off-centre librator model.

The lowest non-constant term is retained:
€
V, =ﬁ[/\lz—27‘)\lcos (¢ —y) +7*(48x — 1)]. (5.2)

The next term is used only to specify the appropriate initial conditions corresponding
to the potential minima for the solutions of the equations of motion:

E ey
M7 — Mry? + (48— 1)7 = bizaz(e;sx — ]

Iq.S'—}—)\l'-;Er-sin(qS—y):O f (5.3)

e . . € >
Mr25 + 2Mriy — MBE 7-sin (¢ —y) = 0.

They cannot be solved analytically. Thus we evaluated approximate solutions for high
and low temperatures. Since the experimental results [37, 38, 42, 43] as well as the
higher-order terms of V' yield potential minima at specific directions of ¢ we assume
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for low temperatures the ion to librate about its equilibrium position and suggest the
approximations:

y~0 sin(d—y)~xp—y=x (5)
by, €(48x — 1))

1) == d ¢ ; = e

) =0+ Socos(ant ol ro= i wi= T

. I () VY IR
X0+ x0T T T T

4 (5.5)
t+b I
) ==~ x) 7
1+
MrA(H)

J

with the integration constants «, 8,. If the amplitude of the centre of mass oscillation
7(¢) is small: 8, < 7, the second line becomes a Mathieu equation [55] of the canonical
form

y" +y(a — 2q cos (2x)) =0, (5.6)
where |
dell 2eMld,| 1 1
alg) = Toar (ro+80) +29 ¢g= Fal [z\_lr_g = T]

characteristic for a two-dimensional librator. The linear term in y(f) can be eliminated
by the appropriate choice of the starting conditions. This solution states the trans-
lational oscillation w, of the centre of mass about the off-centre equilibrium position 7,.
Consequently the net charge —e and the charge defect +¢ at the lattice point give rise
to an oscillating dipole moment. The corresponding resonance is attributed to the
non-Devonshire line w,, in agreement with the strong phonon scattering observed in
thermal conductivity [46] and the strong dependence on the lattice found by Bosom-
worth [43, 49]. We emphasize that w, must not be considered as a localized lattice
vibration [56]. It is only due to the rotation-translation coupling caused by the missing
coincidence of the centre of mass and the centre of interaction.

The approximate Mathieu equation represents the libration of the ion axis about
the radius vector from the lattice point to the centre of mass.

The third equation reflects the variation of y(¢) due to the combined libration w,
and the oscillation w, if 2 and b are properly chosen.

Thus the model represents the main features actually observed at low temperatures.

For the high temperature solution, assume a molecule with a thermal energy larger
than the rotational barriers [57, 53] responsible for the low temperature behaviour.
Hence it rotates as a whole about the lattice point with the off-centre position of the
centre of mass mainly determined by the thermal energy and the repulsive part of the
surrounding ion cores. The specific assumptions are |

y~0 y = const. = w,. (5.7)
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The solution is given by

I 3
P§=“ﬂ2—273
0 e\l + o+ a); w? 48k —1)
i) = Po’ COS (w, Wi =— — w;
— 2 2
€48k — 1) — M w Mb > 55
v(l) =w,t+d |
4M y Mw, p?
$l) = w, b+ d + ——2P7 i (e, £ + o) + —2P2 gin (w, £ + 2)
w, w, )

where «, d are integration constants.

Finally, the qualitative explanation of the short-time behaviour of the ions only
lies on the finite dipole and the non-coincidence of the centre of mass and the centre of
interaction. It does not take into account:

1)  the coupling to the lattice vibrations [53, 58],

i1) the distortion of the lattice [59],

iii) the third dimension,

iv) the appropriate form of the interionic potential.

Thus the model cannot provide quantitative results, e.g. rotational barrier heights

(63, 57]. But it shows the main features without fitting of parameters [53]. In addition the
correction of the isofopic shift of wy;,,, by this model agrees well with the experiment [52].

5.3. Influence of strong crystalline fields and low temperatures on corrvelation and memory
functions

The relatively high w,;,,, and the detailed balance principle (equations (3.8)) cause
a considerable asymmetry of the infrared-absorption band. Therefore we actually
measure C, ((f) instead of @,(f). The quantum corrections of Section 2.5 yield:

N2y )
for OD: MM, —1+9.27T +1.167-1 22
(kT)?
o op (5.9)
N2
for OH~: M;/M2=1+17.7T*‘1+2.22T*1< 2
(RT)? |

‘Those of the high moments diminish with increasing order. The additional terms in the
above equations depend on the temperature and the mean square torques. Even for
(N? > (kT)? there are temperatures where M; ~ M,. On the other hand large torques

allow the memory function K,(f) to approach the angular momentum correlation
function @,(#) if

(N?y > 4(kT)2. (2.42)

Hence there may exist a temperature range where M, >~ M, and K, (f) ~ D,(¢).
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5.4. Experimental angular correlation functions and second moments

Figures 5.2-5.6 show the experimentally determined correlation functions of OD~
in various alkalihalides for temperatures between 15°K and 600°K. The relevant data
on OH™ and OD~ and the alkalihalides are listed in Tables 5.1 and 5.2. Earlier room-
temperature measurements on OH~ and OD~ in KCl have revealed oscillating correla-
tion functions displaying an isotopic shift proportional to 4/1 [60]. This structure

15

300°K

87°K

/5 M0 Psec)
\“I

Figure 5.2
Angular autocorrelation functions C, (#) (
functions @,(t) (----- ) of OD~ in RbCl.

) and approximate angular momentum correlation

4

560°K
ost

THO™sec]

Figure 5.3
Angular autocorrelation functions C, (#) (
functions @, (f) (----- ) of OD~ in KCI.

) and approximate angular momentum correlation
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Figure 5.4

Angular autocorrelation functions C, ,(¢) (
functions @,(t) (----- ) of OD~ in KBr.

) and approximate angular momentum correlation

- O

5\ 1 1 N i P |

\ / "/ 5 N7 ~-" 10 1110 %ec]
\ !

\

_Q5_
Figure 5.5

Angular autocorrelation functions C, ((#) (
functions @,(t) (

) and approximate angular momentum correlation
) of OD~ in NaBr.

characterizes a two-dimensional librator. Potential barriers responsible for the libration
have been estimated by several authors [63, 57, 61]. Our experimental correlation
functions provide a test of these calculations.

At low temperature all correlation functions oscillate indicating a librational
motion. With increasing temperature the oscillations, as well as the complete correlation
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1

05t

Figure 5.6
Angular autocorrelation functions C, ,(f) (——) and approximate angular momentum correlation
functions @,(¢) (----- ) of OD~ in K]J.

functions, are progressively damped. In most crystals the oscillations are maintained
even at high temperatures whereas for OD~ in KJ they collapse near 530°K. OD~ in
K] has a height of the rotational barrier corresponding to 534°K ([63], Table 5.2).
Above 534°K the libration turns into an overall rotation. From the point of view of our

Table 5.1
Properties of OH~ and OD~ ions.

Moment of inertia, I Rotation constant Bond length

[107%0 cgs] [em=1] [A]
OH- 1.53 18.9
OD- 2.91 10.0 0.974
Table 5.2
Properties of the alkalihalide lattices.

Lattice constant Minimum cavity, ¢ Rotational barrier [53]

[A] (A [°K]
RbC1 6.54 3.58 911
KCl 6.28 3.62 840
Na(Cl 5.63 3.73 1068
RbBr 6.85 3.89
KBr 6.59 3.93 676
NaBr 5.96 4.06 184
Rb] 7.33 4.37
K]J 7.05 4.39 534

Na]J 6.46 4.56
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model this change corresponds to a transition from the low temperature to the high
temperature solution (equations (5.5) and (5.8)).

For a more quantitative analysis we also determined the second speciral moments
M ,(T) as functions of the temperature T (Fig. 5.7). At low temperatures the experl-
mental M} surpasses by far the classical M,(T) due to the strong torques (N2) in
agreement with equation (5.9). With increasing temperature the M (7)) should approach
its classical value M ,(7) from the upper side as observed for KCl and RbCl. However,
the M;(T) of KJ and NaBr remain approximately constant and cross M,(T). M of
KBr represents an intermediate case,

M, [10%sec™?]
r SE—— K=
—_— _;:____.__.____Q;_—::-——b——————-—_-.ﬁ—-‘—'-— O{
A E_i?f";.::.:-.maw--uz"—"'ii;":;. _______________
- ——
K
e i
EA CA—k—R— K== K — R — R =A=X—
0.1" 1 1 Il o _1 1
0 100 200 300 400 500 K]
Figure 5.7
The second spectral moment M, as a function of the temperature of OD~in - -+ RbCl, —— KCI,
----- KBr, -x-x-x NaBr, -.-.- KJ, compared to the classical M, = kT[T ( ).
b N>
T2

500+

100

TCK]1

Figure 5.8
Temperature dependence of the mean square torques (N2>/(kT)? of OD~ in KCI (

) and RbCl

The only possible interpretation of this striking feature is to assume a temperature-
dependent increase of the moment of inertia I in equation (2.49) according to

I(T) = Iy + ma*(T) (5.10)

where a(T) indicates the distance between the centre of mass and the centre of rotation or
libration. The large cavities allow the increase of a(T) with temperature. Unfortunately
this temperature dependence impedes the determination of (N2)(T) from M;(T)
as suggested by equation (2.49).

On the other hand, if the M;(T) of OD~ in KCl and RbCl points to a moment of
inertia I independent of the temperature T a libration about the centre of mass ensues.
This seems also plausible from the tightness of the cavities of KCl and RbCl. Therefore
(N?*»(T) can be determined. According to Figure 5.8 <N2>( T)/(kT)* appears to be a
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linear function of T over a wide range. Thus we obtain
(N?Y(T) = AT? — BT3 (5.11)
with
A ="778:10"32¢cgs, B =1.27-10732 cgs for KCl
and
A =551-10"32cgs, B =0.93-10732 cgs for RbCl
with
T e = 408°K  and ((N?))12 = 6.5-10713 cgs for KCl

max

395°K 5.4-10713 cgs for RbCL

Since N represents the gradient of the potential with respect to the angular variation,

we may obtain information on the form of the potential well from equation (5.11).

In agreement with the librational frequences (Table 5.2) the value of (<N 2% nax) 112 for
RbCl is smaller than for KCI.

5.5. Memory and angular momentum correlation functions

Memory functions have two aspects:

the interpretation on the basis of equation (2.26);

interpretation as approximate angular correlation functions @, (f).
The memory functions in Figures 5.2-5.6 suggest an approximation of the form
K, () = e™** coswt with the corresponding @,(¢) in Table 2.1 for low and intermediate

temperatures. w is in good agreement with w,;,, although the envelopes of K,(f)
slightly differ from exponentials.

"
W Lom™]

450—\\‘\_.__‘_

1004

oL

0 100 200 300 TI°K]

Figure 5.9
Temperature dependence of the librational frequency wyp, of OD~ in NaBr. The arrow indicates
the value of the rotational barrier.

The appealing point of K, (2) is its interpretation as D,(t). The relevant condition
(2.42) is well satisfied. The oscillation of @, () ~ K, (¢) reflects the motion of the angular
momentum of the two-dimensional librator. This fact can be used to determine the
librational frequency from K, () even at temperatures where the separation of the
librational side-band from the main vibrational absorption line is no more possible.
The cw;;y, slightly decreases with temperature as illustrated in Fig. 5.9. The hitherto
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unknown w,;p, of OD~ in NaBr can be determined from the period of K,(f) as
W,;5:(OD~/NaBr) =160 + 5 cm™!

and the rotational barrier with the aid of Pandy’s equation [53] as
K = w},,/20B = 128 cm™! or 185°K.

This agrees well with the behaviour of M;(T) shown in Figure 5.7.

5.6. Concluding remarks
The measurements and the model suggest the occurrence of three types of motions:

1) libration about an off-centre centre of mass as in KCl and RbCl at lower
temperatures;

ii) libration about a point different from the centre of mass with a temperature-
dependent separation a(r) asin NaBr, KBr and K J at intermediate temperatures;

111) overall rotation about the lattice point with off-centre centre of mass (K]J).

Types 1) and iii) are predicted by the two solutions of our model. The motion of type ii)
lies outside the scope of the model. It requires the consideration of the higher terms
of the potential, i.e. rotational barrier. Nevertheless this does not touch the consistency
of the model. The motion of type i) disagrees with the calculations by Pandy [53]
since they are based on the a priori assumption of separated centres of rotation and
mass and our interpretation represents an extrapolation from high temperatures.
For a final conclusion further investigations from both sides are necessary.

6. Correlation Functions of Polyatomic Molecules
6.1. Introduction

In a first approximation the rotating molecule in a liquid or in a solid can be
considered as a rigid top. For an isotropic neighbourhood of the molecule the angular

correlation functions related to the random rotation of the molecule can be represented
[63] by

D,(t) = (iRyj(w(®) (6.1)

where R, ;(w) indicates the orthogonal matrix of the orientation w(f), which is expressed
by a set of rotational parameters, e.g. the Eulerian angles «, f3, .

The goal of this chapter is to understand the angular correlation functions of
polyatomic molecules on the basis of this equation. For this purpose the potential
acting on the molecule in the liquid or the solid is assumed not to influence its vibrational
and electronic states. Upon the introduction of the appropriate orientational probability
densities the consequences of the symmetry of the molecule are found by group theory.
The structure of the correlation function matrix ®,;(f) suggests the construction of a
number of informative functions of the rotational parameters and of a relaxation ellipsord
[63]. Explicit formulae and experimental results from infrared spectra of simple
molecules are presented.
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6.2. Probability densities

The orientational motion of a molecule is considered as a random process with the
random variables «, §, y and the continuous parameter ¢. This process is described by a
hierarchy of probability densities [7, 9, 64]: w (R4, t,, £2,, t5, ..., £2;, ¢;). The two lowest
members are:

w,($2,t)dS2: the probability of finding the molecule at time # with the orientation
in the range within £ and 2 + dQ.

w,($24,4,/82,,¢,) d§2, dS2, the probability of finding the molecule at time ¢, with
the orientation within the range 22, and 2, + 42, and at time ¢, with the orienta-
tion within the range £2, and 0, + dQ,.

For stationary random processes w, is independent of ¢ and w, is a function of 7 =1¢, — ¢,
only. In addition w, is symmetric with respect to £, and £,,

W, (R4, 7, 82,) = w3 (82,7, 2), (6.2)
and with respect to the time 7:

WZ(QI’_T: Qz) zw;‘(!)p +7, 92) (63)
As probability densities the w; are normalized over the £, :

[o@a@=1, [wy(@,72,)d0 d0,=1 (6.4)

and w, satisfies:

f w,(82y, 7,82,) A2, = w,(£2,)
(6.5)
J‘ WZ(QIJ T, Qz) a2, = wl(Ql)'

The w, and w, are related by the conditional probability

w, (21, 7,82,) = w,(£2,) w,(£2,//7,82,). (6.6)

The probability densities of the orientational motion are square integrable functions
of the £ and can therefore be represented with the Wigner or gemeralized spherical
functions:

Di (R Cualll i
mm (§2) = 511 D} () wigne: [65] (6.7)

with the orthogonality reaction

| D (0% D (2) Q2 = 8, S Spe (6.8)

and
w1(Q) = D () * wo
wz(-Qp T, -Qz) = D;r;tm’(gl)* wrjrlt{r'l’.nn’(f) D:{:;’(Q2)

zT’z(-Ql//"'» Q) = D;,",m.(.Ql)* Wi, (7) D;{;'(Qz)-

mm' nn’

(6.9)
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The average of a function f(£2) is defined as

S@>= [ (2w, a0 (6.10)
and the correlation function as
20100 = [[ 120 WalQy,7,2,) £2(2))* 42, a2, (6.11)

Hence we obtain

| (6.12)

Wi () = (D (§21) D (£25)*>.
For an isotropic surrounding of the molecule w, is constant:

w, = 1/87? (6.13)
and w, can be expressed by w,

w382y, 7, £2;) = wi(w, 7) = Dy () * Wit (7) (6.14)
where w is defined by

D¥(Q,) = Di(w) D/(L2,). (6.15)

If the molecule possesses a symmetry group M then w;(w,r) has to be invariant under
all operations O,, eM represented by the transformation matrices D’(0,,):

Di(Oy) = 1%9) T'io,,y (6.16)

with I'(0,,) =irreducible representation of M contained in D’ according to the
rotation group combatibility tables [66].

Schur’s lemma provides the invariant w7, (7);.

For high symmetries and j = 1 we obtain

cubic molecule: @ (f) = <1/3[ DL, (w(®) + Dha(w(®) + Dis(w(®)]> (6.17)
axial molecule: w}(f) = (1/2[D},(w(t)) + D3, (w(®))]>
w3 () = (Dis(w(?))>
orthorhombie : wi!(f) = (D1, (w(?))>
w3 (£) = {Di(w(®)>
w5 (f) = (D3s(w(?))-

6.3. Dipole correlation functions

The transition dipoles ;, transform as real polar vectors and they belong to
irreducible representations of M [67]. For their description the complex D!(w) must be
replaced by the real orthogonal matrices R(w) related by the similarity transformation

R(w) = AD (w) A1 (6.18)

Each irveducible representation of M present in R(w) has a corresponding correlation
Sfunction which can be measured with a vibrational transition of the same representation
(67, 63].
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These correlation functions match the coefficients of the conditional probability
density @,(0//r,w). Table 6.1 presents the explicit expressions for this correlation
functions in the following parametrizations of the rotation:

o B,y Eulerian angles [68],

, 0, rotation angle s and polar angles 6 and ¢ of the rotation axis [70, 69],

i, o0y, &, o3 rotation angle ¥ and the direction cosines: cosa,, cosa,, cosa; of
the rotation axes [71].

The forms of the (R;;(w))> for different parametrizations suggest for high symmetries
some nformative linear combinations which are summarized in Table 6.1.

Table 6.1
Explicit forms of the diagonal matrix elements, correlation functions and linear combinations for
cubic, axial and orthorhombic molecules.

Matrix elements

Ry, COSyCOS a — cos Bsin asiny | cosy + sin? Gcos? $(l — cosyh) | cosy + cos? oy (1 — cosgh)
Ron —sinysin a + cos Bcos wcosy | cosy + sin? Osin? ¢(1 — cos ) cos i + cos? a,(1 — cos i)
Ry, cos B cos i + cos? 6 (1 — cos ) cos i + cos? x3(1 — cos ¢f)

Correlation functions

Symmetry cubic axial orthorhombic
Representation(dimmon, T s Ayy Eq Ay Biry Bany
Pr(t) = <3(Ry, Di(t) = D5, () = {Ryp>
+ Ry, + Ri3)) {A(Ryy + Ryz)D
D,(t) = {Rj3> Dy, (1) = (Ra22>
D 4(8) = (Ra3>
{cos §(r)> 3BPr(?) - 1) HDA(t)+ 2De(t) — 1) | 2P, (?) + Pp, (1) + P, () — 1)
(sin2 @(2) (1 — cos (#))> | 1 — Dr(f) 1— @) 1—-D,, (1
<cos? (f)(1 —cos(t))> | (1 — Dr(2)) F(1+ @, (1) —2Dc(?) | 3(1 + Dy, (t) — Py, (t) — D5, (%)

Finally, the above interpretation of correlation functions outlined in Table 6.1
provides a tool for comparing molecules of different size and symmetry. Since differing
moments of inertia cause incompatible time-scales, the introduction of an approximate
time-scale normalized to a rofational eigentime ¢, facilitates the comparison. #, is
defined as the reciprocal of the mean rotation frequency @:

, 12mckT
0 B
8mwckT

A + B +C) for non-linear molecules
(6.19)

= for diatomic molecules

- where A, B, C are the rotational constants [72] in cm™.
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6.4. The relaxation ellipsoid
The introduction of

{cosb;;(1)y = D;;(7)
Ccos? (0,4(7)/2)> = 3(1 + @yy(7)) (6.20)
= rms?[cos (0,,(7)/2)]
and the molecule fixed vectors
U =i | rms{cos (0,,(7)/2)} (6.21)

with # as an arbitrary unit vector in the molecular coordinate system allows the
construction of a relaxation ellipsoid [63]:

1=U, 31+ @, U, (6.22)

This ellipsoid describes the time-development of the rotational diffusion tensor in the
molecule-fixed system and represents spheres for £ =0 and ¢ = o with the radii» =1
and 7 = 4/2 respectively.

6.56. Experimental results

The restrictions of Section 3.2 limit the number of suitable molecules. Even the
most appropriate molecules of the type CH,~halogen,_, are partially ruled out because
of the natural halogen isotopes and overlapping vibrational bands. The investigation
of the correlation functions was restricted to those of the following molecules measured
in pure liquids

CH,: vy = 1360 cm™!

CH;J:9,= 522cm™!, ¥y;= 884cm!

CHBI'3: ﬁA == 3023 Cm_l, ﬂE = 1142 Cl’l’l_l,

CH,Cl:vy = 283cm™', vp = 895cm™, iy =1265.5cm™L.

The data for CH,Cl, are taken from Rothschild [25] and the measurements on CH,J
agree well with the data of Faveluke [73].

The functions listed in Table 6.1 were determined from the experimental correla-
tion functions and the results are presented in Figures 6.1 to 6.3. For comparison all
{cosi(f)> were collected and plotted on the normalized time-scale of equation (6.19)
in Figure 6.1. The effects of inertia are ruled out by the normalized time-scale. The
relaxation of the rotation angle ¢ is most rapid in CH;J and slowest in CH,Cl, and
CHBr;. Because of the large van der Waals radius of the iodine, the structure of the
prolate CH,J is relatively compact thus allowing a fast relaxation about the symmetry
axis. In contrast, the shapes of CH,Cl, (Fig. 6.4) and CHBr, gives rise to considerable
steric hindrance which is confirmed by the {cos ().

A more detailed picture for the symmetric tops is provided by the functions
{sin?0(¢) (1 — cosi(f))> and {cos?B(f)(1 — cos(#))> in Figure 6.2. For CH, ] the average
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1 <cosylth>

O5f

-05}¢

Figure 6.1
Angular autocorrelation functions of the mean rotation angle {cos i(¢)> of
== CHBra, e CHzClz

CH,, ----- CH;],

5 10 11107 Bsec]

Figure 6.2
The correlation functions {sin?6(f) (1 —cos(f))> (
CH;J and CHBr,.

) and {cos?0(t) (1 —cosy(t))> (----- ) of

5 1010 Psec]

Figure 6.3
The correlation functions {sin?e;(¢) (1 — cos(t))> (
CH,Cl, with respect to its three inequivalent axis X,.

) and (cos? a;(t) (1 — cos(t))> (----- ) of
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rotation axis (different from the axis of instantaneous rotation) remains relatively near
to the symmetry axis for times up to 8-10712 s, which is surmised by

{cos? B(t) (1 — cosih(t)))> > (sin? B(f) (1 — cos ¢ (¥))).

However, for the oblate CHBrj;, the average rotation axis moves in a plane perpendicu-
lar to the symmetry axis.

Figure 6.4
Shape of the CH,Cl, molecule as seen in the direction of its three axes X,.

Figure 6.5

Relaxation ellipsoid of CH,Cl,. The time step between subsequent curvesis 0.2+ 10-!2s. The moment

of inertia ellipsoid is presented in the centre of the figure. 4, B and C indicate the rotation constants
with the relation 4 > B > C.

For CH,Cl, the curves of Figure 6.3 yield the relations
{cos? a, (2) (1 — cos () > < {sin? a((f) (1 — cosih(t))>
{cos? a,(#) (1 — cosib(t))> > (sin? o, (£) (1 — cos(t))>
{cos? ay(t) (1 — cosh(t))> < (sin? as(f) (1 — cos i(t))>
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and therefore suggest a stay of the average rotation axes near the direction of the largest
diameter parallel to the CI-Cl axes. This behaviour is confirmed by the relaxation
ellipsoid shown in Figure 6.5. In general the preferred direction of the average rotation
axis is close to the axis corresponding to the smallest moment of inertia whereas the
relaxation rate is reigned by the steric hindrance.

The correlation functions of the polyatomic molecules indicate that they rapidly
approach a diffusion-like motion with an exponential decay of the @,;(¢), although they
perform angular jumps considerably larger than generally assumed in diffusion-type
relaxation theories [74-79].

7. Appendix: Correlation functions of Vibrational Raman Spectra

According to Gordon [14] the differential Raman scattering cross-section is related
to the correlation functions of the components of the polarizability tensor o(t):

4 dza - 1 +we—iwtdt el a(0) .25 (21 £ - es (7 1)
o e ((E"a(0)-2) @ alt) 29 -

— 00

The directions of the incident light &' and of the scattered light é* determine the compo-
nent of «(f) measured. Hence a complete group-theoretical set of correlation functions
{ays (0) oy (£)> describes rotation of « and thus of the molecule.

As a three-dimensional symmetric cartesian tensor of second rank «(¢) possesses
six components, which can be split in a rotational invariant tensor of rank zero [80],

oy = 4 trace o(f) (7.2)
and the five components of an irreducible three-dimensional tensor of rank 2
4y =$3a,(f) — 1) A3 = ay(t)

A, = %(axx(t) — oy, (8) Ay = Ay (£) (73)
As = ay(?).

The isotropic part oy(t) gives rise to the polarized and the anisotropic part {4} to the
depolarized Raman scattering intensity. The tensor components 4; transform as

4, = Rii*(w) E, (7.4)

where the E, represent a space-fixed tensorial basis and the R/=?(w) the real orthogonal
matrix of dimension 5. Naturally R/=2(w) is related to the D?*(w) by a similarity trans-
formation analogous to that of equation (6.18). Therefore the relationship of R/=?(w(f))
to the wi*(f) (6.14) is determined by the irreducible representations I'; contained in
R/=%(w) (6.16). The explicit expressions for the diagonal elements of R/=?(w) are
presented in Table 7.1

As an example we consider a molecule of cubic symmetry. The Raman lines of the
species E provide a correlation function

Dx(t) = 3R} (8) + RE,(0))
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Table 7.1
Explicit forms of the diagonal matrix elements for 1 = 2, as measured by vibrational Raman spectra.

Diagonal elements of R2(y, 6, ¢)

R} | F(B(R33)*-1) 3[8cos? ¢ + 6cos? @cos g (1 — cos )
+ 3cos* 0 (1 —cos )2 — 1]

R}, F(R1)2 + (R3,)? — (RE)? — (Ry1)?) | [2cos? ¢ + 2sin? fcos (1 — cos o)
+ sin* 8(1 — cos ¢)2 — 2 cos? fsin? ]

R%, | Ri;"Ri:+ R R3, cos? s + 2sin? §cos (1 — cos i)
+ 2sin* #sin? ¢ cos? ¢(1 — cos )2
— cos? @ sin? i

R, | R}iRi;+ Ri;RL, cos? yr + [cos? 8 + sin? § cos? ¢] cos (1 — cos ¢f)
+ 2sin? @ cos? 8 cos? ¢(1 — cos )2
— sin? @sin? s sin? ¢

R3; | RLRi;+ R3;-Rl, cos? i + [cos? @ + sin? §sin? ¢] cos (1 — cos )
+ 2sin? @ cos? @sin? (1 — cos ¢f)?
— sin? @ cos? ¢ sin? o

> Ry =1+ 2cosy + 2cos 2y
1

and those of the species

Dr, () = 3(R3:(8) + RZL(8) + R3s(0))-
By a linear combination of the two above correlation functions we obtain

(1 +2cos () + 2cos 2ih(t) ) = 2D (t) + 3D, (¢2).
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