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Experimental Angular Correlation Functions
of Molecules in Liquids and in Crystals

by Bruno Keller and Fritz Kneubühl

Solid State Physics Laboratory, ETH, Zürich

(21. VIII. 72)

Abstract. In this paper we describe the experimental investigation of molecular reorientation
processes with the aid of angular correlation functions. After a brief summary of the theory the
experimental limitations are outlined. Subsequently this method is applied to HCl and DC1 dissolved
in liquid tetrachlorides and to OD_-ions in alkalihalides. Models for the short time behaviour of these
dipoles are presented. The applicability of the angular correlation functions is extended to
polyatomic molecules by group theoretical considerations. Experimental examples are presented.

Zusammenfassung. Die vorliegende Arbeit befasst sich mit der experimentellen Untersuchung
von molekularen Reorientierungsprozessen mit Hilfe von zeitabhängigen Richtungskorrelations-
funktionen. Nach einer kurzen Zusammenfassung der Theorie werden die experimentellen Grenzen
der Methode diskutiert. Als Anwendung werden die Systeme von HCl und DC1 in flüssigen
Tetrachloriden und von OD_-Ionen in Alkalihalogeniden untersucht. Das Kurzzeitverhalten dieser
Dipole wird an Hand von Modellen gedeutet. Mit Hilfe gruppentheoretischer Methoden wird der
Anwendungsbereich der Korrelationsfunktionen auf mehr als zwei-atomige Moleküle ausgedehnt
und die Resultate an einigen experimentellen Beispielen erläutert.

1. Introduction
Since the days of P. Debye [1] considerable effort was taken to obtain information

on the microscopic mechanism of reorientation of molecules in liquids and solids.
Most of the work dealt with the measurement of spectroscopic line widths and relaxation
times derived therefrom, yielding one single parameter to characterize the complicated
processes [2]. Moreover, different spectroscopic techniques led to contradicting results.

Fortunately in recent years linear response theory [3, 4] provided the tool to
interpret the line shapes of rotating molecules in terms of time-dependent correlation
functions [5, 6]. These correlation functions are obtained as Fourier transforms of the
corresponding line profiles. They give a detailed description of the average molecular
motion over a restricted time range. In addition the introduction of correlation functions

allows us to profit from the theory of stochastic processes [7, 8, 9, 10] and to
test many of the deductions of the earlier theories on a more general basis.

The purpose of this study is to demonstrate the fruitfulness of the correlation
function method as well as to discuss the inherent experimental limitations and
difficulties. It is applied to the vibration-rotation spectra of diatomic and polyatomic
molecules in liquids and diatomic impurities in alkalihalides.

A number of excellent theoretical reviews exists on the subject [2, 4, 11-14].
The principal results necessary for the comprehension of the experimental work are
summarized in Section 2. Section 3 is dedicated to the evaluation of correlation and
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memory fonctions from experimental infrared spectra. The next three sections deal
with the application of the method to diatomic molecules dissolved in liquids, diatomic
impurities in alkalihalides and simple polyatomic molecules in liquids respectively.
Finally, the Appendix presents the angular correlation functions of polyatomic
molecules required for the interpretation of vibrational Raman spectra.

2. Basic Concepts of Correlation Functions

2.1. Linear response theory

For an outline of the basic ideas [3, 11] of the linear response theory we consider a
macroscopic sample consisting of a large number of molecules in thermal equilibrium
described by a Hamiltonian H and a thermal distribution function/. Information on the
expectation value (A(t)y of a microscopic variable A, e.g. the spatial component
(e-p) of the electric dipole moment p, is provided by the response of the sample to a
weak force F, e.g. the electric field E, acting on this variable.

In classical statistical mechanics the equation of motion for the equilibrium distribution/is

A=[H,f]=0. (2.1)
ot

The perturbation AH AF gives rise to a change Af of the distribution function

9-^f [H, Af] + [AHJ] + [AH, Af]. (2.2)
ot

If the ensemble is in stable equilibrium and if the force F fulfils the condition

\A-F\<H (2.3)

the second-order term [AH, Af] can be neglected. Hence (A(t)y depends linearly on
F(t):

t

(AA(t)y= j 9A(t-t')F(t')dt' (2.4)
-co

with the response function :

9A(t-t')=- j[AJ],,A(t)-dr, (2.5)

r
where T represents the phase space.

In the canonical ensemble

f=e-HikTJ je-H/kTdr (2.6)

r
one finds

1 f dA(f)
9A(t-t')=-Tj) f-zrr- A (t) dr equil

1 /dA(f)
kT \ dt' A(t)) equil. (2.7)
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For a constant force switched off at the time t 0 the system relaxes according to
CO

(A(t)y +FJ 9A(f) dt' F0A(f) (2.8)
t

with the relaxation or correlation function

QJft j Ut') dt' --^{(A(0)A(t)y - (A2(0)y). (2.9)

For a periodic force

F(f) F0 • cos cot.

the complex susceptibility Xa(c*>) defined by

(AA(t)y RevA(co) Foe-«"' (2.10)

is related to the correlation function 0A(f)
00

XaH XaH - ixlH cPA(0) - ico j 0A(t) e~™ dt. (2.11)
o

The relation of <PA(t) to the quantum mechanical correlation function is discussed in
Section 2.4.

2.2. General properties of autocorrelation functions

Many physical ensembles are stationary and ergodic. Wide sense stationarity is
characterized by a time-independent average (A(t)y and by a correlation function
(A(tx) A (t2)y which depends only on the time difference t t2 — tx

cp(t) (A(tx)A(t2)y (A(0)A(t)y. (2.12)

According to Onsager [15] the microscopic reversibility of physical processes requires

tp(-t)=<P(t). (2.13)

Moreover any correlation function of a stationary-random process has to be non-negative
definite [7, 9] :

0(0) ^ \cp(t)\. (2.14)

The first two derivatives of an autocorrelation function 0(f) of a real physical quantity
should exist. Equation (2.13) yields

d
0 (2.15)

1-0

and equation (2.14)

d2

dt2 w -(À(0)À(t)yt_0<0. (2.16)
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Ergodicity [8,10] permits the replacement of the phase-space average by a time average
over a trajectory

r
A(f)= hm T"1 f A(t)dt. (2.17)

T-> oo J
0

Since the correlation function 0(f) describes the fluctuations of A(f) — (A(t)y the
relation

T

lim T"1 f 0(f) dt 0 (2.18)
r^co J

holds. Therefrom an upper limit for 0(f) can be deduced [7] :

\0(f)\(K(l + P)-1 (2.19)

with 0 < y < 1, and K as an arbitrary constant.

2.3. Memory functions and Onsager separability
Antecedent to linear response theory the usual procedure for dealing with

rotational relaxation phenomena was based on the Langevin equation [11], e.g. for a linear
molecule

yJ(t)=-ßJit)+N(t) (2.20)
dt

with the notations / for the angular momentum, N for the random torque and ß for
the friction coefficient and assuming N(f) to have a Gaussian distribution and an
infinitely short correlation time :

N(t)=N0-8(t); (J(0)-N(t)y 0. (2.21)

The solution of this equation is represented by

*j« </(0) J(t)> (J(0)2y • e-i». (2.22)

According to Doob's theorem [7, 8] the exponential decay of 0j(t) defines the process
as Gaussian-Markoffian. The Gaussian^distribution of 0j(t) is induced by the one of
N(f). The infinite correlation time of N(f) is responsible for the Markoffian character
of the process : Any value of J(f) after the time t0 is independent of all events before
the time t0. Obviously equation (2.22) violates the conditions (2.15) and (2.16). Moreover
the introduction of the constant friction coefficient ß presupposes [15, 16, 17] the
existence of a time t0 which fulfils the condition

TCon < r0 < Ijß (2.23)

where tco11 indicates the time between subsequent collisions of a particle and 1/ß
represents a macroscopic time [15]. Equation (2.22) may be considered as a first
approximation for the motion of a very heavy particle in a bath of very light molecules
whose moments of inertia can be neglected [15].
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The meaning of t0 can be understood with the aid of the generalized Langevin
equation [11] :

ij(t) =-\K(t-r) -J(r) ¦ dr + N(t) (2.24)
dt J

o

with the only assumptions

(N(t)y 0 and (J(0) N(t)y 0. (2.25)

Consequently the correlation function 0}(f) obeys

d '
-0j(f) =-\K(t- T)-0j(r)-dr (2.26)
dt J

and the memory function K(f) equals the autocorrelation function of the random
torque :

K(f)=(N(0)-N(t)y. (2.27)

For memory functions K(t) characterized by a correlation time r0:

K(f)=£0 iorO-Zt^Tn)

K(f) =0 for t > t0

the solution of the above equation of 0j(f) for t > t0 is

<?JW=^(To)e-"(,-r») (2-29)

with ß determined by

ß= j K(r)-e^-dr. (2.30)
o

If r0< ljß this equation is approximated by
T0 CO

ß= j K(r)-dr= j K(r)dr
o o

lj0Ar)'dr\ =1/T. (2.31)

If conditions (2.23), (2.28) are fulfilled, the correlation function 0j(f) can consequently
be separated into a microscopic and a hydrodynamic component as suggested by Onsager
[15]:

4>At) 4>j,m(t) + 0Jth(ty

0J<m(t)^O iort>r0 } (2.32)

®j,k(t) ®ATo)e-IK,-*°)-
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Hitherto only one system has been rigorously investigated under these aspects :

the heavy particle in a harmonic chain [17]. To find the general solution of equation
(2.26) we introduce the new functions :

d f
W(t)=—0j(t) and r(f)= \ K(t')dt'. (2.33)

dt J
o

We can relate them by a convolution type Volterra equation of the second kind :

t

o W(t) + r(t) + j w(f) r(t - f) dt'. (2.34)
o

With the aid of [18] we find the solution :

W(t) -r(t) + f (-i)m r(t) * r(t) ** r(t). (2.35)
m-0 >

v j
(24-»») "factors"

Correlation functions 0(f) related to special memory functions K(f) are listed in Table
2.1.

Table 2.1
Examples of memory functions and their corresponding correlation functions.

K(t) 0(t)

0 1

Ky2-o(t) e-*o12'

Ko COS(ifJ/2-î)

K0-e-" ill " l.„-(t/2)(«+(«2-4K0)1'2)*V (oc2 - iKo)1'2* *

+ d\ + V^-wzx«-«,2-«,,)1'2) if a2 _ ±K ^ 0*\ (a2 - iKnyiV

(l + -t)-e-<—« ifa2-4Ä-0 0

K0e-a,.cosiit A,-e-*i' + A2-e-'2< + A3e->3<

Al+A2.t-e-n> + A3e-y3<
At A^.A, y„ y2y3, <*

determined by cubic equations
[Atcosu>t + ^2sincuJ]-e_vi' + A3-e-yi'

As Wang and Uhlenbeck [19] pointed out, every non-Markofftan process can be
considered as the result of a higher-order Markoffian process. E^g. if 0j(t) is non-
Markoffian, K(f) could be Markoffian. Indeed the 0s(f) (J(0) -J(f)y corresponding
to the Markoffian kernel [20]

K(t)=(N(0)N(t)y=Koe-«> (2.36)
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fulfils the requirements (2.15) and (2.16). If AK0 < et2, 0}(t) is separable into a short-
time and a long-time part (Table 2.1). The violation of conditions (2.15) and (2.16)
has been transferred from the angular momentum correlation function 0j(t) to the
correlation function K(t) of the torques. The question now arises as to how many orders
must be included to tolerate this violation? Although this question has not yet been
answered, it seems to be primarily a matter of time scaling, the time scale being
shortened by increasing the order of the correlation function.

2.4. Short-time behaviour

The general form of a correlation function determined by conditions (2.13),
(2.15), (2.16) allows the following series expansion near t 0:

0(t)=2 (-i)"
(2k)\

Mnk-t2t. (2.37)

The coefficients M2k can be related to the molecular dynamics [11, 21]. Considering
linear molecules with the moment of inertia I, and

(j2y 2ikT

(J*y 8i2(kT)2

one finds the angular momentum correlation function [10]

(N2y mean square torque

</(0)/(0)>

and its memory function

<A72> t2 (N2y2t*

</2> 2! (J2y2A\

(N2y
Kj(t) -W-- +

<J2>

(<N2y\2

\d2>)
(N2y

<y2>

t2

2!- + -

(2.38)

(2.39)

On the other hand the angular correlation function 0u(f) oi the molecule fixed unit
vector u can be expanded as

0u(t) (u(O)u(t)y i
<J2> t2 <74> <*0"

z4I2 2!

and the corresponding normalized memory function as

t2

- +

K'u(t)=Ku(t)jKu(0) l- <j2y <N2y

p <j2> 2!
¦ + - +

(2.40)

(2.41)

with Ku(0) (J2yjl2. Thus M2 of 0u(f) is independent of any interaction.
By comparing the expressions (2.38-2.39) and (2.40-2.41) one finds two interesting

features :

i) In a system of molecules with extremely weak interaction 0j(f) is a constant,
whereas 0u(f) and Ku(f) decay. This decay is due to the thermal distribution of
thej(f). It implies the assumption of small interactions necessary for the thermal-
ization.
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ii) In a system with strong interactions

(N2y>((j2yyi-2 A(kT)2 (2.42)

the normalized angular memory function K'u(f) approaches the momentum correlation

function 0j(t) at least for short times [11]. According to the computer model
calculations by Berne et al. [11] on liquid CO this seems to be also valid for longer
times. Yet no rigorous proof exists.

2.5. Quantum mechanical correlation functions
The quantum mechanical correlation function [3, 4] corresponding to the classical

fuit):
Cu(f) (u(0)u(f,y„m (2.43)

is complex and obeys the symmetry relation

Cu(-t)=C*(t). (2.44)

The symmetrization of this correlation function yields a real and even function :

cu,s(t) <&(0)u(t)}\m cUiS(-f). (2.45)

According to Schofield [22] or Egelstaff [23] Cu(f) can be approximated by the classical
correlation function with the aid of a complex argument :

Cu(f)Z%0u\t
2kT

(2.46)

Cu(f)^0u\\t2-i— t

1/2

(2.46)

Using the second approximation by Egelstaff we find for the real and imaginary part
otCu(t):

ReCu(t)=CUiS(t)Zl-

~M4

M0
+ ¦

h2 Mt
2! (kT)2 4!

h2 Mft hA Ms
+

4! (kT)2 6! (kT)* 8!
(2.47)

h M,
lmCu(t)^ -t-

kT 2!

h M. h3 M6
+ t3.

kT 4! (kT)3 6!

For a linear molecule the coefficient M2 of t2j2\ in Cu s(f) is

kT Ih2 (N2y
M'2 - + — + h2-

I 312 21I2(kT)2

(2.48)

(2.49)
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in agreement with the result obtained by Nienhuis [24]. Hence if

kT>h2j3I and (kT)2 > (N2yj2A

theCus(i) approaches 0u(f).

1135

(2.50)

3. Angular Autocorrelation Functions and Vibration-Rotation Spectra
3.1. Basic relations

Each infrared active vibrational transition i ->foi a molecule involves an electric
transition dipole moment pif oscillating with the frequency cotf. As the molecule rotates,
the direction of ptf varies and modulates the spatial component (ek ¦ pif). This modulation

gives rise to the discrete rotational structure of the vibrational absorption in the
gas phase (Fig. 3.1). In a dense medium the rotational structure converts to a continuous
line shape (Fig. 3.1) and its interpretation in terms of rotational energy levels is obscured.

IM

2500 2600 2700 2800 2900 3000 3100 D em-'l

iL
2500 2600 2700 2800 2900 3000 3100 v [cm"*]

Figure 3.1
Vibration-rotation spectra of gaseous HCl and of HCl dissolved in CC14 at room temperature.

However, linear response theory relates the line shape to the autocorrelation function [14] :

c;w-<{&/V(O))&A/0)»fl' qm

V°
/

ET(co + to if)
¦2 I y (to +totf) — cos (co'+ coif) dco'.j X"(o il, \ - - - s-- ¦ -- ,J / V ¦ /

(to +CO,f)

This expression represents a quantum mechanical analogue to equation (2.11). ek
indicates the direction of the electric field of the radiation and ET(co) the average thermal
energy of the harmonic oscillator (3.4)

hco
ET(to) \hco ¦ coth (3.2)

â/2 J.

The measured absorption coefficient et(co) is related to the imaginary part y"(oj) of the
susceptibility

n(to)
y (co)=c <x(to)

CO

where n(co) is the real part of the refraction index.

(3.3)
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In the near infrared, the inequality

h(co' + co if) >kT (3.4)

induces

ET(co' + to,f) s ih(co' + toif) (3.5)

yielding
+ 00

r'its f xiœ' + w'f) i i \,j >

Cs(t)= —7- cos (to +to,f)tdio
J (to +toif)

-co

+ 00

I I(co'+ coif) cos (to'+ co,f)tdco'. (3.6)

-co

With respect to

Ptf(f) w(/(Q • pif(t) cos üif/< with \pif(t) I 0, and \ùif(f) | 1 (3.7)

C's(f) is influenced by three different processes: the high-frequency oscillation toif,
the vibrational relaxation (pif(0) pif(t)y and the rotational relaxation

((ekUtf(0))(ekutf(f))y.

The influence of the oscillation can be eliminated by a Fourier transformation relative
to the shifted band centre cu^, whereas in principle the experimental infrared data
do not allow the separation of vibrational and rotational relaxation [81]. However,
the vibrational relaxation functions determined experimentally by Lauberau [82] with
laser techniques and by Konynenburg [83] with Rayleigh scattering usually show an
exponential decay with time constants of a few picoseconds. Therefore most C's(f)

can be normalized for short times :

CuAt) ({(ekUif(0))(ekUtf(t))}y

j I(to') cos to'tdto'j j I(to')dto' (3.8)
band band

which yields an approximate, symmetric rotational correlation function. For isotropic
surroundings of rotating molecules the averaging over all orientations ek of the polarization

results in

C„,S« <Ä,(0) *%«}>¦ (3-9)

Finally we have to mention that according to Gordon [21] the coefficients M2k of the
series expansions in Section 2.4 correspond to the spectral moments:

/et(co,f
+ co') I C ct(colf + to')

-7-^ ^¦co'2k-dco' -L^ -W. (3.10)
(œif + œ) j J (coif + œ

band band
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3.2. Physical limitations

Some of the implicit assumptions inherent to the evaluation of correlation functions
from experimental spectra have to be emphasized :

i) The wavelength of infrared radiation is considerably larger than the molecular
dimensions. Thus the correlation functions measured correspond to domains of
molecules and require, in principle, the inclusion of interference terms between the
molecules of the domain [5]. This is particularly true for correlation functions determined
from pure rotation spectra. Fortunately the vibrational states of neighbouring molecules

can be assumed to be uncorrelated with respect to the phase in liquids which
allows the average of the individual correlation functions to be measured. In molecular
crystals however, vibronic coupling between adjacent molecules is possible and may
obscure the physical meaning of 0u(f).

ii) The average shape of the molecule generally depends on the vibrational states
i and/, this leads to different moments of inertia Z, and If as well as to different inter-
molecular forces. Because this effect is caused by anharmonicity the lowest vibrational
transitions should be investigated [25].

iii) The transition frequency coif is usually shifted by molecular interactions.
Since errors in the choice of colf in equation (3.7) induce serious phase shifts in the
correlation function Cu s(f) special methods had to be developed for its determination
(Section 3.3).

iv) Hot bands corresponding to the vibrational transitions from higher states

may distort the band shape of the transitions from the ground states. In the near
infrared the thermal occupation factor suppresses the hot bands at room temperatures.

v) During molecular collisions dipole moments may be induced by multipole
interactions. They give rise to a weak and very broad absorption. Fortunately the
collision induced absorption appears in the far infrared as demonstrated for liquid H2
and N2 [26].

vi) Because the determination of the correlation function requires a Fourier
transform over the whole band, overlapping absorption lines are excluded. This usually
restricts the method to smaU molecules. The method can be extended to complex
molecules if there exists at least one well-separated transition. However, this raises
the problem of relating the motion of the transition dipole to that of the entire molecule.

3.3. Experimental evaluation of autocorrelation and memory functions

Cus(t) is determined from the measured absorption profile

Tl _l <\
«(<"</ A-co') j Ç ct(toif + co')

I(co,f + co)=- -/ -d' (3.11)
(colf + co I J (co,f + co

band

by the full cos-transform
00

C'u,s(t) j Is(to) cos cot dco (3.12)
o
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With the symmetrized band shape

/,H ÎMf + co') W(co,f + co') + I(tO,f - to')) i(l + «««'/") I(co,f + to').

(3.13)

CV, s(£) can be expressed as

C'us(f) =Reei<°ift \ Is(co) cos cot dco + i Is(co)thl Isinco^tu
.<*>,, ta.r \ f

(3.14)

Because an absorption band usually does extend over a spectral region larger than
300 cm-1 the second integral is small at temperatures above 200°K. Its main contribution

lies at times shorter than about 10-14 sec. For longer times the second integral
can be neglected, which yields

C'us(t) * cos coff t I I(iotf + co') cos co'tdco'
band

% costo,ft-CUtS(f). (3.15)

Hence a precise value of coif can be determined from the mean period of C'us(t).
For the evaluation of coiffrom broad bands measured at low temperatures another

procedure is recommended. Since the derivative of Zs(oj) vanishes at oj^ the I(toif)
satisfies the relation

dî h ~

dZ{œif)=ÏTIM' (3-16)

coif is determined by numerical substitution in the above equation. The result is
checked by performing the sin-transforms of I(co) and I(coif + co').

Another problem concerns the choice of the integration limits ze<min and o>max.

According to equation (2.40) the second moment M2 is given by

M2 kTjI
for linear molecules in the classical approximation. Occasionally this relation was used

to numerically determine the integration limits [25]. Unfortunately the moments of
inertia of a molecule in a dense medium and in a gas may differ. In addition, for strong
molecular interactions the above relation must be corrected according to equation
(2.49). For this reason we determine the zero-absorption level and the related cumin
and ojmax by numerical extrapolation from the parts far outside the wings of the
absorption band.

For the numerical transformation of the measured spectrum the frequency has to be

digitalized into equidistant steps Aco. This approximation modifies the proper correlation

function to a periodic function with the period r 2ttjAco. The calculated correlation

function is therefore only reliable up to times ttjAco. The spectral resolution
Acosn of the spectrometer limits the minimal value of Aco to

Aw > 2Acosp.

E.g., for the Beckman IR 12 spectrometer the time range is restricted to £< 1.6-10-11 s.
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The time resolution for the determination of CuJ,t) is given by the width of the
studied band shape. If the experimental data expand from colf — coL to tolf + coL,

the time resolution At is restricted by

At ^ TTJC0L.

As an example the broad band of HCl in CCL, (Section 4) with coL 300 cm-1 allows a
time resolution of At ä: 0.5- IO-13 s.

As shown in Section 2.3 the memory function Ku(f) is of basic interest. Thus we
evaluated Ku(f) numerically from the integro-differential equation (2.26) by:

-Ku(0)=?-2cuAt)
dt*

n-l
'¦2
m=l

-Ku(nAt) =22 K((n - m) At) Cu<s(mAt) + Ku(t) CUtS(nAt)

+ l-icu_s(nAt). (3.17)
Atdt

The differentiation is performed by the usual Lagrange formalism with relatively
high precision. Unfortunately the form of the integro-differential equation forbids
the application of integration algorithms more sophisticated than the trapezoidal rule.
With the choice of time steps At < 0.5-10-14 s the stability range of Ku(f) was brought
to about 10~12 s. The stability of this numerical procedure was checked by varying At.

4. Experimental Correlation Functions of Diatomic Molecules in Liquids

4.1. Introduction

The molecular motion in liquids can be studied by the determination-of the
correlation functions either of molecules of pure liquids or of small molecules dissolved

in liquids. Diatomic molecules are well suited for the latter. As probes they yield
information on the structure of the holes in the host liquid [27-29]. Moreover the
interpretation of the correlation functions of diatomic molecules is straightforward.
In comparison the understanding of the correlation functions related to more complex
molecules demands additional computations (Section 6).

For some years it has been known in infrared spectroscopy that the vibration-
rotation spectra of diatomic molecules (HCl, HBr) dissolved in simple liquids (CC14, CS2)

display structures indicating almost free rotation (Fig. 3.1) [30, 31]. The many attempts
to derive the parameters of motion from the continuous spectra had only limited
success. Therefore we applied the correlation function method to this problem.

In addition these liquids represent the opposite of the model systems adapted to the

Langevin equation. The probe molecules are much lighter than their neighbouring
host molecules. Because of the relatively large cavities in the liquids, the time interval
between collisions equals or exceeds the duration of the collisions. The force fields
acting on a probe molecule are weak due to the high symmetry of the host molecules
and their strong covalent bonds.

In order to avoid confusion arising from steric effects the investigation was restricted

to liquid tetrachlorides: CC14, SiCl4, TiCl4, GeCl4, SnCl4 [28, 29]. This essentially
varied the cavity size of the liquid.
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HCl, DC1 and CO, whose data [32] are listed in Table 4.1, were selected as probe
molecules. The data of the tetrachlorides [33] are summarized in Table 4.2.

Table 4.1

Properties of HCl, DC1 and CO.

Mass
Moment of inertia, I
[10-*° cgs] Bond length [Â] vo-n [cm-1]

HCl
DC1
CO

36.47
37.47
26

2.65
5.16

14.3

1.275
1.275
1.128

2885
2040
2170

4.2. Interpretation of the correlation functions

To start we describe the correlation functions of diatomic gases (e.g. Fig. 4.2).
The correlation functions drop to a minimum below zero indicating an almost complete
reversion of the initial direction of the molecules, and they approach zero for long times.

CO/CCL

HCl /CCI.

s

\ /¦
8 tno-"sec]

Figure 4.1
Angular autocorrelation function 0u(t) of HCl and CO :

indicate the value of the mean time of flight.
- dissolved in CC14, gas. The arrows

DCI CC

v HCl CCI

\ /¦ tnO-"sec]

Figure 4.2
Angular autocorrelation functions tf>u(t) and normalized memory functions K'(t) of
HCl and DCI dissolved in CC14 at room temperature. The arrows indicate the value of the mean
time of flight.
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CCI,

SiCI

CI,

GeCI

SnCI,

V-77- 8 t[10""sed

Figure 4.3
Angular autocorrelation functions €>u(t) and normalized memory functions K'(t) (- of
DCI in the tetrachlorides at room temperature.

The correlation functions ofHCl and DCI in the liquid tetrachlorides are shown in Figures
4.2 and 4.3 and that of CO in CC14 in Figure 4.1. The correlation function ofHClinCCl^,
Figures 4.1, 4.2, 4.3, reveals the following features:

i) The variation of the average angle of rotation of HCl in CC14 is smaller than that
of gaseous HCl.

ii) The minimum of the correlation function occurs at an earlier time Tmin than for
the HCl gas.

iii) The minimum of the correlation function at Tmin is followed by a maximum at

Feature i) and equation (2.40) give evidence for the existence of torques hindering
the rotation of the diatomic molecule in the liquid. The magnitude and the fluctuation
of the torques determine the deviation of the correlation function from the ideal-gas
shape [6]. These torques are influenced by

i) the life-time of the cavity limited by the translational and rotational motions of
the host molecules,

ii) the vibrations of the host molecules,

iii) the rattling frequency of the HCl in the cavity.
The rotational and translational motions of the CC14 molecules are slow due to the

large mass and moment of inertia. Hence contribution i) can be neglected. The
comparison of the correlation functions of HCl and DCI in CC14 in Figure 4.2 yield a precise
isotopic shift proportional to (IjkT)112 for times smaller or equal to Tmin. From this
observation we conclude an almost free rotation for times t < Tmin.
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Table 4.2
Properties of the tetrachlorides

Lowest transitions
Moment of Bond [cm- '1

inertia length r (circumscribed sphere)

Mass [ltr40 cgs] [Â] ss sa v, Va r (central atom)

CC14 153.8 520 1.76 217 313 459 760 4.62
SiCl4 169.8 640 2.02 150 220 425 607 3.18
TiCl4 189.7 760 2.21 120 144 385 496 2.95
GeCl4 214.4 660 2.08 132 171 397 451 3.18
SnCl4 260.5 850 2.30 105 132 368 403 2.75

Table 4.3
Parameters of the motion of DCI and HCl in their cavities. The cavity diameter for CC14 is calculated
according to reference [34] and those for the other tetrachlorides are derived from the corresponding

Range¦of
''"max Tmin Tvlbr Cavity, d,

[io-13 s] [IO"13 s] Isotopic
- shift

[io-13 s]
<N2yll2

[Â]

HCl DCI HCl DCI HCl/ DÇ1 J 4Tmin/Tmin A-* min max [10-1* cgs] DCI HCl

CC14 2.40 3.1 1.43 2.05 1.43 0.44 1.5 9.1 ±0.9 4.4 4.4
SiCl4 3.0 3.8 1.5 2.2 1.48 0.55 2.2 6.4 ±0.7 5.4 5.5
TiCl4 2.8 3.8 1.43 2.15 1.50 0.67 2.75 6.5 ±0.7 5.4 5.14
GeCl4 2.5 3.55 1.59 2.15 1.35 0.74 2.5 7.2 ±0.8 5.0 4.6
SnCl4 2.1 3.05 1.4 2.9 2.07 0.83 37 8.1 ±0.8 4.3 3.8

However, the half periods Tvibr of the four ground state vibrations are in the rangé
of interest (Tables 4.2 and 4.3) :

0.44- IO"13 s < rvibr < 1.5• IO"13 s.

Fortunately, Narten et al. [34] investigated liquid CC14 by x-ray scattering and
succeeded in constructing a lattice model of the average liquid structure. In this model the
cavities are approximately octahedral with chlorine atoms at the corners (Fig. 4.4).
Introducing the average velocity v of the HCl molecule :

v2 3kTjm (4.1)

and the cavity diameter d, we can deduce a mean time of flight of the HCl between the
collisions with the walls :

ru=djv
in the range

1.8-10-13s<Ttr<3.110-13s.

(4.2)

In the time domain near rtr > rmax collisions with the wall occur and interrupt the
motion. Between the collisions, t < Tmax the rotation of the HCl is only slightly disturbed
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by weak fields within the cavity. This hypothesis is supported by the correlation
function of CO in CCl± (Fig. 4.1). The size of CO is not very different from that of HCl
(Fig. 4.4) in agreement with

1.6-10-13s<Ttrans<2.10-13s.

However, the moment of inertia is much larger. Therefore the CO rotates through a
much smaller angle between the successive wall to wall collision. The period of almost
free rotation is too short for a distinct minimum of the correlation function (Fig. 4.1).

In considering the other tetrachlorides, increasing the size of the central atom
(Table 4.2) causes the structure of the tetrachlorides to become more open allowing a
denser packing. This results in a reduction of the mean time of flight rtt. On the other
side the vibrational modulation of the torques slows down (Table 4.3). The lower limit
of rvibr corresponding to the stretch vibration is smaller than Tmin whereas the upper
limit related to a deformation vibration lies above rmav.

Figure 4.4
Cavities in liquid CC14 occupied by HCl and CO molecules respectively.

These qualitative arguments do not allow a rigorous description. Yet from the
experimental correlation functions it follows that the cavity diameter determines the
molecular motion for times t > Tmin and the torques within the cavity for times t < Tmin.
On this basis we conclude the cavity diameter in SnCl4 to be considerably smaller than
in CC14 while for GeCl4 to lie in between. At first glance, inconsistent with this model,
SiCl4 and TiCl4 show more pronounced minimas and maximas of the correlation function.

However, the study of SiCl4 by x-ray scattering [35] and of SiCl4 and TiCl4 by
high resolution Raman spectroscopy [36] provided evidence for the existence of dimers
in the liquid. The dimers cause larger holes in the liquids and thus increase the time
Ttr between the wall collisions of the diatomic molecules. They also diminish the mean
torques acting within the cavity in agreement with our experimental results : smaller
mean square torques and larger cavity diameters for SiCl4 and TiCl4 than for the other
tetrachlorides (Table 4.3).

4.3. Memory functions
For all experimentally determined memory functions Ku(f) of the diatomic

molecules in the tetrachlorides the main variation is observed to occur during the time
Ttr between the wall collisions. This variation is mainly caused by the torques within
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the cavity. At the times Tmax corresponding to the wall collisions, Ku(t) rapidly drops
to zero reflecting the memory destroying effect of wall collisions. The oscillating structure
of the KJf) for TiCl4, GeCl4 and SnCl4 seems to mirror the oscillation of the inter-
molecular fields due to the ground state vibrations of the host molecules.

For additional information on KJf) the mean square torques N2 were determined
from the band shapes (Table 4.3) according to equations (2.38) and (3.10). The
introduction of these data into inequality (2.42) demonstrates the (N2y to be almost equal
to A(kT)2. Therefore Ku(f) must not be interpreted as the angular momentum correlation
function 0j(f).

4.4. Long-time behaviour of the correlation and memory functions

Finally consider the long-time behaviour of the measured correlation and memory
functions on the basis of Section 2.2. As an example, the logarithmic plot of 0u(f) of

0.05

10-,3secl

Figure 4.5
Semilogarithmic plot of the angular autocorrelation function &u(t) of HCl dissolved in CC14. The
exponential approximation for t > 4- IO-13 s is given by <Pu(t) ~ 0.38 er'13-3 10_13s.

HCl in CC14 in Figure 4.5 exhibits an exponential decay at times larger than 4-10 13 s,
i.e. after a few wall collisions. It can be approximated by

0u(t>AAO-13s) Be-'"o, 5 0.38, t0 3.3-10~13 s.

Hence the long-time component of the correlation function shows an astonishingly
short relaxation time t0. The onset of the exponential decay at 4- IO-13 s agrees well
with the fact that Ku(f) simultaneously approaches zero.

5. Diatomic Impurities in Alkalihalides
5.1. Introduction

Diatomic ions in alkalihalides have attracted considerable interest in the past
ten years [37-51]. Usually they occupy the site of an anion in the fee host lattice. The
fields acting on the ions in the alkalihalides are far stronger than on molecules in
liquids or molecular crystals presenting new features in the microdynamics which
require further investigation. Since the determination of angular correlation functions
from vibration-rotation spectra is not bound to low temperatures it adds new information

on this problem. From the point of view of correlation functions these impurities
are of special interest the strong crystalline fields allowing the approximate evaluation
of the angular momentum correlation function 0j(f) according to Section 2.3.
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For reference we summarize the latest data on OH" and OD~ in alkalihalides
obtained by different methods :

Infrared

Stretching vibrations at co0 3600-3700 cm-1 for OH~ and co0 2600-2700
cm"1 for OD- [40-42].

Sidebands at co0 + ojlibr with culibr 250-350 cm-1 for OH" and cdlibr 170-
230 cm-1, attributed to a two-dimensional libration in accordance with the isotopic
shift of wllbr [40-42].

Sidebands at co0 + conT> with co„D 10-30 cm-1 [41], incompatible with the
Devonshire model of an octahedral potential and thus labelled non-Devonshire.

Far infrared

Direct observation of colibI and o>nD [39, 43-45].

Microwaves

Resonances at comw 0.1-1 cm-1 indicating a local C4„ symmetry [47].

Field and stress induced dichroism

Observations in the infrared and in the ultraviolet [37, 38, 42, 43].

Thermal conductivity

Indication of a strong phonon scattering at temperatures corresponding
too>nD[46].

5.2. The two-dimensional off-centre librator model

The experimental facts mentioned in the foregoing Section 5.1 and the temperature
dependence of the correlation functions presented in Section 5.4 inspired our proposal
of a simplified model of OH- and OD" in alkalihalides [52]. A more detailed discussion
is given for clarity [53].

The microscopic situation is sketched in Figure 5.1. The important features of
the model are :

i) The diatomic ions are considered to be dipoles with finite distance / between the
centres of negative and positive charges.

ii) The centre of mass (cm) does not coincide with the centres of the charges. It is
therefore not identical with the centre of interaction defined as the point whereupon
the various forces act [53].

iii) There is a negative net charge —e.

To simplify the mathematical problem we restrict ourselves to two dimensions
and a repulsive intermolecular potential of the Lennard-Jones 6-10 type. The multipole
expansion of the potential V(r, rx, et, y)
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is given by :

F e f {Ar12"[P2„(cos a) + P2„(sina)] - (1 + A) r'2"[P2n(cosy) + P2n(siny)]

+ Kr'2n[C°V*>(cosy) + CW4>(siny)]} (5.1)

with the Legendre polynomials P2n and the Gegenbauer polynomials C2ß7 [54] and the
abbreviations

2e*e
r[ rxjb, r' rjb, e ¦

where a indicates the sum of the ionic radii and k 10.

Figure 5.1
Parameters used in the two-dimensional off-centre librator model.

The lowest non-constant term is retained :

Vi =-[Xl2- 2rXlcos (9-y)+ r2(A8K - 1)].
o2

(5.2)

The next term is used only to specify the appropriate initial conditions corresponding
to the potential minima for the solutions of the equations of motion :

Mr - Mry2 + - (48* - 1) r — XI(A8k - 1)
b b2

Icj> + Xl- — r-sin(9-y) =0

Mr2y + 2Mrry - XI— r-sin (9-y)= 0.
b2

(5.3)

They cannot be solved analytically. Thus we evaluated approximate solutions for high
and low temperatures. Since the experimental results [37, 38, 42, 43] as well as the
higher-order terms of F yield potential minima at specific directions of y we assume
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for low temperatures the ion to librate about its equilibrium position and suggest the
approximations :

(5.4)v~0 A.9-y)-9-Y X

r(t) =r0 + 80 cos (cor t + et); r0
XI

48k -1
e(48/c - 1)

Mb2

m+xit)
eXl[ 1 r(t)

~~~lMr(t)+~r
0;

e-Xl

IF Mr0 I

y(t)=.
at + b

xit)
1+-

Mr2(f)

Mr2(t)

(5.5)

with the integration constants et, 80. If the amplitude of the centre of mass oscillation
r(t) is small : 80<r0 the second line becomes a Mathieu equation [55] of the canonical
form

(5.6)y" -\-y{a — 2qcos (2x)) 0,

AeXl 2eXl80
a(a\ (r 1 S 1 ^a a

1

Mr2'
1

~Za\il rn 1 v 0 1 °o) 1 •"¥ ¥lb2 COJ. b2 C02r

characteristic for a two-dimensional librator. The linear term in y(f) can be eliminated
by the appropriate choice of the starting conditions. This solution states the
translational oscillation cor of the centre of mass about the off-centre equilibrium position r0.
Consequently the net charge —e and the charge defect +e at the lattice point give rise
to an oscillating dipole moment. The corresponding resonance is attributed to the
non-Devonshire line tonD in agreement with the strong phonon scattering observed in
thermal conductivity [46] and the strong dependence on the lattice found by Bosom-
worth [43, 49]. We emphasize that cor must not be considered as a localized lattice
vibration [56]. It is only due to the rotation-translation coupling caused by the missing
coincidence of the centre of mass and the centre of interaction.

The approximate Mathieu equation represents the libration of the ion axis about
the radius vector from the lattice point to the centre of mass.

The third equation reflects the variation of y(f) due to the combined libration cox
and the oscillation cor if a and b are properly chosen.

Thus the model represents the main features actually observed at low temperatures.
For the high temperature solution, assume a molecule with a thermal energy larger

than the rotational barriers [57, 53] responsible for the low temperature behaviour.
Hence it rotates as a whole about the lattice point with the off-centre position of the
centre of mass mainly determined by the thermal energy and the repulsive part of the
surrounding ion cores. The specific assumptions are

•~0 const. a>. (5.7)
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The solution is given by

e-X-l

Bruno Keller H. P. A.

€(A8k - 1) - Mb2 to2
r(t)

y(f) tOyt + d

+ p0 ¦ cos (cor t + et)

rf-jj-«
«(18«-1)

cof — to*
Mb2

AMcov p0 r0 Mtov pj
<P(f) coyt + d + ryH sin (tort + et) + - v -sin (tort + 2a)

Icor Itor

(5.8)

where et, d are integration constants.
Finally, the qualitative explanation of the short-time behaviour of the ions only

lies on the finite dipole and the non-coincidence of the centre of mass and the centre of
interaction. It does not take into account :

i) the coupling to the lattice vibrations [53, 58],

ii) the distortion of the lattice [59],

iii) the third dimension,

iv) the appropriate form of the interionic potential.

Thus the model cannot provide quantitative results, e.g. rotational barrier heights
[53, 57]. But it shows the main features without fitting ofparameters [53]. In addition the
correction of the isotopic shift ofcoxibI by this model agrees well with the experiment [52].

5.3. Influence of strong crystalline fields and low temperatures on correlation and memory
functions

The relatively high ailibr and the detailed balance principle (equations (3.8)) cause
a considerable asymmetry of the infrared-absorption band. Therefore we actually
measure Cus(t) instead of 0u(t). The quantum corrections of Section 2.5 yield:

forOD-: M'2jM2 1 + 9.27T"1 + 1.1677

forOH-: M'2jM2 1 + 17.7J"1 + 2.22T'

(kT)2

_x
<N2y

(kT)2

(5.9)

Those of the high moments diminish with increasing order. The additional terms in the
above equations depend on the temperature and the mean square torques. Even for
(N2y > (kT)2 there are temperatures where M2 s M2. On the other hand large torques
allow the memory function Ku(f) to approach the angular momentum correlation
function 0}(t) if

<iV2> > A(kT)2. (2-42)

Hence there may exist a temperature range where M2 S M'2 and Ku(f) £ 0AI)-
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5.4. Experimental angular correlation functions and second moments

Figures 5.2-5.6 show the experimentally determined correlation functions of OD"
in various alkalihalides for temperatures between 15°K and 600CK. The relevant data
on OH- and OD~ and the alkalihalides are listed in Tables 5.1 and 5.2. Earlier room-
temperature measurements on OH"" and OD~ in KCl have revealed oscillating correlation

functions displaying an isotopic shift proportional to y/I [60]. This structure

300°K

1.1

87°K

/5 t [10""sec]

Figure 5.2
Angular autocorrelation functions CUiS(t) (-
functions 0j(t) of OD~ in RbCl.

and approximate angular momentum correlation

560°K

\ I .'

80°K

5 1BCT"sed

Figure 5.3
Angular autocorrelation functions C„
functions &j(t) of OD" in KCl.'

(t) and approximate angular momentum correlation
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300° K

73° K
0.5 J

'
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\ / \^/\ '/ \j X âxr»*

Figure 5.4
Angular autocorrelation functions CUiS(t) and approximate angular momentum correlation
functions &j(t) of OD- in KBr'.

300° K

-0.5

I ,\ r. \V 4 1—\—i—fj u,—,_

\\ \\ \
I W

23° K
0.5

I /\' \ r-\

/ v 5 -' 10 moused

\J

Figure 5.5
Angular autocorrelation functions CUiS(t) and approximate angular momentum correlation
functions tpf(t) of OD~ in NaBr.

characterizes a two-dimensional librator. Potential barriers responsible for the libration
have been estimated by several authors [53, 57, 61]. Our experimental correlation
functions provide a test of these calculations.

At low temperature all correlation functions oscillate indicating a librational
motion. With increasing temperature the oscillations, as well as the complete correlation
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527°K

22°K

\ /

Figure 5.6
Angular autocorrelation functions Cus(r) (-
functions &j(t) of OD- in KJ.

' -) and approximate angular momentum correlation

functions, are progressively damped. In most crystals the oscillations are maintained
even at high temperatures whereas for OD~ in KJ they collapse near 530°K. OD~ in
KJ has a height of the rotational barrier corresponding to 534°K ([53], Table 5.2).
Above 534°K the libration turns into an overall rotation. From the point of view of our

Table 5.1
Properties of OH- and OD- ions.

Moment of inertia I Rotation constant Bond length
[io-40 cgs] [cm-1] [Â]

OH- 1.53 18.9
OD- 2.91 10.0 0.974

Table 5.2

Properties of the alkalihalide lattices.

Lattice constant Minimum cavity, <j> Rotational barrier [53]
[â] [Â] [°K]

RbCl 6.54 3.58 911
KCl 6.28 3.62 840
NaCl 5.63 3.73 1068
RbBr 6.85 3.89
KBr 6.59 3.93 676
NaBr 5.96 4.06 184
RbJ 7.33 4.37
KJ 7.05 4.39 534
NaJ 6.46 4.56
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model this change corresponds to a transition from the low temperature to the high
temperature solution (equations (5.5) and (5.8)).

For a more quantitative analysis we also determined the second spectral moments

M2(T) as functions of the temperature T (Fig. 5.7). At low temperatures the
experimental M'2 surpasses by far the classical M2(T) due to the strong torques <iv2> in
agreement with equation (5.9). With increasing temperature the M2(T) should approach
its classical value M2(T) from the upper side as observed for KCl and RbCl. However,
the M'2(T) of KJ and NaBr remain approximately constant and cross M2(T). M'2 of
KBr represents an intermediate case.

Figure 5.7
The second spectral moment M2 as a function of the temperature of OD" in • • • • RbCl, KCl,

KBr, -x-x-x NaBr, -.-.- KJ, compared to the classical M2 kTjI

<N'>
kT)

Figure 5.8
Temperature dependence of the mean square torques <[N2y/(kT)2 of OD- in KCl and RbCl

The only possible interpretation of this striking feature is to assume a temperature-
dependent increase of the moment of inertia I in equation (2.49) according to

I(T) Io + ma2(T) (5.10)

where a(T) indicates the distance between the centre of mass and the centre of rotation or
libration. The large cavities allow the increase oia(T) with temperature. Unfortunately
this temperature dependence impedes the determination of (N2y(T) from M'2(T)
as suggested by equation (2.49).

On the other hand, if the M'2(T) of OD- in KCl and RbCl points to a moment of
inertia I independent of the temperature 77 a libration about the centre of mass ensues.
This seems also plausible from the tightness of the cavities of KCl and RbCl. Therefore
(N2y(T) can be determined. According to Figure 5.8 (N2y(T)j(kT)2 appears to be a
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linear function of T over a wide range. Thus we obtain

(N2y(T) AT2 - BT3 (5.11)

with
A 778 • IO-32 cgs, B 1.27 • 10~32 cgs for KCl

and

A 551 • IO"32 cgs, B 0.93 • 10~32 cgs for RbCl

with

Tmtx 408°K and «iV2»^ 6.5 • 10"» cgs for KCl

395°K 5.4 ¦ IO"13 cgs for RbCl.

Since N represents the gradient of the potential with respect to the angular variation,
we may obtain information on the form of the potential well from equation (5.11).
In agreement with the librational frequences (Table 5.2) the value of ((N2ymax)i/2 for
RbCl is smaller than for KCl.

5.5. Memory and angular momentum correlation functions

Memory functions have two aspects :

the interpretation on the basis of equation (2.26) ;

interpretation as approximate angular correlation functions 0j(f).
The memory functions in Figures 5.2-5.6 suggest an approximation of the form
Ku(t) e~xt cos cot with the corresponding 0u(f) in Table 2.1 for low and intermediate
temperatures. a> is in good agreement with o>libr although the envelopes of K'Jt)
slightly differ from exponentials.

.^„Ccm-'l

150-

100-

Figure 5.9
Temperature dependence of the librational frequency a)llbr of OD- in NaBr. The arrow indicates
the value of the rotational barrier.

The appealing point of Ku(t) is its interpretation as 0j(f). The relevant condition
(2.42) is well satisfied. The oscillation of 0j(t) ~ K'u(f) reflects the motion of the angular
momentum of the two-dimensional librator. This fact can be used to determine the
librational frequency from K'Jt) even at temperatures where the separation of the
librational side-band from the main vibrational absorption line is no more possible.
The culibr slightly decreases with temperature as illustrated in Fig. 5.9. The hitherto
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unknown ojlibr of OD- in NaBr can be determined from the period of K'Jt) as

o>llbr(OD-/NaBr) 160 ± 5 cm"1

and the rotational barrier with the aid of Pandy's equation [53] as

K co2xJ20B 128 cm"1 or 185°K.

This agrees well with the behaviour of M'2(T) shown in Figure 5.7.

5.6. Concluding remarks

The measurements and the model suggest the occurrence of three types of motions:

i) libration about an off-centre centre of mass as in KCl and RbCl at lower
temperatures ;

ii) libration about a point different from the centre of mass with a temperature-
dependent separation a(r) as in NaBr, KBr and KJ at intermediate temperatures;

iii) overall rotation about the lattice point with off-centre centre of mass (KJ).

Types i) and iii) are predicted by the two solutions of our model. The motion of type ii)
lies outside the scope of the model. It requires the consideration of the higher terms
of the potential, i.e. rotational barrier. Nevertheless this does not touch the consistency
of the model. The motion of type i) disagrees with the calculations by Pandy [53]
since they are based on the a priori assumption of separated centres of rotation and
mass and our interpretation represents an extrapolation from high temperatures.
For a final conclusion further investigations from both sides are necessary.

6. Correlation Functions of Polyatomic Molecules

6.1. Introduction

In a first approximation the rotating molecule in a liquid or in a solid can be
considered as a rigid top. For an isotropic neighbourhood of the molecule the angular
correlation functions related to the random rotation of the molecule can be represented
[63] by

0tJ(t)=(\Ru(co(f))\y (6.1)

where Ru(co) indicates the orthogonal matrix of the orientation co(t), which is expressed
by a set of rotational parameters, e.g. the Eulerian angles et, ß, y.

The goal of this chapter is to understand the angular correlation functions of
polyatomic molecules on the basis of this equation. For this purpose the potential
acting on the molecule in the liquid or the solid is assumed not to influence its vibrational
and electronic states. Upon the introduction of the appropriate orientational probability
densities the consequences of the symmetry of the molecule are found by group theory.
The structure of the correlation function matrix 0ij(f) suggests the construction of a
number of informativefunctions of the rotational parameters and ofa relaxation ellipsoid
[63]. Explicit formulae and experimental results from infrared spectra of simple
molecules are presented.
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6.2. Probability densities

The orientational motion of a molecule is considered as a random process with the
random variables et, ß, y and the continuous parameter t. This process is described by a

hierarchy of probability densities [7, 9, 64] : w,(Qx, tx, Q2, t2, Qx, t,). The two lowest
members are :

wx(Q,t) dQ: the probability of finding the molecule at time t with the orientation
in the range within Q and Q + dQ.

w2(Qx,txIQ2,t2)dQxdQ2 the probability of finding the molecule at time tx with
the orientation within the range Qx and Qx + dQx and at time t2 with the orientation

within the range Q2 and Q2 + dQ2.

For stationary random processes wx is independent of t and w2 is a function of t t2 — tx

only. In addition w2 is symmetric with respect to Qx and Q2,

w2(Qx, r, Q2) w* (Q2, r, Qx), (6.2)

and with respect to the time r :

w2(Qx, -r, Q.) w$(Qlt +T, Q2). (6.3)

As probability densities the wt are normalized over the Qk :

jwx(Q)dQ=l, \w2(Qx,T,Q2)dQxdQ2 l (6.4)

and w2 satisfies :

w2(Qx, t, Q2) dQx wx(Q2
(6.5)

w2(Qx, t, Q2) dQ2 wx(Qx).

The wx and w2 are related by the conditional probability

w2(Qx, r, Q2) wx(Qx) w2(Qxjjr, Q2). (6.6)

The probability densities of the orientational motion are square integrable functions
of the Q and can therefore be represented with the Wigner or generalized spherical
functions :

1/2

AL<(ß)wi,ner [65] (6.7)DJmm-(0)
8tt2

2j + 1

with the orthogonality reaction

j Dim,(Q)* Din,(Q) dQ 8„, 8nn 8m.n, (6.8)

and

1
mm'w1(Q) Dmm,(Q)*wi

w2(Qx, t, Q2) Dmm,(Qx)*wmJm,tnn,(T)DJm.(Q2)
(6.9)

w2(QxjJT,Q2) Djm.(Q1)*W!£,tim. (r)DL-(Q2).
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The average of a function f(Q) is defined as

(f(Q)y j f(Q) wx(Q) dQ (6.10)

and the correlation function as

(fi(Qi)f2(Q2)*y JJ fJQi) W2(QX, r,Q2)f2(Q2)*dQ. dQ2. (6.11)

Hence we obtain

ML- <Dmm-(Q)y

U>!L-,nn-(T) <Z>iL-(ß,) Di'n,(Q2)*y. j
For an isotropic surrounding of the molecule wx is constant :

wx 1/8tt2 (6.13)

and w2 can be expressed by co,

w2(Qx,r,Q2) =w'2(co,r) Dmm,(co)*w'Jm,(T) (6.14)

where co is defined by

D>(Q2) DJ(co) DJ(Qx). (6.15)

If the molecule possesses a symmetry group M then w'2(co, r) has to be invariant under
all operations 0M eM represented by the transformation matrices DJ(0M) :

DJ(0M)=®rHoM, (6.16)
IU)

with Pi(0M) irreducible representation of M contained in DJ according to the
rotation group combatibility tables [66].

Schur's lemma provides the invariant w'Jmi(r)t.
For high symmetries and j 1 we obtain

cubic molecule: w\f) (lj3[Dxx(to(t)) + Dl2(co(t)) + Dl3(co(f))]y (6.17)

axial molecule: w[(t) (lj2[D\x(co(f)) + Z>i2(cu(<))]>

«tfW <z>kM<))>

orthorhombic : w'xl(t) (D\x(co(f))y

w'i(t) (Di2(co(f))y

w'i(t) (D\3(co(f))y.

6.3. Dipole correlation functions
The transition dipoles plf transform as real polar vectors and they belong to

irreducible representations of M [67]. For their description the complex Dl(co) must be
replaced by the real orthogonal matrices R(co) related by the similarity transformation

R(co) AD\co) A-7 (6.18)

Each irreducible representation of M present in R(co) has a corresponding correlation
function which can be measured with a vibrational transition of the same representation
[67, 63].
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These correlation functions match the coefficients of the conditional probability
density w2(0jjr,to). Table 6.1 presents the explicit expressions for this correlation
functions in the following parametrizations of the rotation :

et, ß, y Eulerian angles [68],
ip, 6, cp rotation angle ip and polar angles 0 and cp of the rotation axis [70, 69],
ip, etx, ac2, oc3 rotation angle ip and the direction cosines: cosa1; cosa2, cosa3 of

the rotation axes [71].

The forms of the (Ru(co)y for different parametrizations suggest for high symmetries
some informative linear combinations which are summarized in Table 6.1.

Table 6.1
Explicit forms of the diagonal matrix elements, correlation functions and linear combinations for
cubic, axial and orthorhombic molecules.

Matrix elements

R„ cos y cos a — cos ß sin a sin y cos ^r + sin2 6cos2 ^(1 — cos if,) cos^i + cos2ai(l -- cos ^f)

R22 — sin y sin a + cos ß cos a cos y cos th + sin2 0sin2 ^(1 — cos ^r) cos^ ± cos2a2(l -- COS lp)

•^33 cos ß COS xj) + cos2 0(1— cos if,) cos^r + cos2a3(l -- COS ^t)

Correlation functions

Symmetry cubic axial orthorhombic

Representation,,,,.™^,» ¦^(3) A (i) E(2, ^l(l) #1(1) ^2(1)

$T(t) <i(RU
+ R22 + R33)>

cpE(t)

<-i(itn + it22)>

*A.t, <*33>

®B2(t) <¦»,!>

4>B,(t) <R22>

$Ai(t) <-«33>

<cos^f(r)> i(Z<PT(t) - 1) ï(9A(t)+2tpE(t)-\) i^.W + ^a.W + ^W-i)
<sin20(i)(l -cos,/.(*))> l - <*VM 1 - &AV) 1 - $A,(t)

<cos20(*)(l -cos>b(i))y i(l - <t>r(t)) i(l + $At)-20B(t)) i(l + OAJf, - ••,« - $B2V))

Finally, the above interpretation of correlation functions outlined in Table 6.1

provides a tool for comparing molecules of different size and symmetry. Since differing
moments of inertia cause incompatible time-scales, the introduction of an approximate
time-scale normalized to a rotational eigentime t0 facilitates the comparison. t0 is
defined as the reciprocal of the mean rotation frequency co :

12-rrckT, „ „ ^-i;(A + B +C) for non-linear molecules

(6.19)

tl-
h

tl-
8-rrckT

¦B for diatomic molecules

where A, B, C are the rotational constants [72] in cm 1.



1158 Bruno Keller H. P. A.

6.4. The relaxation ellipsoid

The introduction of

<cos0„(t»-*u(t) \

(cos2(diJ(r)j2)y ^(l + 0lj(T)) (6.20)

rms2[cos(Öi,(T)/2)]j

and the molecule fixed vectors

Ü ÜJTms{cos(dij(T)l2)} (6.21)

with u as an arbitrary unit vector in the molecular coordinate system allows the
construction of a relaxation ellipsoid [63] :

l U^(l+0u(r))Uj. (6.22)

This ellipsoid describes the time-development of the rotational diffusion tensor in the
molecule-fixed system and represents spheres for t 0 and t oo with the radii r 1

and r -\J2 respectively.

6.5. Experimental results

The restrictions of Section 3.2 limit the number of suitable molecules. Even the
most appropriate molecules of the type CHx-halogen4_x are partially ruled out because
of the natural halogen isotopes and overlapping vibrational bands. The investigation
of the correlation functions was restricted to those of the following molecules measured
in pure liquids :

CH4:i;r 1360cm-1

CH3J:i^ 522 cm-1, vE= 884 cm"1,

CHBr3:i^ 3023cm-1, vE 1142 cm"1,

CB.2Cl2.vAl= 283 cm"1, ïBi 895 cm"-1, vB2= 1265.5 cm'1.

The data for CH2C12 are taken from Rothschild [25] and the measurements on CH3J
agree well with the data of Faveluke [73].

The functions listed in Table 6.1 were determined from the experimental correlation

functions and the results are presented in Figures 6.1 to 6.3. For comparison all
(costp(t)y were collected and plotted on the normalized time-scale of equation (6.19)
in Figure 6.1. The effects of inertia are ruled out by the normalized time-scale. The
relaxation of the rotation angle p is most rapid in CH3J and slowest in CH2C12 and
CHBr3. Because of the large van der Waals radius of the iodine, the structure of the
prolate CH3J is relatively compact thus allowing a fast relaxation about the symmetry
axis. In contrast, the shapes of CH2C12 (Fig. 6.4) and CHBr3 gives rise to considerable
steric hindrance which is confirmed by the (cos p(t)y.

A more detailed picture for the symmetric tops is provided by the functions
<sin2fty)(l - coSip(f))y and (cos2d(f)(l - cosdi(t))y in Figure 6.2. For CHJ the average
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<cos^(t)>

\0.5

0.5"

05

Figure 6.1

Angular autocorrelation functions of the mean rotation angle <cosi/>(i)> of CH4, CH3J,
CHBr3, •••• CHjClj.

Q5

0
0.5

1 /- If1/-J/ /

CH,a

CHBr,

/ ^-—
—_---

I 5 10 tr10-c

Figure 6.2
The correlation functions <sin20(r) (1 - cos </.(*))> and <cos20(*) (l-cos^(<))> of
CH3J and CHBr3.

ou^_Ôî 2 3 4 5 tSö

Figure 6.3
The correlation functions <sin2at(î) (1 — coSi/>(<))> (-
CH2C12 with respect to its three inequivalent axis X,.

and <cos2a,(i) (l-cos^r(r))> of
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rotation axis (different from the axis of instantaneous rotation) remains relatively near
to the symmetry axis for times up to 8-10-12 s, which is surmised by

(cos26(f) (1 - cosiP(t))y > (sin2 6(t) (1 - cosd)(t))y.

However, for the oblate CHBr3, the average rotation axis moves in a plane perpendicular
to the symmetry axis.

Figure 6.4
Shape of the CH2C12 molecule as seen in the direction of its three axes Xt.

«0

=oo

Figure 6.5
Relaxation ellipsoid of CH2C12. The time step between subsequent curves is 0.2 • IO-12 s. The moment
of inertia ellipsoid is presented in the centre of the figure. A, B and C indicate the rotation constants
with the relation A > B > C.

For CH2C12 the curves of Figure 6.3 yield the relations

<cos2ai(i) (1 - cosd)(f))y < (sin2ctx(f) (1 - cosd)(f))y

<cos2 ct2(f) (1 - cos P(f))y > <sin2 ct2(t) (1 - cos d)(t))y

(cos2et3(f) (1 - cos>P(f))y < <sin2 et3(t) (1 - cos9(t))y
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and therefore suggest a stay of the average rotation axes near the direction of the largest
diameter parallel to the Cl-Cl axes. This behaviour is confirmed by the relaxation
ellipsoid shown in Figure 6.5. In general the preferred direction of the average rotation
axis is close to the axis corresponding to the smallest moment of inertia whereas the
relaxation rate is reigned by the steric hindrance.

The correlation functions of the polyatomic molecules indicate that they rapidly
approach a diffusion-like motion with an exponential decay of the 0ij(f), although they
perform angular jumps considerably larger than generally assumed in diffusion-type
relaxation theories [74-79].

7. Appendix: Correlation functions of Vibrational Raman Spectra

According to Gordon [14] the differential Raman scattering cross-section is related
to the correlation functions of the components of the polarizability tensor oc(f) :

+ 00

X*l?Tr ^- I e-imdt((ï-oi(0)-e°)(êi-et(f)-è*)y (7.1)
aiJ aco Ztt J

— co

The directions of the incident light el and of the scattered light es determine the component

of a(t) measured. Hence a complete group-theoretical set of correlation functions
<ais (0) ais (t)y describes rotation of ct and thus of the molecule.

As a three-dimensional symmetric cartesian tensor of second rank et(f) possesses
six components, which can be split in a rotational invariant tensor of rank zero [80],

a0 i trace oc(f) (7.2)

and the five components of an irreducible three-dimensional tensor of rank 2

Ai=$(3ctzz(t)-1) A3 ctxy(t)\

A2 i(«*At) - otyy(f)) A> etxz(t) (7.3)

A5 etyz(f).J

The isotropic part ct0(f) gives rise to the polarized and the anisotropic part {A,} to the
depolarized Raman scattering intensity. The tensor components A, transform as

At Rfk-2(to)Ek (7.4)

where the Ek represent a space-fixed tensorial basis and the RJ=2(co) the real orthogonal
matrix of dimension 5. Naturally RJ=2(co) is related to the D2(co) by a similarity
transformation analogous to that of equation (6.18). Therefore the relationship of RJ~2(to(f))
to the w'2(t) (6.14) is determined by the irreducible representations Tt contained in
RJ=2(co) (6.16). The explicit expressions for the diagonal elements of R]=2(co) are
presented in Table 7.1

As an example we consider a molecule of cubic symmetry. The Raman lines of the
species E provide a correlation function

®E(t) KPîi(t)A-R222(t)y
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Table 7.1

Explicit forms of the diagonal matrix elements for 1 2, as measured by vibrational Raman spectra.

Diagonal elements of R2(tp, 8, <j>)

Rf, i(3(Rl3)2 -1) ^[3 cos2 if, + 6 cos2 8 cos tfi (1 — cos 0)
+ 3 cos* 0(1 -cos0)2- 1]

R22 i((RU)2 + (Rl2)2 - (R\2)2 - (R2l)2) -|-[2 cos2 if,+ 2 sin2 8cos 0(1 - cos 0)
+ sin* 8(1 - cos 0)2 - 2 cos2 6sin2 0]

R233 Rll' R22 + ^12-^21 cos2 0 + 2 sin2 6cos 0(1 — cos 0)
+ 2 sin* (9sin2 0 cos2 0(1 - cos 0)2
— cos2 8 sin2 xp

RL RiiRh + R^Rh cos2 0 + [cos2 8 + sin2 ô cos2 0] cos if>(\ — cos 0)
+ 2 sin2 9 cos2 8 cos2 0(1 - cos 0)2
— sin2 ô sin2 ip sin2 0

Rh Rk2Ri3 + Ri3-Rl2 cos2 ip + [cos2 0 + sin2 8 sin2 0] cos 0(1 — cos 0)
+ 2 sin2 0cos2 0sin2 0(1 - cos 0)2
— sin2 0 cos2 0 sin2 0

2 R-u 1 + 2 cos if, + 2 cos 2</f

i

and those of the species

®T2(t) KRh(t) + RUt) + R2ssit)>-

By a linear combination of the two above correlation functions we obtain

<1 + 2cosd)(f) + 2cos2i/<$> 20E(t) + 30T2(f).
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