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Quadratic Forms and Essential Self-Adjointness

by William G. Faris

Battelle, Advanced Studies Center Geneva, Carouge-Geneéve

(21. VIIL. 1972)

Abstract. Let Hy and V be self-adjoint operators acting in a Hilbert space. Assume that H, > 0
and that H = Hy + V (where the sum is defined in the sense of quadratic forms) is self-adjoint and
bounded below. The positive part of ¥ need not be relatively bounded with respect to Hy. If exp(—H)
sends a dense subspace of the Hilbert space into the domain of V, then H is essentially self-adjoint
on the intersection of the domains of Hy and V. The Trotter product formula for contraction semi-
groups may be used to verify the condition on exp(—H). This gives a general essential self-adjoint-
ness result for Schrodinger operators.

1. Introduction

Let Hy and V be (unbounded) self-adjoint operators acting in a Hilbert space. Is
the formsum H = H, + V auniquely defined self-adjoint operator? If so, is H essentially
self-adjoint on the intersection of the domains of Hyand V? If H is self-adjoint, then the
unitary group exp(:¢H) is well defined. The importance of the latter question is that
essential self-adjointness implies the Trotter product formula (unitary case)

exp(itH) = lim (exp ( z;% Ho) exp (1% V)) ([91, §8).

n-»o

The purpose of this paperis to present sufficient conditions for essential self-adjointness.

The classical results for relatively small perturbations are based on a series
expansion. They do not depend on the sign of V. Recent developments in quantum
field theory haveled to an interest in the case when H, > 0 and V is not smaller than H,,.
The results do then depend on the sign of V. Quite generally, if only the negative part of
V isrelatively small, then H is self-adjoint and bounded below ([7], chap. VI). The essen-
tial self-adjointness results mostly have been obtained by L? space techniques, in
particular the theory of hypercontractive semigroups [11, 15]. In this paper it is shown
how these results fit into the general framework of quadratic form perturbation theory.

The LP space techniques were introduced in quantum field theory by Nelson in
order to show that H is bounded below [8]. The mathematical study of quantum fields
was carried much farther by Glimm and Jaffe [5]. In particular, they gave proofs of
essential self-adjointness. The generality of the L? space techniques was recognized by
Segal [11]. He used the Trotter product formula (self-adjoint case)

t ¢\
exp(—tH) =lim (exp (—— H 0) exp (— — V))
n— o n n
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in conjunction with the estimates of Nelson to prove that H is bounded below. Though
essential self-adjointness is an entirely independent question, Segal showed that
similar techniques may be used to prove essential self-adjointness. These results have
been extended by Simon and Hoegh-Krohn in their survey article on hypercontractive
semigroups [15].

The general theory may also be applied to Schrédinger operators —4 + V acting
in L?*(R" dx). Recently Simon showed that if V' is bounded below and V e L?
(R, exp(—cx?)dx), then —4 + V is essentially self-adjoint [13]. Similar results have been
obtained by partial differential equation methods; they indicate that it should be
sufficient to assume that ¥ is bounded below and locally in L2. However, so far this has
not been deduced from perturbation theory [13].

In this paper a generalization of the field theory techniques is applied to Schré-
dinger operators in a way which in certain respects improves Simon’s result. The first
sections of the paper are devoted to background material. We review the basic facts on
self-adjointness of form sums (Theorem 2.1) and present abstract Hilbert space versions
of some of Segal’s techniques (corollary 3.1 and Theorem 4.1). In the main essential
self-adjointness result (Theorem 4.2) exp(—V )exp(—tH,) is assumed to be a contraction
semigroup on a certain auxiliary Banach space & for ¢ > 0. (The space & here plays the
role of L?.) The theory has also recently been abstracted by Segal in a somewhat dif-
ferent direction [12]. His approach is based on Duhamel’s formula instead of quadratic
forms.

The main result on Schrédinger operators (Theorem 6.1) is related to Simon’s
theorem ; however ¥ may not only be very much unbounded above but also unbounded
below. In order to construct the auxiliary Banach space & we use a new representation
of the Hilbert space which is adapted to the particular operator H.

2. Forms and Operators

Definition 2.1: Let s# be a Hilbert space and 4 be a self-adjoint operator acting in
. The domain & = 9P (A) of A is the Hilbert space consisting of all f € # such that
I fII3 = | fII* + ||Af||? is finite. The form domain 2 = 2(A) of 4 is the Hilbert space con-
sisting of all fin # such that || f||2 = f]|> + | |4 |2 f]?is finite.

Definition 2.2: Let A be a self-adjoint operator with form domain 2. The form dual
2* is defined as the Hilbert space which is the completion of J# in the norm
| gl3s = <& (1 +]4])"g.

The relation between these spaces is that 2 = # < 2* (and of course ¥ < 2).
If g is in 2%, then there is a natural definition (by continuity) of {g,f>, f € 2, such that
[<g.f>| <||gllas|lf|lo- This is the sense in which 2% is dual to 2.

If A is a self-adjoint operator, then A extends by continuity to an operator
A:2 — 9% where 2 = 2(A) is the form domain of 4 and 2* is the form dual. Similarly
|4 | extends to an operator |4|: 2 — 2*,infact, 1 + [4|: 2 — 2* is an isomorphism of
Hilbert spaces. Thus we may write

If12=<Q+|4)ff> and |g|}.=<& A+ |47 e

Let A be a self-adjoint operator. If fand g are in 2(4), then (Af, g)> is defined. This
sesquilinear form is of course determined by the quadratic form (Af,f>, f e D(2).
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Definition 2.3: Let A be a self-adjoint operator and let 2(A4) be its form domain.
The quadratic form of 4 is the quadratic form (Af,f), defined for fe 2(4).
The quadratic form of a self-adjoint operator A will also be denoted simply by 4.

Definition 2.4: Let A and B be self-adjoint operators. Then A < B means that
2(A4) = 2(B) and {Af,f> <{Bf,f> for all fe 2(B).

Definition 2.5: Let B > 0 be a self-adjoint operator. The truncated operator B, is
defined to be the operator which is equal to B on the subspace where B < #and equal to 0
on its orthogonal complement.

Proposition 2.1. Let B > 0 be a self-adjoint operator. Then f € 2(B) if and only if
{B,f.f> is bounded as # — o, and in that case {B,f,f> 1 {(Bf,f) as n — o.

Proof: Thisis an immediate consequence of the spectral theorem and the monotone
convergence theorem.

Proposition 2.2 ([7], chap. VI, Theorem 2.21). Let A and B be self-adjoint operators
which are bounded below and let ¢ be a real number which is strictly less than the lower
bounds. Then 4 < B if and only if (B—¢)"'< (4 —¢)7%

Proof: By adding a constant we may suppose ¢=0. Then 4 < B says that
|AY2f|? < || BY2f|2, that is, |AY2B12| <1. But (AY2B-Y2)% > B-12412 5o
|B-12A4172| < 1. That is, | B~12g| < ||41/2g||, B ' < A7

Proposition 2.3. Assume 0 <c< B< A. Then log B <logA4.

Proof: We first give the proof for the special case when B is bounded. (See for
instance [10], proposition 2.5.8.)
We have

r

[+ 4)rdt =10g(r + 4) —log 4

V]

and similarly for B. Hence

logA4 —log B = f (¢4 B)™* — (t+ A)~"]dt + log(1 + A/r) —log(1 + B|r)
0

> —log(l + BJr).

Let » — . We see that logA4 > log B.
In the general case we have B, < B < 4, where B, is the truncated operator. Hence
log B, <logA. Let n — . It follows that log B < log 4.

Definition 2.6: Let A and B be self-adjoint operators acting in the Hilbert space J#.
Let A + B be the quadratic form defined on 2(4) N 2(B) by adding the forms of 4 and
B. If this is the quadratic form of a self-adjoint operator, then this operator will be
called the form sum of 4 and B.
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The self-adjoint operator which is the form sum of 4 and B will also be denoted
A + B. The next theorems give criteria for the existence of the form sum.

Definition 2.7 Let A and B be self-adjoint operators. The operator Bissaid tobea
relatively small form perturbation of 4 if there exist constants @ and b with 2 < 1 such
that +B < a|4| + b. It is said to be a relatively small perturbation of A if there exist
a and b with a < 1 such that B2 < aAd? + b.

It is known that a relatively small perturbation is a relatively small form perturba-
tion ([14], Lemma 1, has a nice proof).

Proposition 2.4 ([7], chap. V, Theorem 4.3). Let 5# be a Hilbert space and 4 and B
be self-adjoint operators acting in #. Assume that B is a relatively small perturbation
of A. Then 9(B) > 2(A), and 4 + B is self-adjoint with domain Z(4 + B) = 2(A).
The expansion (4 +B—2)"'=(4 -2 1+B(4—2)"1"1:# -2 in powers of
B(A —z)71: # — A converges in norm for z sufficiently far from the spectrum of 4.

Proposition 2.5 ([7], chap. VI, Theorem 3.11). Let # be a Hilbert space and 4 and
B be self-adjoint operators acting in 2. Assume that B is a relatively small form per-
turbation of 4. Then A + B with form domain 2 = 2(4 + B) = 2(4) is the quadratic
form of a self-adjoint operator. The expansion of (A+B—2)"1=(4—2)"!
[1+ B(A —2)"1"1:2* — 2in powers of B(4 — z)~!: 2* — 2* converges in norm for z
sufficiently far from the spectrum of 4.

It should be observed that if B:2 — 2* varies continuously in norm, the
perturbation expansion shows that (4 + B —z)~1:2* —> 2 varies continuously in
norm. In particular, the resolvent (4 + B —z2)~1: # — # varies continuously in
norm.

Notice that in proposition 2.5 there is no assumption that 4 > 0. However, in
quantum mechanics it is very common to have a perturbation problem in which 4 > 0
is the kinetic energy and B is the potential energy. If 4 + B is to represent the total
energy it is desirable that 4 + B be bounded below. This is closely related to the con-
dition for a relatively bounded form perturbation. In fact, if 4 > 0 and B is a relatively
bounded form perturbation of 4, then —B<ad +b<A+b,s0A+B>-b, A+ B
is bounded below. ‘

In the case of a negative perturbation there is an implication in the other direction.
Assume that 4 > 0 and B < 0 and that for some ¢ > 1, 4 + ¢B is bounded below (on a
dense subspace of 2(4)). Then B is a relatively small form perturbation of 4. In fact
—cB <A +b, and if ¢ > 1 this says that B is relatively small.

Proposition 2.6 ((7], chap. VI, Theorems 1.31 and 2.1). Let ## be a Hilbert space and
A and B be self-adjoint operators acting in #. Assume that 4 and B are bounded
below and that 2(4) N 2(B) is dense in . Then the quadratic form 4 + B defined on
2(4) N 2(B) is the quadratic form of a self-adjoint operator.

Proof: We may assume that 4 >0 and B > 0. Let #' = 2(4) N 2(B) with the
inner product (w,v); = {Ju,v), where ] =1+ A + B. Then #"* is a Hilbert space and
H#' < . Thus J is the form of a self-adjoint operator ([9], §7, Theorem 2).

The most important facts about self-adjointness of form sums are summarized in
the following theorem.
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Theorem 2.1. Let # be a Hilbert space and Hy = 0 be a self-adjoint operator acting
in A . Let V be a self-adjoint operator acting in # ,andwrite V=V, —V_, whereV >0,
V_=0. Assumethat 2(V_) > 2(H,) and V _is a relatively small form perturbation of H.
Assume that 2(V,) N 2(H,) s dense in . Then the form sum

H=Hy+V=H,~V)+V,

1S a self-adjoint operator which 1s bounded below.

The following three propositions are used in the application of Theorem 2.1 to
quantum field theory. They are presented here in order to show how naturally the field
theory results may be obtained by quadratic form methods.

Proposition 2.7 [11]. Assume |exp(V _)exp(—H,/2)||> <C. Then V_ is a relatively
small form perturbation of H,,.

Proof [15]: If exp(2V_) <Cexp(H,) =exp(H,+b), then 2V_< H,+0b, by
proposition 2.3.

Proposition 2.8. Let & < # be a dense linear subspace. Assume that
exp(—Hy)& < 2(V). Then 2(H,) N 2(V) is dense in H#.

Proof: Clearly exp(—Hy)& < 9(H,) < 2(H,). Hence it is sufficient to show that
exp(—Hy)& isdensein 5. Butifu | exp(—H,)&, then exp(—Hy)u =0, sou =0.

For the next proposition note that on a finite measure space L® < L" < L2 for
2<r < oo

Proposition 2.9. Let Hy > 0 be a self-adjoint operator acting in L2(M,u), where
w(M) = 1. Assume that exp(—tH,), ¢ > 0, is bounded on L=, Let 7 > 2 and g be numbers
with 1/ + 1/g =1. Assume that exp(—1H,):L? — L™ is bounded. Let V be a real
functionin L(M, u). Assume that exp(—V') € LYM, ). Thentheformsum H = Hy + V
is a self-adjoint operator which is bounded below.

Proof: By Holder’s inequality we have

lexp(V_)exp(—3Ho) f||2 < |exp(=V)|||lexp(-3Ho)f||» < const]| f].

Thus proposition 2.7 is applicable.

Now set & = L®. Then exp(—Hy)L® < L*® < Q(V), since V € L. Thus proposi-
tion 2.8 may be used.

The hypotheses of proposition 2.9 were verified by Nelson [8] and Glimm and Jaffe
(5] for the case of a self-interacting boson field Hamiltonian in one space dimension with
a space cutoff. Due to the Wick ordering V is unbounded below, but Nelson showed that
nevertheless exp(—V') € L? for all ¢ < .

3. Strong Resolvent Convergence

Definition 3.1: Let # be a Hilbert space. Let 4, be a sequence of self-adjoint opera-
tors acting in #. We say that the 4, converge to 4 in the sense of strong resolvent con-
vergence if for some z (bounded away from the spectra of the 4, and A)
(A, —2)"1 — (4 — z)~! strongly.
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Proposition 3.1. Let ¢ be a bounded continuous function on an open set containing
the spectrum of 4. Assume that 4, — A4 in the sense of strong resolvent convergence.
Then ¢(4,) = ¢(4) strongly.

Proof: Let if(t) = qb[(l/t) + z]. Then
$(A,) =((4dn—2)7") > (4 ") =¢(4)

by the result for bounded normal operators ([2], Theorem X.7.2).
It is well known that for bounded self-adjoint operators monotone weak con-
vergence implies strong convergence. In fact, if R, < R and R, — R weakly, then

(R — R)f| <[[(R—R)Y?| (R — R)'*f|
and

“ (R - I‘,n)”zf"2 = <(R - Rn)f:f> — 0.

The following two propositions are concerned with unbounded operators. Both are
special cases of results due to Kato ([7], chap. VIII, §3). The proofs are presented for the
convenience of the reader.

Proposition 3.2 ([(7], chap. VIII, Theorem 3.6). Let A be a self-adjoint operator
which is bounded below. Let A4, be self-adjoint operators such that 4 < 4,and Q(4,) =

Q(A). Assume that (4,f,f> — (Af,f) for every fin Q(4). Then 4, — A in the sense of
strong resolvent convergence.

Proof: We may assume without loss of generality that 0 <c< 4 < 4,. Then
A< A ' <ctand

KA~ = AN, 0] = KA, — A) AT [, A7 )|
<{(4,—A)4 SLf ATL2(A, — A)A™ lg A- 155172
<L AR OM((A,— A)A™ g, A7 2 — 0.

Hence A;! — A~ weakly. Since A, < A7, it follows that 4, — A~! strongly.

Proposition 3.3 ((7], chap. VIII, Theorem 3.13). Let A, be a sequence of self-adjoint
operators which are bounded below and increasing: A, < A,.,. Let 4 be a self-adjoint
operator such that 4, < 4 and such that whenever f € Q(4,) and {A4,f,f> is bounded,
then fe Q(4) and <A,f.f> 1 (Af.f>. Then 4, A in the sense of strong resolvent
convergence.

Proof: We may assume that 0 < ¢ < 4, Since the A, are decreasing and bounded
below (by A7), it follows that the A;* have a weak limit, hence a strong limit. Since
this limit is bounded below by A~?, it must have zero nullspace. Call it B~1. Thus
A1 < B~ < A1, which implies that A, < B < A. Since A, — B in the sense of strong
resolvent convergence, we need only show that B = A.

The trick is to notice that A, — B~!strongly implies that A;1/2 — B~1/2strongly
(proposition 3.1). Consider the space 2= 2(B). Recall that we may identify
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9 < # < 9% Now BY2:9 — # is bounded and the ALY2: # — 2* are uniformly
bounded (since 4, < B). Hence if f € 2,

(AL72 — BUA)f = AYX(B-12 — A7) BIAf > 0 in 9.

Since AL2f > BY2f, (AL2f,g> — (BY?f,g> for all g in 2 < H#. But |[4}*f| <
| BY2f| (since 4, < B). It follows that AL/2f — B'/2fin the weak topology of #. But
weak convergence and no loss of norm actually implies strong convergence, so
AV*f— BY2fin o#.

In particular, if fe 2(B), {4,f.f> 1 <{Bf.f>. It follows that fe 2(4) and
(Af,f> =<{Bf,f>. Hence A extends B. But B< 4, so A= B.

Theorem 3.1. Let Hy> 0 and H = H, + V satisfy the conditions of Theorem 2.1.
Write V=V, — V_ and write VT and V" for the corresponding truncated operators. Set
an = VT - V'l, .Hmn = HO + an. Thel’l

a) Hp, > H,=Hy+Vy—-V_ asn - o

in the sense of strong resolvent convergence, and
b) H, > H=Hy,+V asm—> o

in the sense of strong resolvent convergence.

Proof:

a) Since H,, < H,,,, this follows from proposition 3.2.

b) Clearly H, <H. Consider fe 2(H,)=2(H,) with {H,ff> bounded. Then
V£, f> is bounded. Thus fe 2(V,) and <V7f,f> 4+ <V .f.f>, by proposition 2.1.
Hence fe 2(H)=2(H,) N2(V,) and <{H,f.f> 1 <Hf,f>. Thus the conclusion
follows from proposition 3.3.

Corollary 3.1. The semigroup exp(—tH ), ¢ > 0, may be expressed as a strong limit
as follows:

i) exp(—tH) = Ii”rln exp(—tH,),

1) exp(—tH,) = lim exp(—tH,,,),
. t b\
i) exp(—tH,,,) = 11£n exp|— z H,lexp —z Foe 1

Proof: Parts i) and ii) follows from proposition 3.1. As for iii), it is just the Trotter
product formula ([9], §8) for the case of a bounded perturbation V,,.

4. Essential Self-Adjointness

Let A be a self-adjoint operator with domain 2(4). Consider a linear subspace
Do < Z(A). Let Ay be the restriction of A to %,. Then it is equivalent to say that &,
is dense in Z(A4) (with the graph norm), or 9, is a core of 4, or the closure of A41s 4, or
A, is essentially self-adjoint, or that A is essentially self-adjoint on 2. Thus essential

self-adjointness is a property of a self-adjoint operator and a linear subspace of its
domain.
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Theorem 4.1. Let Hy> 0 and H = Hy+ V >—b satisfy the conditions of Theorem 2.1.
Assumethat there is a linear subspace & < A suchthat & is densein H and such that either
exp(—H)& = Q(V) or (H+c¢)"*& < D(V) for some ¢c>b. Then H=Hy+V 1is
essentially self-adjoint on D(Hy) N P(V).

Proof: Let @y =exp(—H)& or (H + ¢)~1&. Then D, is a core for H. To see this in
the case when 9, = exp(—H )&, notice that if w € 2(H) and {u, (H? + 1)2,> =0, then
(H* + 1)exp(—H)u = 0, so u = 0. Thus 9, is dense in Z(H).

Now (Hf,g> =<{H,f,8)> + (Vf,g>forf,g € 2(H).If f € 9D,, thensince @, < D(H)
and 2, < 2(V),Hfe Hand Vfe #.Henceg > {H,f,g> is continuous for g belonging
to the dense set 2(H) < #. So Hyfe #, fe D(H,).

Thus we have shown that 2, < @(Hy) N D(V) and D, < P(H) is a core. This
proves the theorem.

Corollary 4.1. The unitary Trotter product formula holds:

¢ k
exp(itH) = }‘1_{2 (exp (’L Z H 0) exp (1, = V))

as a strong limit.

Proof: This follows from essential self-adjointness on 2(H,) N 2(V) (9], §8).

Corollary 4.2. If V is bounded below, then the self-adjoint Trotter product formula
holds:

¢ ¢t
exp(—tH) = }cl_l:rulo (exp (— B H 0) exp (— z ))

as a strong limit for ¢ > 0.

Definition 4.1. Let 5 be a Hilbert space and 4 be a Banach space such that the
linear space & N # is dense both in & and in #. Then Z* N # is defined to be the
space of fin # such that g+ (f,g>, g€ & N #, extends by continuity to Z.

If fe Z* N 5 and defines the zero element of &'*, then f = 0, since & N 3 is dense
in 5. Thus the correspondence is injective and the notation of the definition is
justified.

In general, if f € * and g € & it is consistent to denote the value of fon g by {f,g>.
It may be useful to think of the example # = L?, & = L, *= L~

One important special case of the situation described in definition 4.1 is when
H < Z.Itisassumed that the inclusion is continuous and that s is dense in Z'. It is
easy to see that in this case F* < # and that Z'* is dense in #. Thus we have
Z* < # < Z. This corresponds to the situation in the example when the measure
space is finite, so that L® < L2 < L1,

Lemma 4.1. Let & N H#° be dense in both & and H. Assume that f, € X* N H,
Jo—=>fin H, and |fy|lg+ <C. Then fe Z* N H#, | flar <C, and f, —>fm the weak *
topology of X'*. :
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Proof: If f, — f in the norm of 5, then in particular f, — f in the weak topology
of #. Thusifge X N H

[Kf.e>| = lim [{fo, [ <Clgls,

sofeX* N o and || f]|z+ <C.
The weak * convergence follows from the fact that & N s is dense in &.

Lemma 4.2, Assume S: # — H is a bounded self-adjoint operator. Assume & N H
1s dense in both & and H. Then if S: X N AH —F N H with |Sg|la < M| g|s, then
S:Z* N — X* N H with |Sf|ge < M| fllge-

Proof: If feZ* N A and g & N A, then

IS0 = IKf.Se | < | fllas]Selle < M| fllas || €]l &
Hence Sf€ &* N # and |Sf]|y+ < M| f|gs.

Theorem 4.2. Let Hy > 0 and V be self-adjoint operators satisfying the conditions of
Theorem 2.1. Let ¥ be a Banach space such that & N 3 is dense in & and in H and such
that * N A is dense in A . Assume for t > 0 and for all values of the truncations m,n that
exp(—tV mexp(—tH,) is a contraction on X. Assume also that * N H < P(V'). Then
H = H,+ V 1is essentially self-adjoint on 2(H,) N 2(V).

Proof: Let & =Z* N #. We show that exp(—H)& < 2(V). This permits the
application of Theorem 4.1.
Let fe & =%* N #. Then

it 1

by Lemma 4.2 and the contraction property. Hence by corollary 3.1 and Lemma 4.1,
exp(—H,nf €&, exp(—H,)f€ &, exp(—H)fe &. Thus exp(—H)& < & < 2(V).

<[ flae

Remark: 1f instead of requiring that exp(—tV . exp(—tH,) is a contraction we
require that its norm be bounded by e?* for some b, the same conclusion follows.

Throughout this paper when we consider spaces LP(M, u) we shall always assume
that the measure is o-finite. (Thus the dual space of L(M, u) is indeed L*(M, u).)

Corollary 4.3 [6]. Let Hy > 0 be a self-adjoint operator acting in L?(M, u). Assume
that exp(—#H,) is a contraction on L*(M,u) for £ > 0. Let V be a function on M such
that V>0, Vel?M,u). Then H=H,+V is essentially self-adjoint on
2(H,) N (V).

Proof: Take & =L', F*=L~® and &=L~ N L2 Apply proposition 2.8 and
Theorem 4.2. '

Notice that if u(M)=1, then L*(M,u) < L*(M,u) < L'(M,pn). This is the
situation in the following proposition.
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Proposition 4.1 [15]. Let Hy,> 0 be a self-adjoint operator acting in L?(M, u),
where w(M) = 1. Assume that f > 0 implies exp(—tH,)f > 0 for £ > 0 and that Hy1 =0.
Then exp(—tH,) is a contraction on L'(M,u) and on L*(M,u) for £ > 0.

Proof: Let f > 0. Then exp(—tH,)f > 0 and
lexp(—tHo)f[|, = <exp(—tH)f, 1> =<f, 1> =| f

since exp(—#H,)1 = 1. Thus if g = X, ¢, f;, where the f; > 0 have disjoint supports, then

lexp(—tHo)g|1 < 2.ilei||exp(—tHo) fill: = Dilesl [ fill = 1 &l

But such g are dense in L, so exp(—£H,) is a contraction on L. By duality (Lemma 4.2)
it is also a contraction on L.

Part of the theory of hypercontractive semigroups used in quantum field theory
may also be developed in the setting of quadratic forms.

1

Definition 4.2: Let Hy > 0 be a self-adjoint operator acting in L*(M,u), where
p(M) =1. Then exp(—tH,), t>0, is said to be a hypercontractive semigroup if
exp(—tH,) is a contraction on L' and on L*®, and if for all p with 1 < $ < o, there exists
g<ow and a <o such that exp(—tH,):L? — L", where 1/r =1/p — /g, has norm
bounded by exp(at) for ¢ near zero.

Thus a hypercontractive semigroup sends an L? space into a smaller space L™ < L?
(with r > p).

Proposition 4.2 [11, 15]. Assume that exp(—¢H,) is hypercontractive and that V
is a real function on M such that exp(—V) € L7 for all ¢ < co. Assume that there is an
s> 2 such that V e L% Then H is essentially self-adjoint on Z(H,) N 2(V).

Proof: The fact that H is a self-adjoint form sum and is bounded below follows
from proposition 2.9. For the essential self-adjointness we may use Theorem 4.1 or
Theorem 4.2. Consider the space 2* = L?, where 1/p + 1/s =4. Then 2 < p < « and
L? < L?;infact L? = @ (V). Thus it is sufficient to show that exp(—H)L? < L>.

Take fe LP. Then

lexp(—£V ma)exp(—tHo) f|, < | eXP(~V )| o1c | exP(—tH o) f |-
< |lexp(=V)l; exp(a)| /]|,

This estimate permits use of corollary 3.1 and Lemma 4.1. Thus exp(—H)f € L?.
In the quantum field theory of self-interacting bosons in one space dimension,
the result of proposition 4.2 justifies the use of the Trotter product formula (unitary

case). This is used to show the convergence of the field automorphisms as the space cut-
off is removed [5, 11].

5. The Ground State

Definition 5.1: Let u be a measure in M and consider the Hilbert space L2(M, p).

Let A:L? — L? be alinear operator. Then A is said to be positivity preserving if f € L2,
f=0implies Af > 0.
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Notice that the set of all fe L? with f > 0 is a closed cone. In general it need have
no interior points.

Definition 5.2: Let S © M be a measurable subset. The position subspace of
L?(M, ) corresponding to S is the closed subspace consisting of all fe L*(M, u) such
that f(p) =0 for (almost every) p ¢ S.

One version of the Perron-Frobenius theorem concerns a bounded self-adjoint
operator A:L? — L2, It is assumed that 4 < A where A is an eigenvalue of 4. The
theorem states that if A is positivity preserving and leaves invariant no non-trivial
position subspace, then A has multiplicity one. Further, the eigenspace corresponding
to A is spanned by a function # € L2 such that () > 0 for almost every p [15].

Let H be a self-adjoint operator and P be a projection. It is clear from the spectral
theorem that if P commutes with H, then e 2(H) implies Pu e 2(H) and
(HPu,vy = {Hu, Pvy for all u,v € 2(H). The converse is also true.

Lemma 5.1. If uwe 2(H) implies Puc 2(H) and (HPu,v) = (Hu, Pv) for all
u,v € 9(H), then P commutes with H.

Proof: Assume u € @(H). Then Hu € # and (HPu,v) = (Hu, Pv) = {(PHu,v).
Since PHu € A, it follows that Pu € 9 (H) and HPu = PHu.

Lemma 5.2. If H > 0 and there is a dense subspace & < 2(H) such that u € & implies
Pu € & and such that {H Pu,v)y = (Hu, Pv) for all u,v € &, then P commutes with H.

Proof: Foru e &,

(HPu, Puy < {(HPu, Puy + {H(1 — P)u, (1 — P)uy = {Hu, u).

This says that # > Pu is continuous in the 2(H) sense on &. Since & is dense in 2(H),
it follows that » € 2(H) implies Pu € 2(H) and that P is actually a continuous operator
on 2(H). Thus the relation (H Pu,v> = (Hu, Pu) must be in fact true for all #,v in
2(H) and Lemma 5.1 applies.

The following theorem is a slight improvement of results of Glimm and Jaffe [5]
and of Segal [12].

Theorem 5.1. Let # = L*(M, ). Let Hy > 0 be a self-adjoint operator acting in H .
Let V' be multiplication by a real measurable function on M. Assume that H=H,+ V
satisfies the conditions of Theorvem 2.1. If exp(—tH ) is positivity preserving for t = 0, then
so 1s exp(—tH). Assume also that 2(H) is dense in 2(H,). If for some t > 0 exp(—tH,)
leaves invariant no position subspace, then for all t > 0 exp(—tH) leaves invariant no
position subspace.

Proof: If exp(—tH,) is positivity preserving, then so is exp(—£H), by corollary 3.1.

Let P be the projection on a position subspace. Assume that for some ¢ > 0 P com-
mutes with exp(—¢H). Then P commutes with H. Hence <H Pu,v> = {(Hu, Pv)> for
u,v € 2(H). Since P commutes with V, it follows that (H, Pu,v)> = (Hyu, Pu) for
u,v € 2(H). Since 2(H) is dense in 2(H,), P commutes with H, (Lemma 5.2). Hence P
commutes with exp(—¢H,) for all £ > 0.
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Corollary 6.1. Let H=H,+ V satisfy all the hypotheses of Theorem 5.1. If
H > v and v is an eigenvalue of H, then » has multiplicity one and the eigenspace of v
is spanned by a function # € L? such that # > 0 almost everywhere.

Proof: Apply the Perron-Frobenius theorem to 4 = exp(—H).

6. Schrodinger Operators

Let s = L?(R",dx) and let F:# — L?(R", (2m) ™"dk) be the Fourier transform.
Let ¢ and y be measurable functions on R" and define the operators ¢(Q) and y(P) acting
in H by ¢(Q) = multiplication by ¢ and y(P) = F~! (multiplication by y) F.

Proposition 6.1. Let ¢ and y be in L? for some p, 2<p< . Then
$(@)y(P): L? — L? is bounded.

Proof: 1f u e L?, then Fue L? and yFu e L9, where } +1/p=1/g,and 1 <¢ < 2.
Thus F~!(yFu) e L', where 1/g+1/r=1 and 2 <7 < =, by the Hausdorff-Young
theorem. Finally ¢ F~!(yFu) € L?, since 1/r + 1/p =1.

So [¢F T (yFu)|2 <l ol vllolnll2-

Proposition 6.2. If ¢ and y are in L? for 2 < p < « or in the closure of L2 N L=,
then ¢(Q)y(P): L? — L? is compact.

Proof: If ¢ and y are in L?, then ¢(Q)y(P) is Hilbert-Schmidt, hence compact. In
. the general case one may approximate ¢ and y by L? functions, and use the fact that
the norm limit of a sequence of compact operators is compact.

Proposition 6.3. Let # = L*(R",dx). Let H, = —4 and let V be a real function on
R". Assume that there exists p > #/2, # > 2 such that V' € L?(R"). Then V is a relatively
small perturbation of Hy and H = H, + V is self-adjoint with 2(H) = @(H,). Further,
if p < 0, then V is a relatively compact perturbation.

Proof: The product V(H, + ¢?)~1is of the form of proposition 6.1, where V' = ¢ € L?
and y(k) = (k* + ¢?)~! € L? for p > n/2. Since y — 0 in L? as ¢ — oo, we may choose ¢
so that |[V(Hy+c*)™Y|<a<1l. Then V2<a?Hy+c??; V is a relatively small
perturbation of H,. If p < o then V(H,+ ¢?)~! is compact (proposition 6.2) which
says that V is relatively compact.

In the cases n =1, 2, 3 one may allow stronger local singularity by using form
sums [3].

Proposition 6.4. Let o = L*(R",dx). Let Hy = —4 and let V' be a real function on
R". Assume that there exists p > #/2, p > 1 such that V € L?(R"). Then V is a relatively
small form perturbation of H, and H = H, + V is self-adjoint with 2(N) = 2(H,).

Proof: The product |V[V2(Hy + ¢?)~1/2 is of the form of proposition 6.1, where
|V Y2 = ¢ € L*® and y(k) = (k? + ¢?)~V/2 € L?? for p > n/2. We may thus choose ¢ such
that || |[V|V2(Hy + ¢*)~12| < a <1, that is |V | < a?(H, + ¢?).
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Proposition 6.5. Let # = L*(R",dx). Let H, = —4 and let V be a real function on
R*. Write V=V_—V_, where V, >0, V_>0. Assume that there exists p > n/2,
$ > 1 such that V_e L?(R"). Assume that V', is in L! locally except on a closed set of
measure zero. Then the form sum H = H, + V is self-adjoint and bounded below.

Proof: To apply Theorem 2.1 we need only show that 2(H,) N 2(V,) isdensein #.
Let V, bein L locally on the complement of the closed set M. Let & be the space of C*
functions with compact support in the complement of M. Then & < 2(H,) N 2(V,)
and & is dense in L*(R" — M) = L?(R") if M is of measure zero.

Theorem 6.1. Let # = L*(R",dx). Let Hy = —4 and let V be a real function on R".
Write V=V, —V_, where V, > 0and V_=> 0. Assume that V  exp(—a|x|) € L*(R",dx)
for some a < . Assume that V_=Y + Z, where Y exp(b|x|) € L?(R",dx) for some
p>n2,p>2, and b> 0, and where Z € L°. Then H = Hy + V is essentially self-adjoint
on Q(Hy) N D(V).

Proof: 1t follows from proposition 6.3 that H, — V' _is a self-adjoint operator with
DHy—V_)=9(H,). Thus it is sufficient to show that H = (H, — V_) + V, 1s essenti-
ally self-adjoint on 2(H, - V_)N2(V,) < @(H,) N 2(V).

We may neglect the term Z € L®, since a bounded perturbation does not affect
essential self-adjointness. Thus we may assume that V_=Y € L? with p < «. In this
case V_ is a relatively compact perturbation, so Hy — V_ has the same essential
spectrum as H, ([7], chap. IV, Theorem 5.35). In particular, the only strictly negative
numbers in the spectrum are isolated eigenvalues of finite multiplicity.

We may also assume without loss of generality that H, — V' _has a strictly negative
eigenvalue. For there is surely a bounded function W > 0 with compact support such
that H, — W has such an eigenvalue. (Take W to be constant on a ball, zero elsewhere.)
Since Hy— W — V_< Hy, — W, the lowest eigenvalue of Hy, — W — V_ is even more
negative. So we may write H =H,— (V_+ W) + (V. + W). The same argument
shows that the eigenvalue may be chosen as negative as we please.

Let —c? be the smallest eigenvalue of H, — V_. By the Perron-Frobenius theorem
(corollary 5.1) we know that the corresponding eigenfunction # may be chosen so that
% > 0 almost everywhere. We may also require that ||u/, = 1.

Let " = L*(R", u(x)?dx). Let U: 4 — 2 be multiplication by %. Then U is an
isomorphism of Hilbert spaces which preserves the cone of positive functions.

Let H_=H,— V_+ c% Our problem is to show that the self-adjoint operator
H_ + V, acting in 5 is essentially self-adjoint on 2(H_) N 2(V,). Let A be the oper-
atoractingin / definedby A = U~ H_U. Let B be multiplication by V', asan operator
acting in J¢". It is sufficient to show that A4 + B acting in " is essentially self-adjoint
on 2(A4) N @(B), since this is isomorphic to the original problem.

Since H_>0 and H_u =0, it follows that 4 >0 and A1 =0. We know from
Theorem 5.1 that exp(—tH _) is positivity preserving. Thus exp(—4) = U texp(—tHo)U
1s also positivity preserving. Proposition 4.1 then shows that exp(—£4) is a contraction
on LY(R" u(x)?dx) for £ > 0. By duality it is a contraction on L® (Lemma 4.2).

In order to apply corollary 4.3 we need only show that Ve L?(R", u(x)?dx). This
follows from propositions 7.1 and 7.2, the estimates on the eigenfunction #. In fact, if
we choose the eigenvalue —c? so that ¢ > 4, we have

[V (%) |4(x) = |V 4 (x) |exp(—a|x|)exp(a|x )u(#)
< const V (x)exp(—alx|) € L*(R", dx).



Vol. 45, 1972 Quadratic Forms and Essential Self-Adjointness 1087

Remark: In the special case when V_ is bounded the proof is much simpler. In
particular we do not need the Perron-Frobenius theorem or the estimates of Section 7.
In fact, without loss of generality we may take VV_ = W, where W is constant on a ball,
zero elsewhere. The ground-state eigenfunction # of H, — W may be computed expli-
citly; it is of course positive and exponentially decreasing.

The following theorem is a variant which emphasizes the local regularity
question.

Theorem 6.2. Let # = L%(R",dx). Let Hy = —4 and let V be a real function on R".
Write V=V,—V_+Z, where V,>0 and V_=>0. Assume that Ve L*(R" dx).
Assume that V_e LP(R",dx) for some p>n(2, p=2. Finally, assume that Z € L>.
Then H=Hy+ V is essentially self-adjoint on D(Hy) N 2(V).

Proof: The fact that Ve L*(R" u(x)?dx) follows now from the fact that u is
bounded (proposition 7.1). Otherwise the proof is as before.

7. Estimates on Eigenfunctions

Proposition 7.1. Let V be a real function which is in LP(R",dx) for some p with
p>n/2 and p > 2. Let u € L?(R",dx) be an eigenfunction of —4 + V with a strictly
negative eigenvalue. Then u € L®(R", dx).

Proof: Ifn=1,2,0r 3, thenu € (—4 + V) = 9(—4) < L>. Thus for low dimen-
sions the result is immediate. The general case requires an iteration argument.

Assume (—4 + V)u =—c?u, ¢>0. Then 4 =—(—4 + ¢*)~1Vu. Now (-4 +c*)™!
is convolution by a function g,, where g, is the inverse Fourier transform of (k* + ¢?)~1.
But g.(x) = const K, ,_,(c|x|)/|¥|"*~* ([4], chap. III, §2.8). Thus g.(x) has a 1/|x|"2
singularity at the origin (when # > 3) and is dominated by exp(—c|x|) at infinity. It
follows that g. e L" whenever 1 —2/n < 1/r < 1.

Let 2<a< o and consider e L% Then Vue L% where l/a+1/p=1]q,
l<g<o. Hence u=—g*Vuel? where 1/g+1/r—1=1/b, provided that
1 < b < «, by Young’s inequality.

We have

But 7 is subject only to 1 > 1/ > 1 — 2/n, so we may choose 7 so as to give 1/a — 1/b an
arbitrary value such that

1 1 1 2 1
_-—<\——.—<—_—.

p a b n P

But 2/n — 1/p > 0 and we know that » € L? implies # € L whenever 1/b > 0. It follows
by iteration that # € L? implies # € L>.

The next proposition is a decay estimate for the eigenfunction . More
sophisticated estimates in various special cases may be found in the quantum
chemistry literature [1].
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Proposition 7.2. Let V be a real function on R" such that for some &> 0,
Vexp(blx|) € LP(R",dx) with some p >n/2, p > 2. Let u € L™ be an eigenfunction of
—4 + V with a strictly negative eigenvalue —c2, ¢ > 0. Then uexp(a|x|) € L™ for all
& <8,

Proof: The important fact is that g.exp(a|x|) € L* whenever a <c, where
1/p + 1/r =1. Since # is an eigenfunction we have

®) = = [ gl =) V()u(y)dy.
Thus
ju(x)exp(alx) < [ {lgc(x — 5) lexplalx — ¥ DHIV () lexplaly]) u(y) [} dy.

Write a = b + 4 and insert this in the right-hand factor of the integrand. We then see
that u(y)exp(d|y|) € L® implies u(x)exp(a|x|) € L*, so long as a < c.
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