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On the Spectral Properties of
Some One-Particle Schrodinger Hamiltonians

by Lawrence E. Thomas

Forschungsinstitut fiir Mathematik, ETH, Ztrich
(6. VII. 72)

Abstract. We consider a class of relatively compact perturbations {V} of Hy = p3 + p3 + p3
acting in momentum space, L2(r3,d2p). Resolvent matrix elements [¢(1/Hy + V — 2)¢] are shown
to be meromorphic in a neighborhood of the positive real axis, ¢ belonging to a dense set. Absolute
continuity of the continuous spectrum follows.

1. Introduction

In this article we discuss spectral properties of some one-particle Schrodinger
Hamiltonians. We consider a class of perturbations {V'} of H, = p? + p% + p3 acting in
momentum space, L*(R3,d3p), for which the following spectral properties of
H =H,+ V are shown; '

i) _the absolutely continuous part of the spectrum of H and the spectrum of H,
coincide,

ii) the eigenvalues of H are isolated from one another except perhaps at the origin,
where they may accumulate,

1ii) H has no singular continuous part.

Each of these spectral properties is probably desirable in a mathematically
rigorous scattering theory. This is particularly true in the time-dependent perturbation
scheme, in which one wishes to establish the existence and completeness of wave
operators (defined in some canonical way), effecting a unitary transformation between
H and the absolutely continuous part of H [1]. Property i) is in fact a necessary condi-
tion for the existence of such operators. Properties ii) and iii) bear on the boundary value
behavior of resolvent matrix elements and hence on the analytic properties of the
S-matrix itself.

The perturbations considered are relatively compact, from which it follows that the
essential spectra of H, and H coincide. Of course, there exist compact perturbations of
H, transforming the continuous spectrum of H, into a discrete spectrum for . There
also exist second-order ordinary differential operators with singular continuous
spectrum [2]. But by imposing additional analytic conditions on V we can rule out these
pathologies and attain the above spectral properties.

We prove the above spectral properties for the class of perturbations {V} by exhi-
biting a dense set of vectors @ for which the resolvent matrix elements [{(1/H — 2)¢]
&, Y € @ are meromorphicin z as z crosses the positive real axis (the essential spectrum
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of H minus the origin) and travels into the second sheet. Aguilar and Combes [3] have
given a proof that meromorphy of the resolvent matrix elements from a dense set im-
plies the spectral properties. We do not repeat that argument but only show the
meromorphy.

The method described here accommodates perturbations which are not necessarily
short range [4], repulsive [5], spherically symmetric [6], or dilatation analytic [3]. In
addition, the method is applicable to a wider class of problems, for example the
description of spectral properties of multiparticle Hamiltonians and the discussion of
positive bound states and resonances. These applications will be reported elsewhere.

Section 2 introduces the important notion of bounded contour distortion and
discusses the resolvent meromorphy for a restricted class of perturbations (which
includes some short-range potentials). Section 3 extends the results on meromorphy
to perturbations (including some long-range potentials) which are limiting cases of
perturbations in Section 2. Section 4 summarizes basic applications of the theory.

2. Second Sheet Continuation of Resolvent Matrix Elements

We will be working throughout in three-dimensional momentum space R*, and
three-dimensional complex space C3. Let # = L%(R3,d%p) and let 2 ={¢ € #|¢ is
entire in C3}. 9 is dense in #. We set H, = p* = p} + p3 + piand H = Hy + V where V
is the convolution by a function v($) with properties described below. A point in C?
(as well as in R® < C3) will be designated by p. The complex valued function
{;1 —ll— PI% + p3 on C3 is simply written p2. We denote |p?| + p2| + | p2%| defined on C3

yi?

The convolution function v(p) is assumed in this section to have the following
properties:

1)y p) is an analytic function on an open set x of €3 containing R>,
ii) for any p €y there exists a real M($) > 0 such that

[ o(p — Ryo*(p — B)dP k < oo

R3 n (k||k|>M(p)}

Example 1. v( 13) = cosap(p? + m?, eareal number. For = 0, V is just the Yukawa
potential. For o # 0, v(p) satisfies the above conditions but is not dilatation analytic.

Example 2. v(;b) =sinp?/p? + m?. This function is cited as an example which

satisfies conditions i), but not ii). Hence it will not satisfy the hypotheses of the
theorem below.

Let U be a simply connected open set of the complex plane C.

Definition 1. Bounded contour distortion. Let a(z,7) : U x R* — C? be a continuous

function, and let > (2) be the range of o for fixed z. > (2) is a bounded contour distortion
if for fixed z

i) o maps R?to D (2) homeomorphlcally, > (2) is piecewise smooth, and the (complex
valued) Jacobian do/dr = 9(p)/d(7) is bounded and bounded away from zero almost
everywhere,

i) there is an M(z) > 0 such that if || > M(2), o(2,7) =7.
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Theorem 1. Let > (z2) be a bounded contour distortion defined in an open set Ug inter-
secting the quadrant C,, ={z|rez > 0, imz > 0} such that

1) forsomeopensee N = U;NCyy, 3(2) =R% z€N;

1) for z fixed in U, p —z;éOfor each fez (2) and for each § € 3(2), v(p —q) is
analytic in p for p in a C? neighborhood containing > (z)

Then the resolvent matrix elements [Y(1/H —2)$] ¢, Y€ D may be meromorphically
continued throughout U .

We begin the proof of this theorem by defining a family of (separable) Hilbert
spaces i ,, z € U,. Let 5, be the space of square integrable functions defined on >(2)
with inner product

do Py
or

. d)y. = [ $*BIBNE = [ $*(czP)lolz7)
2@ R3
H,is just # forzin N <« V. NC,,.
In each 5, we define the integral operator K,(d): #, — #,, depending on the
complex variable §, as

(K.(3)4)(5) = f ;,Z(—i——_q—)sqs@)dw-
2(2)

(The reader should note that no absolute value signs appear around the differential form
d*q = (0o/or)d®r. It is in general complex valued). It is clear that for z in the neighbor-
hood N and |8| sufficiently small, K,(8) is just V(1/Hy, — 2z — ).

Lemma 1. For sufficiently small n(z) > 0, K,(8) is compact analytic, |6 < n(2).

Proof: Choose 5(z) =% min |¢*> —z|. Theng?> —2—8 # 0, § € > (2), and K,(9) is
Hilbert—Schmidt since

v(p — q)

2 —

|[d*pd3q| <

2(@) % 2()

by the definition of 3 (z), assumptions ii) of the theorem and i) on v. K clearly depends
analytically on 8.

We next introduce a linear mapping 4S,,: #, — #,, 2, w € U,. Let ¢ be a smooth
curve running from z tow in U,. Let 2(4¢,) = {¢ € #,|3 a C? neighborhood W contain-
ing U >(») and ¢ is analytic in W}. Then we define A%, ¢ = ¢z, Hence A5, is

XE€C

analytic continuation of ¢ from > (z) to > (w). Note that 4¢,~* = A¢, and that this in-
verse is defined on the range of A¢,,. If xis a point on the curvec, wehave 45, = A7, A%,
for elements ¢ € D(AS,).

Let z be a point in U, and let 8, be the connected part of {z’' € U,| |2’ — z| < n(2)}
1(2) the same as in Lemma 1.

Lemma 2. For 2+ 8 €6, and any path c from z to z+ 8 lying in 0,, K,(8)¢ =
AL 2+5K,15(0)4%,5,:9. ¢ € D(As,s.2).
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Proof: We have

v(p — )

£ 23
qz__zqsqﬁ(q) g

KO0 = |

2

By condition ii) of the theorem, we may choose a complex z; € ¢, z; —z # 0 such that
v(p — §)¢(q) is nonsingular for $,§ ranging independently over a C? neighborhood con-
taining | > (x), where I, is the interval on ¢ from z to z,. [v($ — §)/g® — z — 8]b(§)d> ¢

x€el
1s an analytic closed differential form in § on this neighborhood. Using the complex

form of Stokes’ theorem [7], we may replace the integration path >(z) of the above
integral by > (z;) to get
v(p—J)

qz —2z2— 8 (ﬁ@)d?’ 9= Ag’zl Kzl(a — 2t Z)Agpz (96 IE(z))-

(Kz(8)¢) lZ(z) = f

2(7-1)

(Note that because > (x) is a bounded contour distortion, >(z;) — > (2) is compact.
>(21) — >.() may be regarded as the boundary of a four-dimensional region in the
domain of analyticity of the differential form. This allows application of Stokes’
theorem.) We next choose z, € ¢ such that v($ — §)é(§) is nonsingular, , § ranging inde-
pendently over a neighborhood of | >(x), I, the portion of ¢ from 2, to z,. It follows

xels
In a similar manner that

(Kz;(s — 21 + 2)¢) I}:(zl) = Ag,,zz Kz,(‘S — 3+ Z)Agz,z((# |}:,(z,))-
Combining this equation with the previous one, we get
(Kz(8)¢) IZ(z) = Ag,zz K22(8 —Z+ z)Agz,z(¢ 'E(Z))'

By repeated application of this process, a finite set z,,%,, . . ., 2, can be obtained such that
z, =2+ 9, and

Kz(3)95 = Ag,z+5 Kz+6 (O)A:ﬂs,z 95

Only a finite number of z;’s are required since otherwise one could conclude the existence
of a point z € ¢ such that v(p — §) would be singular for $, § ranging over > (z,).

Lemma 3. Let ¢ € @ and let s be a solution to the integral equation
¥+ K,(0)f=dlpe, z+3€0,.

Then € D(A%ys,2) and Plyersy = Airs, P satisfies
Plya+rs) + Kora(0)Plgers) = Plrersn

where ¢ is any path in 0, from z to z + 8.

Proof: The proof of this lemma closely resembles that of Lemma 2. Condition ii)
of the theorem and the entirety of ¢ € & imply the existenceofaz, € ¢, 2, — z # 0, such
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that
> v(p -9
== | —— G
== | 50 )
2(2)
is analytic in a C? neighborhood of | >(x), I, the interval of ¢ from 2 to z;. Using

. xel,
Lemma 2 we may then write

l)bl}:,(zl) = Agl,z Kz(8)¢' cE ¢|2(z,)

=K 0 -2+ 2 (ga,) + bley
We next choose a z, € ¢ such that () is analytic in a neighborhood of |J >(x), I, the

xel,
interval of ¢ from z; to z,. Again by repeated application of this process we can obtain

a finite set 2y, 2,, . . ., 2%, 2 =2+ 8 and

‘Mz(z+6) -+ Kz+5 O)(‘l’|}:(z+6) = ¢'|Z(z+6)'

Only a finite number of z;’s are required since otherwise there would be a z, € ¢ such that
() would be singular on > (z,), and yet nonsingular on > (z, — p), 2, — p € ¢, p # 0. But
this is impossible since ¢r has. the representation

" —9)
h(p) =— f R Plr, - @4 g + $(P)
2(z—p)

which for |p| sufficiently small surely is analytic in a C3 neighborhood of > (z,). Since ¢
is analytic in a neighborhood of >(x) for any x € 6,, the analytic continuation of ¢ to
f|5(z+5) i path independent.

We are now able to prove Theorem 1. We show that the meromorphic continuation
of [i(1/H — 2)¢] ¢, Y € @ throughout U, is given by

- 1 .
#@) = | $He) B 1+ K0 Bl ()
2@

(*|gz) is the analytic continuation of * from R® to >(z).) First note that if
ze N < U;N C,,, the integral expression on the right-hand side is

- [ v z(”VH ! ) B D = (UH — )bl
R3 o o

1.e., 4 (2) is the resolvent matrix element for z in N. It remains only to check the mero-
morphy of #(2'),2' € 8,, 2 € U;. By Lemma 3 the integrand of .# (") may be analytically
continued from > (z’) to > (2). Applying Stokes’ theorem as in Lemma 2, we obtain

M) = f(‘/’ﬂz(z'))(;b) ( + K, (0)) ! s (A p

2(z) P
[ ¥ 2) (B s (A (1 + K (0) 7 Blyer) (DI
3@ b

= [ @) B+ Kl =) bl D
2 P
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But from Lemma 1, K, (2" — z) is compact and analytic in z’. Hence the latter expression
is meromorphic in 8, [8]. This completes the proof.

Example 3. v(p) = cosap[p? + m?, « a real number. We discuss the meromorphy
domains of the resolvent in two cases by constructing bounded contour distortions. In
both cases z starts from a neighborhood N ¢ C,,, crosses over the positive real axis
and travels into the second sheet.

Case 1. The matrix elements of the resolvent [(1/H — 2)¢] ¢, i € 2 will be mero-
morphic in the second sheet for im+/z> —4m, z # 0. In the complex plane C, let
S.(¢) 0 <t < « be a simple smooth curve depending continuously on z which originates
at the origin, avoids the points +4/7, and lies in the strip [imx| < 4. In addition, let
the locus of S, (#) be the positive real axis for all but a finite part of the curve, and for a
neighborhood N < C_,, let the locus be the entire positive real axis, 2 € N. S,(f) is
parameterized in such a way that S,(¢) =¢ for ¢ sufficiently large. Then the mapping

o(z,7) for 3 (2) is given by a(z,7) = S,(7) (r/r) One can verify that  (z) satisfies the condi-
tions of Theorem 1. In partlcular for p q € >(z), p —z # 0, and v(p — §) is analytic
for 4 in a neighborhood of 3(2), § € 5(2)

Case 2. The matrix elements of the resolvent [s(1/H — 2)¢] ¢, ¢ € 2 will be mero-
morphic in the second sheet region argz > —=/2. Let x(z) be a point in C depending
continuously on z which lies on the positive real axis for z in a neighborhood N < C,,,
and otherwise lies on the vertical line Rex = Re4/z, —Re4/z <imx(z) <im+/z. Let
S,() 0 <t < o be the piecewise smooth curve with the locus of points consisting of the
three straight line segments, [0, %(z)], [x(2),2 Re4/z], [2Re+/z,+»] in C. Again assume
S:() =1 for ¢ sufficiently large. (Note that S,(#) is so constructed that for any two points
%1,%, €S,(), |re(x; —x,)| > |[im(¥, —%,)|.) Then the mapping o(z,7) for >(z) is

o(z,7) = S r/r) Again one can verify that > (z) satisfies the conditions of Theorem 1.

3. Continuation of Resolvent Matrix Elements for Long-Range Potentials

The results in the previous section concerning the meromorphy of resolvent matrix
elements may be extended to a larger class of perturbations. This class consists of poten-
tials which are limits, in a sense defined below, of potentials considered in Theorem 1.
The class includes certain long-range potentials.

Let V,,n=1,2,... be a sequence of potentials with correspondmg convolution
functions v,(p) and assume the v, satisfy the conditions given in Section 2. Let V' be a
potential with convolution function v(p).

Theorem 2. Suppose

1) there is a bounded contour distortion 3 (z), independent of n, defined throughout
an open neighborhood U satisfying the conditions of Theorem 1 for each v,(p);

11) the V, converge to V in the sense that the integral operators K,,:#, — H,,
K, . ¥, > #,,

vn(ﬁ - é)

(Ko (8))(5) = f o

2(2)

(@ g,
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wohD - [ s

2(2)
satisfy

lim K.,,(0) — K, (0)

i norm, uniformly in z.

Then [(1 /H o+ V —2)¢] b, b € D can be meromorphically continued throughout U,.

Proof: Again let 8, be the connected neighborhood of z defined above Lemma 2 in
Section 2. K,(0) is compact since it is the limit in norm of compact operators. K,(3) is
compact analyticin g, z + 8 € 6, since it can be written as the composition of a bounded
analytic (multiplication) operator and a compact operator,

_ [u2-9 1

(¢ —2) [1—(8/g° — )]
3@

K, (9)¢(2) @) q.

Note that K,,(8) converges uniformly to K,(8), 2+ 6 € 6. Now set

f W rw@) oz 1+ K0) ' $(AC, 6.4 €D.

2(2)
Forzin N, #(z) is just equal to [)(1/H — z)¢]. #(2') is meromorphic about the point
2,2 € 8, because

- 1 -+
M) = lim [ P lpen(B) 5 (L + Kna0) ™ $lzen(B)d b
3@ =g

= lim f P* s P) 5— pz = (1+ Ky — 2)) ! o ()
)

1
J- $* |5y (B) ( + K, (2’ — 2)) ?"Iz(z)
2

The latter expression is meromorphic in 2z’ since K,(z’ — z) is compact analytic. This
proves the theorem.

cos
Example 4. v = i U= cosxp , o a nonnegative real number. In configu-
? *+ (1/n)
ration space, V() is
0
Va)=
2m?
— r>a.

r
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Case 2 of example 3 in the previous section provides a contour distortion > (z) in the
region R, ={z € Clargz > —(m/2)} for which all v, satisfy the conditions of Theorem 1.
(Note that in Case 2, the contour distortion did not depend on m.) To establish the mero-
morphy of the matrix elements [Ys(1/H, + V — 2)¢] ¢, € @ in R,, one must show the
uniform convergence K,, — K, for z in any compact neighborhood B < R,. We show

only the boundedness of K, in B, by writing K, as the sum of two operators,
K,=K:+K2,

cosa(p—¢q) 1 V2
2(2)
cosa(p—gq) 1
= d3
f (p—9)? qz—z(m) !

3@ n {@llp—ql <M}

J‘ cosa(p—¢q) 1
(p—9q?* ¢*—=

+ $(g)d’q,

2@ n {4154 = M}

where )M is an arbitrary positive constant. The first term is bounded since the integra-

‘tion has kernel satisfying the Holmgren criteria for boundedness of the operation.
(Namely, if

T = [ K, v)(v)du(y), s1 = Sgpf |K(x,9) |dp(y), s2 = s;lpf K (x,9) |d(x),

then |T| < (s15,)"/2 [9].) The second operation is bounded since it is Hilbert-Schmidt.
The uniform convergence K,, — K, may be similarly demonstrated by breaking up
the path of integration for the operator (K, — K,,,) into the two parts again and showing
the uniform convergence of the K} — K}, and KZ — K2, separately.

4. Concluding Remarks

In this section we make some remarks concerning conditions for V in configuration
space in order that the convolution function » for ¥ in momentum space permit appli-
cations of Theorem 1 or 2, for z in a neighborhood of the positive real axis. If I/ is multi-
plication by an L?-function of compact support, then V is convolution by an entire
function in momentum space. Theorem 1 may be applied in this case to show that the
resolvent matrix elements of & are meromorphic on an (infinitely sheeted, in general)
Riemann surface {z| — « < argz < w0,z # 0}. If V is multiplication by an L*-function =
such that [we™"ld?» < o for some m > 0, V will be convolution by a function # analytic
in the region im | #| < m. Theorem 1 will give meromorphy of the resolvent matrix ele-
ments in the region {z € C|lim1/z| < m/2, z # 0}. This latter result is that of Dolph,
McLeod and Thoe [4]. Theorem 2 and the example following it show resolvent mero-
morphy in a neighborhood of the positive real axis for ¥, multiplication by

0 r<a

1
- r>a
7
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in configuration space. One can show as well resolvent meromorphy in a neighborhood
of the positive real axis for V = V| + V, where V, is multiplication by a function

w! € L*(R3), f wlem" d3r < oo,

and V, is multiplication by

N

wZ(;,) = z ;W (?’ - 1'3),
i=1

a; real, wy; defined above. Considerably more general conditions on ¥V in configuration
space can be given, so that the convolution function v has appropriate analytic proper-
ties in momentum space for application of Theorem 2. The proof of the sufficiency of

these conditions, however, requires a rather detailed examination of the Fourier trans-
form of the potential and so we do not describe the conditions here.
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