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On Quantum Measurement Processes
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(12. VI. 72)

_ Abstract. We present a modification of von Neumann’s theory of the measurement process,

avoiding certain objections raised against the latter. We show that our considerations are non-
vacuous by constructing explicitly a mathematical model satisfying the conditions put forward in
this paper.

Introduction

The problem of the measuring process in quantum mechanics is to determine
whether or not the so-called reduction of the wave-packet is consistent with a deter-
ministic time-evolution. In his book [1] von Neumann gave a positive answer to this
question. The mathematical correctness of his proof has not been challenged. The phy-
sical interpretation and relevance of von Neumann’s result have however been the
target of numerous criticisms centered around the meaning to be given to his assump-
tions and conclusions. It is therefore of paramount importance in the discussion of this
problem to avoid inserting conditions which are demonstrably too restrictive on the
mathematical formalization of the physical ideas one might have about the nature of
the measuring process.

The aim of this note is to present a modification of von Neumann’s scheme which
avoids some of the criticisms justifiably directed at von Neumann's original treatment
of the problem. We start from the following naive view of the process we will attempt to
describe. A measuring process is an operation by which some information contained in
the unknown state (i) of a physical system (X) of interest is transferred to the final state
(n¢) of a measuring apparatus () brought in interaction with (X). The mathematical
physics literature abounds in conflicting formalizations and refinements of this idea.
In order to present our contribution in as noncontroversial a light as possible we
arranged the material of this note as follows:

In the first two sections we describe the expected effects of the measuring process
on the system of interest (X) and on the apparatus (Y). In the third section we state
the conditions imposed on the admissible dynamical couplings between (X) and (Y).
In the fourth section we present a simple, exactly solvable model satisfying these con-
ditions. We open the concluding section with a statement of our results. We then give
a brief review of the literature, underlining the improvements that our model is thought
to bring to some of the previous contributions to the understanding of the nature of
the measuring process in quantum mechanics.
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To avoid misunderstanding to occur from the start, we might mention here that
we adhere, all along this note, to the Born [2] statistical interpretation of the state
of a physical system as representing a summary of the preparation of this system.

1. Effect of the Measuring Process on 2

The physical system (2) of interest is described by its observables {4} and its states
{i}. For the sake of definiteness, we assume that the observables are the self-adjoint
elements of a von Neumann algebra ./ acting on a Hilbert space 5, and that the states
are positive (normal) linear forms on .o/, normalized to 1. For instance, if 2'is the spin
of an electron, s# = C?, the two-dimensional Hilbert space on the complex numbers;
of = B (H) the set of all two-by-two matrices with complex entries, equipped with its
usual addition, multiplication and hermitian conjugation; the set % of all states on &/
is identified with the set of all density matrices p on 5, and the expectation value
;4> of an observable 4, when the system is in the state i, is given by
{f; A> =TrpA.

We now assume that we want to measure the observable M, in &/, or more
generally all the observables generated as limits of polynomials in M, We denote by
# the abelian von Neumann subalgebra of o/ generated by the observables to be
measured. We assume furthermore that the spectrum of .# is discrete and finite
(although the latter is not essential), i.e. that there exists a (finite) family {E,} of pair-
wise orthogonal projectors E; in ., adding up to I, and such that every self-adjoint
element M in .# can be written as M = X;m, E; with real m,’s.

During the measurement process the state » on of is expected to experience a
transformation ¢ — xi, usually referred to as the ‘reduction of the wave-packet’. In
agreement with the traditional description of this transformation we require that =
be a mixture 2 A; i, of states i, on o satisfying the following properties: i) the relative
weight A; of the component i, is given by A; = (i; E,>; ii) the components i, entering in
ny are dispersion-free on .# and satisfy <¢;; M> = m,; in other words M assumes the
value m,; with certainty on ;. ¢ is uniquely determined by these conditions if the
spectrum of M, is simple (i.e. nondegenerate). In any case, we should remark that
whereas {nif; A) is in general distinct from {i; A> on an arbitrary observable 4 in &/,
7y and ¢ nevertheless coincide when restricted to .#.

If we consider again the example of the spin of the electron, we can take for M, the
z-component o of the spin, and then for .# the algebra of all matrices diagonal with
respect to {¥;|i =+,—} where 0¥, =4¥,. If now ¢ is any (pure) state on ./
defined by a normalized vector ¥ = X ¢, ¥;, the state ni on o is uniquely defined by
the above requirements; it is the state described by the density matrix

e 0
p=2i|c.|’E; =
0 e.|?

where E,(¢ = +,—) is the one-dimensional projector on the subspace {A¥;|A € C}. For a
general state ¢ on & the measuring process changes the corresponding density matrix p
into the density matrix np defined by (np);; = ps; ;.

Clearly the process ¢ — ny is different from that given by the ordinary time-
evolution s — y* generated by any Hamiltonian H on 5. In particular, r pure implies
Ji* pure, whereas ni is in general an (incoherent) mixture.
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One way to produce the transformation  — mf would be to define i as the
ergodic average of ' for some Hamiltonian time-evolution:

T
1
(np; 45 =lim 7 f APt A5,
0

in the present case H = —Bo* would do. This procedure is, however, unsatisfactory on
at least two accounts: a) it does not clearly relate with what the physicist seems to be
doing when he measures a physical observable; b) it does not involve, except in an
overly implicit way, the measuring apparatus and its interaction with 2.

2. Effect of the Measuring Process on Y

The measuring apparatus (V) is also described by its observables { B} and its states
{¢}. We also assume that its observables are the self-adjoint elements of a von Neumann
algebra 4 acting on a Hilbert space 4. The corresponding description is given for the
states in complete analogy with the conventions taken in Section 1.

We now suppose that ¥ is devised in such a manner as to provide a measurement
of the observables in .. Specifically we assume that the measuring apparatus has
exactly as many mutually exclusive outcomes as M, has distinct eigenvalues.
Mathematically this means that there exists in & a (finite) family {F,} of mutually
orthogonal projectors F, acting on ¢ such that the index set of { F,;} is the same as that of
{E;} (le. in particular E; # E,implies F; # F,). Let 4" be the algebra generated by all
those observables on Y which are of the form N = X, F,. This algebra is evidently
abelian.

We further require that during the measuring process the initial state ¢ of the
measuring apparatus evolve to a state, the restriction (n¢) of which to 4" is a mixture
2 Ay, where A, = (i E;> (we recall that ¢ is the state of the system of interest, see
Section 1) and ¢, are dispersion-free states on .4~ with {¢,; N> = #,. We thus will have
{n$;N) =2, \;n,; so that we can compute A, from the observed values of the observ-
ables N in 4", and hence compute {f; M> = X, A;m; for every M in #. These are the
quantities of interest and a physical system Y satisfying the above assumptions
qualifies therefore as a measuring apparatus for the set .# of observables on 2.

Again, in the case of the measurement of the spin of the electron, the measuring
apparatus should admit exactly two outcomes, i.e.

./V“—*'{Z,ZiFiIZEEC,'I:=+,—}

and

<’7¢;N> s A.|.”'.|. +l\_n_.

3. Deterministic Processes

We now consider the composite system (X,Y). Its algebra of observables is
€ = o ® #. Weassume that for ¢ < 0 the two systems are uncoupled, so that the initial
state of the composite system is y =4 ® ¢. We then turn the interaction on.
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We say that a measuring process is deterministic if it is possible to find a deter-
ministic (unitary) time-evolution y — x* on (X,Y), and a family &, of initial states
¢ of Y, such that for all ¢ in F, and all states ¢ of X,

lim(x‘;A R I>={pp;A> forall 4in of
lim (x*; 1 ® N>=<{n¢;N> forall Nin A

where nyy and n¢ have been defined in the preceding sections. The family 4, will be
referred to as the admissible family of states of Y for the process considered.

Our first problem is to give a constructive proof that deterministic processes do
exist. This will be done in the next section.

Our next problem will be to show that the above limits can be reached in a finite
time for a large enough class , of initial states of the measuring apparatus Y. This
problem will be solved in the concluding section of this note.

4. A Model

We want to give a model for the measurement of the z-component of the spin of the
electron. We have thus (see Section 1) & = #(C?) and M, = o?. In this ‘gedanken
experiment’, inspired by the Stern—Gerlach experiment, the unknown information we
~ are seeking is thus ({; 6*>. We want it to be transferred to the final configuration state
of the electron in such a manner that we can compute {i; ¢*) from as crude a measure-
ment of its position as is possible. We take thus for the algebra 4 generated by the
observables on Y, the algebra #(%) of all bounded operators acting on 4 = #%(R, dx).
Let F(a) be the projector on ¢ defined by {(F(a)®)(x) = 0 for all x < a, and (F(a)P)(x)
= @(x) for all x > a}, and take F, = F(0), F_=I— F_.

The Hilbert space of the composite system is thus C? ® 4 =% @ ¥. Consequently
every Cin ¥ = o ® 4 is a two-by-two matrix with entries in #(%), i.e. C = (C;;) with
Ci; € B(L*R,dx)).

We take V() = exp{—i(c* ® P)t} (with P self-adjoint extension of [—i(d/dx)]
defined on #(R)) and notice that V(¢) = (U,(#)8$,;) with (U.({#)D)(x) = P(x F ). The
mapping C — C* = V(—)CV(¢t) clearly gives a deterministic (unitary) time-evolution
on the composite system 2, Y).

The model is thus completely defined and we now prove that it leads to a deter-
ministic process for 4/l initial states ¢ on Y.

Let ¥ = X,c, W, with o* P, = +¥, be an arbitrary vector in C?, 4 be the state on .o/
defined by (ys; 4> = (¥, A¥), @ be an arbitrary vector in & and ¢ be the corresponding
state on #. Let y =y ® ¢ be the initial state of the composite system. We thus
have for any C in 4: {x;C)> = 2};c¢% ¢,(®,C;; D) and then:

XA QI=2clc;a,;(D, Uy(—)U,;(H)D)
x5 ® B = Ziley|*(D, Uy(—t) BU, () D).

Since P has absolutely continuous spectrum, and since U, (f) = U(+#), we have by
Lebesgue—Riemann’s lemma:

11_)12 (P, Ui(—)U,(()P) =&,
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and hence for all 4 in &/:
Efg XA @ I =2y, [ay = {p; 4.
On the other hand, we notice that U(—)F(a)U(f) = F(a —¢) so that

lim (@, U,(~8) F, U,(§)®) = §

-0 L

we have hence for all N in 4~
E%(Xti I @ N)> = 2ic;[>n, = {n¢; N).

We remark that 7¢ does #ot depend on the vector state ¢ chosen as the initial state of the
measuring apparatus. The above results are immediately extended by linearity to any
arbitrary state ¢ on &/ and to any (normal) state ¢ on 4.

Concluding Remarks

We constructed explicitly a model satisfying the conditions stated in Section 3 for
a deterministic measuring process. We conclude therefore that there is no contradiction
in principle between the reduction of the wave-packet and a unitary time-evolution.

We should remark that the class 7, of admissible initial states of the apparatus ¥
extends to all (normal) states on 4. We emphasize that this means exactly that whatever
the initial state ¢ of the apparatus Y, the evolution of the combined system (XY is
such that, in the limit where ¢ tends to infinity, the expectation of a/l observables 4 in &7,
and all observables N in 4, will tend to the prescribed values which depend only on 4
(or N) and on the initial state ¢ of X, but #ot on the initial state ¢ of Y.

We want furthermore to emphasize that the speed of convergence of the above
process can be controlled by a mild control of the initial state ¢ of Y. In particular, for
any &,b in R with —0 < 4 < b <+, define the projector F(a,b) = F(a) — F(b) acting
on ¥ ; for the definition of F(a) see Section 4. For fixed a and b, toimpose that a (normal)
state ¢ of Y satisfies (¢; F(a,b)> = 1 means that ¢ is (at worst) a mixture of vector states
the wave functions of which have support in (a,3), or in more physical terms that the
electron is located in the finite interval (, 8). One verifies easily that for any fixed @ and
b, there exists a finite time T (depending on a and &) such that for all y of the form
¥ ® ¢ with s arbitrary on o, all ¢ satisfying (¢; F(a,b)> =1, and all ¢ > T we have

O A @ Ny = Z A (s Adn,

so that y’, restricted to &/ ® .4#” becomes a mixture of the form X;A;4; ® ,; we have
thus in particular:

1) xH5AQD = 4)
=2 A {P;; A> forall A in o

i) (s 1 ® Ny = (s N
=2i\n, forall Nin 4

iil) <Xt; E! ® Fj> = Ai 8“
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and in particular:
iV) <Xt;P>=ZiAiPi fOI'a.llP=ZipiEi ®Fl

(we recall that A; = <{; E,> depend only on the initial state of X).

These relations, and in particular i) and ii), mean that by an appropriate, but
minor, restriction of the class of admissible initial states, namely <{¢; F(a,b)) =1 for
some finite @ and b, ensures that the measuring process is completed in a finite time T.
This lower bound on the time necessary to complete the measurement depends evidently
on a and b, i.e. on the care with which one is willing to prepare the apparatus. It is
nevertheless remarkable that T is finite as long as @ and & are finite.

We now want to compare these results with those found in some of the literature
[3].

Von Neumann [1] considers the case where of = #(#), # = #(%) and M, has
simple, discrete spectrum. There exists then an orthonormal basis {¥;} in # such that
M = X ;m,E, where E, is the one-dimensional projector on ¥,. Let us denote by ¢, the
state on & defined by {;; 4> = (¥, A¥,) for all 4 in of. Our condition on the effect of
the measuring process on X reduces to von Neumann’s form: ng = 2} A;¢;; in parti-
cular, if ¥ is an arbitrary vector in #, A, = |¢;|? with ¢; = (¥}, ¥). Let, further, {®;}
be an orthonormal basis in ¢, the elements of which are in one-fo-one correspondence
with the elements of {¥,}; let F, be the corresponding one-dimensional projectors in 4.
von Neumann now imposes his famous ‘consistency conditions’ that for every ¥ in 5#
and for a fixed @ in % and a fixed time = (identified as the duration of the measuring
process) :

XT=V"nN¥P QP
(X" E, ® F; X™) =X, 8,,.

These conditions imply that X*=2X,c,¥; ® @; with |[¢;|*>= A, = |(¥, ¥;|®>. Upon
defining " on € = o ® £ by {x";C> = (X7,CX") we get immediately that this vector
state on & satisfies formally the properties i) to iv) stated above for our model, and that
actually 1i1) can be strengthened, in von Neumann’s case, to:

i) {x"; I ® B) =2 (D, B®,) forall Bin #

(and not only, as in iii), for all N in .4"). The formal similarity of these properties is
emphasized by our notation; one should however realize, in particular, that in von
Neumann’s treatment the projectors F, are one-dimensional projectors. We do not
require this very stringent condition in our approach; as we shall now argue, this exten-
sion allows us to avoid several of the difficulties encountered with von Neumann'’s
original description of the measuring process in quantum mecharnics.

Firstly, von Neumann’s description requires that the duration 7 of the measuring
process be sharply calibrated. If the time ¢ in which X' and Y are kept in interaction is
not exactly equal to 7, the measurement is ruined, and so is, in particular, the reduction
of the wave-packet. (We could point out in this respect that the one-to-one correspond-
ence between {¥,} and {®,} assumed by von Neumann implies, in case the spectrum of M
consists of finitely many simply eigenvalues, that # ® ¥ is finite-dimensional, so that
if X’and ¥ are left in contact {y*; A> will be at best an almost periodic function of time.)
This is clearly unacceptable. Our model avoids this difficulty: when ¢ is appropriately
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chosen, there exists a finite time 7T in which the relevant expectation values reach their
prescribed values and after which they do not change, even if 2 and Y are kept in inter-
action with one another. Hence the duration of the measuring process in our model
need not be sharply calibrated; it must only exceed a minimum time 7" which depends
only on how well we are willing to prepare the initial state(s) of the measuring
apparatus.

Secondly, in von Neumann'’s approach, given V(7), the initial state of the measur-
ing apparatus should exactly be the vector state ¢ corresponding to @ where the latter
is determined by the consistency conditions ¥ @ @ = V(—7)X " and X" =2, ¥; @ D,.
Our model avoids this difficulty too. Indeed given T we can find («, b) such that all initial
states ¢ which satisfy (¢; F(a,b))> =1 are admissible (see discussion in the beginning
of this section).

To our knowledge, none of the alternatives to von Neumann'’s approach so far
presented in the literature have considered and solved these two difficulties.

Thirdly, the most often [3] heard criticism of von Neumann'’s approach to the
measurement problem in quantum mechanics is that von Neumann’s consistency
conditions only transfer the problem of measuring ¢ on 2 to that of measuring x" on
(Z,Y) and thus involves a chain of measurements ending somewhere in the observer’s
consciousness. Jauch [4] disposed of this criticism by noticing that we do not need to
measure y” on the whole system (X, Y) but only on the subalgebra £ of observables of
the form X,p,E, ® F,. This algebra is abelian and thus classical, so that any subse-
quent measurement of ™ with respect to these observables does not perturb the state
x” (in contradistinction to the quantum change iy — my occurring in 2 during the first
measurement). As we noticed in the beginning of this section, our model also satisfies
the condition {x*; P> = X, \;p, for all ¢ > T, so that Jauch’s argument, originally pre-
sented in the more restricted framework of von Neumann’s model, can indeed be ex-
tended to the situation considered here. This argument applies also to the state y¢ on
the abelian algebra 4", obtained as the restriction of y* toI ® A4". We remark here again
that whereas .of itself (and not just .#) is of interest, A" (and not the whole algebra %)
really pertains in an essential manner to Y considered as an apparatus devised to
measure {i; My>.

In connection with the question just discussed, it is often asserted that the measur-
ing apparatus should be ‘classical and thus macroscopic’, or that ‘the measuring process
should bring a macroscopic change in the state of the apparatus’. Jauch [4] also dis-
- cussed this question, distinguishing the microscopic quantum process (‘event’) and its
subsequent amplification (‘datum’). In our model, the interaction induces the following
change in the state of the apparatus. From an initial situation where ¢ is localized in a
finite region (a,b), the apparatus is driven to a final situation where, depending on
whether the spin is up or down (i.e. (¢;0%> =+1 or —1), the particle moves towards
+o0 or —eo. The algebra 4" of the relevant observables on Y tests exactly this alternative.
The reader will verify that we do not even need to define F, and F_ as sharply as we
did. For instance, we could have taken F, = F(B) and F_=1I — F(a) with « and 8
specified only within an interval of finite, but arbitrary, length e. In this sense, the
measurement process indeed induces a ‘macroscopic’ change in the state of the
apparatus. Hepp [5] recently investigated the consequences of a more rigid definition
of this requirement. He gave a precise mathematical meaning to the ‘macroscopicity’
condition using the (abelian) algebra of the ‘observables at infinity’ [6] on a local quan-
tum system. Under a reasonable assumption on the continuity of y — x* Hepp showed
however that the resulting condition of asymptotic disjointness implies that a measure-
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ment which brings a macroscopic change in the apparatus can not be completed in a
finite time. Aside from the fact that we did not request as much ‘macroscopicity’ from
the measuring apparatus as Hepp does, our theory differs from Hepp’s in at least one
other aspect. In our Section 3, we did not require the convergence (as { — «) of y* as a
state on ¥ = &/ ® 4, but only of its restriction to the ‘relevant observables’, namely
those belonging to the subspace (& ® I) @ (I ® A) of €. Incidentally, the subalgebra
o/ @ A considered by Prosperi et al. [7] seems to be larger than required for the purpose
of understanding the measuring process; moreover their introduction of ergodic con-
siderations in the measuring process rests on still unsettled premises which the simpli-
city of our model bypasses.
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