Zeitschrift: Helvetica Physica Acta

Band: 45 (1972)

Heft: 6

Artikel: Test de l'invariance sous la conjugaison de charge dans les

annihilations [FORMEL]

Autor: Vuillemin, V. / Weill, R. / Gailloud, M. DOI: https://doi.org/10.5169/seals-114421

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Test de l'invariance sous la conjugaison de charge dans les annihilations $\bar{p}p \rightarrow 3\pi^+ 3\pi^-$ et $\bar{p}p \rightarrow 3\pi^+ 3\pi^- \pi^0$

par V. Vuillemin, R. Weill, M. Gailloud, B. Jayet et Ph. Rosselet

Institut de physique nucléaire, Université de Lausanne

J. B. Gay, E. Jeannet et S. Vallet

Institut de physique de l'Université, Neuchâtel

(20. IV. 72)

Abstract. Charge conjugation has been tested in $\bar{p}p$ 6-prong annihilation stars observed in bubble chamber pictures. An upper limit of $4\cdot 10^{-3}$ for C non-conservation is established within the present statistics.

1. Introduction

Un grand nombre de travaux sont consacrés actuellement à des vérifications expérimentales de l'invariance de C, P, T et CP dans les interactions faibles et électromagnétiques (pour une revue générale de la situation, voir par exemple [1]-[3]).

Pour les interactions fortes l'invariance de P et T est assurée respectivement à mieux que $5 \cdot 10^{-3}$ et $2,4 \cdot 10^{-3}$ [4]–[6].¹) En revanche, l'invariance de C ou de CP, pour ce dernier type d'interaction, a été peu étudiée [8]–[12] et n'est assurée actuellement qu'à 10^{-2} près.

Le système $\overline{p}p$ est particulièrement indiqué pour ce genre de mesures: d'une part il offre l'avantage d'être dans un état propre de C, à une rotation de π près; d'autre part, dans les réactions d'annihilations $\overline{p}p$, aucune confusion n'est possible entre les états initiaux et finals.

Ces considérations nous ont amenés à vérifier l'invariance de C dans les annihilations $\bar{p}p \to 3\pi^+3\pi^-$ et $\bar{p}p \to 3\pi^+3\pi^-\pi^0$ produites par des anti-protons d'impulsion comprise entre 1,2 et 1,39 GeV/c. Les étoiles d'annihilation, dont l'analyse sera publiée par ailleurs [13], ont été observées dans 64,000 clichés de la chambre à bulles de 2 m. du CERN.

Les populations sur lesquelles ont porté les tests sont indiquées au Tableau I.

¹⁾ L'invariance du produit de conjugaison CPT est assurée à mieux que 10^{-16} [7].

Tableau I²) Nombre d'événements par classe d'énergie utilisés pour les tests

Impulsions incidentes laboratoire	dans le $ar p p o 3 \pi^+ 3 \pi^-$	$\bar{p}p o 3\pi^+ 3\pi^- \pi^0$
1,2 GeV/c	1222	1678
1,28	283	3 55
1,34	234	280
1,34 1,39	713	984

Tous les événements à 7 pions pour lesquels la masse effective d'une des combinaisons $\pi^+\pi^-\pi^0$ est comprise dans la bande de masse du η^0 (527 MeV $< m_{\eta^0} < 566$ MeV) ont été éliminés.

2. Symétries induites par C

Soit

$$W[1(2), E_1(E_2), \theta_1(\theta_2); \phi_{12}]$$

la probabilité de trouver la particule 1(2) avec l'énergie $E_1(E_2)$ et l'angle polaire $\theta_1(\theta_2)$ par rapport à la direction de l'anti-proton, dans le CM du système $\overline{p}p$; ϕ_{12} est l'angle entre les projections de 1 et 2 dans un plan perpendiculaire à la direction de l'anti-proton.

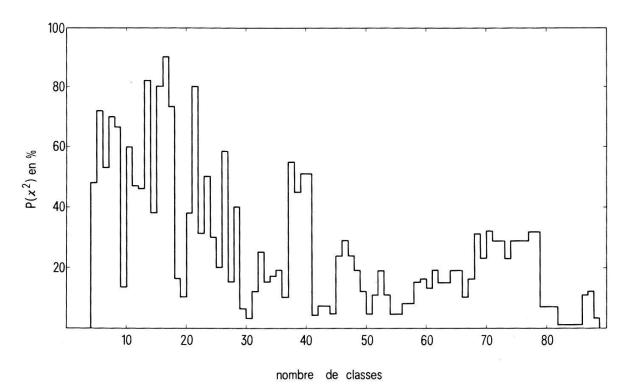
Par l'invariance de C, on peut induire (cf. Pais [14]) les égalités suivantes pour les distributions marginales:

$$\begin{split} W(E_{\pi^+}) &= W(E_{\pi^-}) \\ W(\cos\theta_{\pi^+}) &= W(-\cos\theta_{\pi^-}) \\ W(\cos_{\pi^0}) &= W(-\cos\theta_{\pi^0}) \\ W(\cos\phi_{\pi^+\pi^0}) &= W(\cos\phi_{\pi^-\pi^0}) \end{split}$$

En outre, l'invariance sous les rotations impose l'uniformité des distributions en ϕ_{π^+} , ϕ_{π^-} et ϕ_{π^0} .

3. Tests du χ^2 et de Kolmogorov-Smirnov

Le χ^2 relatif à la différence de deux distributions correspondantes est donné par:


$$\chi^2 = \sum_{i=1}^{NB} \frac{(n_i - \overline{n}_i)^2}{n_i + \overline{n}_i}$$

 $n_i(\bar{n}_i) = \text{nombre de } \pi^+(\pi^-) \text{ observés dans la classe } i.$ NB = nombre de classes.

Ces étoiles représentent des événements à 4 et 1 contraintes, qui ont été acceptés par la chaîne standard Thresh-Grind avec une probabilité meilleure que 2%. Pour les événements à 7π $(MM)^2$ devait être compatible avec $m_{\pi^0}^2$. Ces populations sont sans contamination de kaons.

Kendall [15] a montré qu'il y a intérêt à utiliser des largeurs de classe variables de façon à uniformiser les distributions. La puissance du test dépendra cependant du nombre de classes NB adopté [16].

On donne à la figure ci-dessous $P(\chi^2)$ en fonction de NB pour les distributions énergétiques des π^+ et des π^- dans les annihilations à 6π observées pour l'impulsion de 1,2 GeV/c. $P(\chi^2)$ reste élevé pour NB compris entre 5 et 25, ce qui nous a conduit à

Probabilité du χ^2 en fonction du nombre de classes utilisé. Le test considéré ici est le suivant: $W(E_{\pi^+}) = W(E_{\pi^-})$

dans les réactions à 6 pions pour une impulsion incidente de l'anti-proton de 1,2 GeV/c.

choisir un nombre de classes inférieur à 25. Les résultats portant sur les meilleurs χ^2 figurent au Tableau II.

Pour se rendre indépendant de la division en classes, nous avons fait appel à la méthode de Kolmogorov-Smirnov [16–17].

Soit $D_{\alpha} = \sup |s(x) - \bar{s}(x)|$, où $s(x) [\bar{s}(x)]^3$) est la fonction cumulative d'une des deux distributions. D_{α} est une mesure de la déviation maximale des deux distributions cumu-

$$s(x) = \begin{cases} 0 & x < 1 \\ \sum_{j=1}^{i} \frac{n_j}{N} & i \le x < i+1 & i = 1, ..., NB \\ 1 & x \ge NB \end{cases}$$

N est la taille de chaque échantillon.

latives observées s(x) et $\overline{s}(x)$ et constitue par conséquent une mesure de la violation de la conjugaison de charge.

On peut montrer que:

Vol. 45, 1972

$$\alpha = P(D \geqslant D_{\alpha}) = \sum\limits_{\nu=1}^{\infty} 2(-1)^{\nu-1} \cdot \exp(-ND_{\alpha}^2 \ \nu^2)$$

Tableau II $\label{eq:tableau} \mbox{Tests du χ^2 et de Kolmogorov-Smirnov; limites de la violation de C}$

Réactions	Distributions comparées	Plab GeV/0	$\simeq \chi^2/NB$	$D_{\alpha} \times 10$	[α])² (%)	$V_{ m exp} imes 10^2$	$V_S \times 10^2$	$\sigma_{\sf exp} imes 10^2$
6π	$E_{\pi^+} \leftrightarrow E_{\pi^-}$	1,2	9,0/16	2,0	44,3	1,8	1,7	1,2
	160T.3 5558	1,28	4,2/5	4,8	27,5	3,2	2,9	2,3
		1,34	3,4/4	4,1	58,7	3,2	3,2	2,1
		1,39	24,4/23	2,0	78,1	2,9	2,1	2,1
6π	$\cos \theta_{\pi^+} \leftrightarrow -\cos \theta_{\pi^-}$	1,2	5,8/12		51,6	1,6	1,7	1,3
	120	1,28	1,1/5	3,5	66,5	2,0	2,9	1,4
		1,34	1,4/8	3,3	84,5	1,8	3,2	1,5
		1,39	7,7/18	1,7	92,3	1,8	2,1	1,2
7π	$E_{\pi^+} \leftrightarrow E_{\pi^-}$	1,2	20,5/17	2,7	4,8	2,0	1,4	1,4
		1,28	4,6/7	3,4	57,7	2,8	2,8	2,1
	° _e	1,34	1,6/6	3,7	61,7	1,9	2,7	1,5
		1,39	9,6/15	1,1	99,0	2,0	1,9	1,4
7π	$\cos \theta_{\pi^+} \leftrightarrow -\cos \theta_{\pi^-}$	1,2	13,6/17	1,6	50,0	1,4	1,4	1,2
		1,28	0.8/6	2,2	96,5	2,0	2,8	1,3
	19	1,34	2,5/7	3,4	70,0	2,8	2,7	1,9
		1,39	9,3/17	2,0	54,0	1,8	1,9	1,4
7π	$\cos \theta_{\pi^0} \leftrightarrow -\cos \theta_{\pi^0}$	1,2	3,3/9	4,7	30,5	2,5	2,2	1,7
		1,28	5,4/6	18,6	0,4	6,3	4,0	4,3
		1,34	3,2/6	11,6	30,4	5,5	4,4	3,1
7π	$\cos\phi_{\pi^+\pi^0}\leftrightarrow\cos\phi_{\pi^-\pi^0}$	1,2	8,6/12	1,8	38,2	1,5	1,4	1,1
	2-0.000 (1,28	3,4/9	3,6	50,6	1,8	2,8	1,2
		1,34	2,1/6	3,1	81,4	2,0	2,7	1,6
		1,39	6,7/14	1,7	81,1	1,5	1,9	1,2
6π	Uniformité	1,2				2,0	1,7	1,4
		1,28				3,3	3,5	2,5
	ϕ_{π^+}	1,34				3,0	3,7	2,2
		1,39				2,4	2,1	2,0
7π	Uniformité	1,2	17,4/20					
		1,28	26,3/20					
	ϕ_{π^0}	1,34	22,4/20					
		1.39	17,4/20					

Les valeurs de D_α et α sont données au Tableau II. Il est intéressant de remarquer ce qui suit :

¹⁾ les valeurs de D_{α} restent petites, de l'ordre de $3 \cdot 10^{-2}$.

²⁾ excepté trois de ses valeurs, α est supérieure à 30%.

4. Limite de la violation de C

Pour déterminer avec plus de précision l'existence d'une éventuelle violation de C nous avons défini la grandeur suivante (différente de celle utilisée à la référence [11]):

$$V_{\text{exp}} = \frac{1}{NB} \sum_{i=1}^{NB} \frac{|n_i - \bar{n}_i|}{2(n_i + \bar{n}_i)}$$

ainsi que sa variance $\sigma_{\exp}^2(V)^4$).

La valeur de $V_{\rm exp}$ sera différente de zéro même si les deux échantillons proviennent de deux populations théoriquement identiques. Cet effet parasite (V_s) dû aux fluctuations statistiques peut être déterminé à l'aide d'une méthode de Monte-Carlo.

Des échantillons expérimental et simulé, nous déduisons:

$$V = (V_{\rm exp} - V_{\rm S}) \pm \sigma(V)$$

$$\sigma^2(V) = \sigma_{ ext{exp}}^2 + rac{\sigma_{ ext{S}}^2}{NT} \xrightarrow{NT ext{ grand}} \sigma_{ ext{exp}}^2$$

où NT est le nombre de tirages.

Pour toutes les distributions comparées, nous avons calculé les moyennes de $V_{\rm exp}$ et $\sigma_{\rm exp}^2$ sur un certain nombre de classes de façon à diminuer l'influence de la division en classes dans la détermination de $V_{\rm exp}$ et $\sigma_{\rm exp}^2$.

L'ensemble de ces valeurs moyennes figure au Tableau II.

Si l'on regroupe d'une part l'ensemble des distributions énergétiques (a) et d'autre part l'ensemble des distributions des angles polaires (b) pour tous les événements à 6 et 7π , on obtient:

a)
$$V_{\text{exp}}^a = (0.92 \pm 0.6) \cdot 10^{-2}$$

$$\boldsymbol{V}_{\rm S} = 0.77 \cdot 10^{-2}$$

b)
$$V_{\text{exp}}^b = (0.75 \pm 0.56) \cdot 10^{-2}$$

$$V_{\it S} = 0.77 \cdot 10^{-2}$$

Etant donné que

$$\begin{vmatrix} V_{\rm exp}^a \\ V_{\rm exp}^b \end{vmatrix} \simeq V_S$$

nous déduisons les valeurs limites suivantes:

$$V_{
m exp}^a < \sigma_{
m exp}^a = 6 \cdot 10^{-3}$$

$$V_{
m exp}^b < \sigma_{
m exp}^b = 5.6 \cdot 10^{-3}$$

$$V = \frac{|\operatorname{Re}(\alpha_{lS} \cdot \beta_{lS}^*)|}{|\alpha_{lS}|^2 + |\beta_{lS}|^2}.$$

En introduisant dans la matrice S, pour chaque état quantique, une amplitude α_{IS} invariante sous C et une amplitude β_{IS} non invariante sous C, on obtient:

Tableau III Ensemble des résultats expérimentaux relatifs au test de l'invariance de C dans les interactions fortes. Les méthodes d'analyse sont rapportées en col. 4

Auteurs	Impulsions Incidentes	Réactions	Méthodes d'analyse	Taille des échantillons
(8)	1,61 GeV/c	$ar{p}p ightarrow \overline{p}p\pi^0 \ ar{p}n\pi^+ \ p\overline{n}\pi^-$	Anal. qualitative	31 23 19
(9)	1,6	$\bar{p}p \rightarrow 2\pi^+ 2\pi^- \pi^0$	Anal. qualitative	1348
(10)	à l'arrêt	$\overline{p}p \to \text{pions}$ kaons	$V_{\pi} < 10^{-2}$ $V_{K} < 3 \cdot 10^{-2}$ χ^{2}	139,165 14,012
(11)	1,2	$\begin{split} \bar{p}p \to \overline{K}_{1}^{0} K^{+} \pi^{-} \\ K_{1}^{0} K^{-} \pi^{+} \\ \bar{p}p \to \overline{K}^{0} K^{+} \pi^{-} \pi^{0} \\ K^{0} K^{-} \pi^{+} \pi^{0} \\ \bar{p}p \to \overline{K}_{1}^{0} K^{+} 2\pi^{-} \pi^{+} \\ K_{1}^{0} K^{-} 2\pi^{+} \pi^{-} \end{split}$	$V_C < 10^{-2}$ $V_{CP} < 10^{-2}$ χ^2	47,502 11,021
(12) test de CP	2,32	$ \bar{p}p \to 2\pi^{+} 2\pi^{-} $ $ 2\pi^{+} 2\pi^{-} $ $ \bar{p}p \to 3\pi^{+} 3\pi^{-} $ $ 3\pi^{+} 3\pi^{-} \pi^{0} $	x ²	12,594 56,450 11,883 27,369
Nos résultats	1,2, 1,28 1,34, 1,39	$\overline{p}p ightarrow 3\pi^+ 3\pi^- \ 3\pi^+ 3\pi^-$	χ^2 , Kolmogorov–Smirnov $V_C < 4 \cdot 10^{-3}$	34,494

ainsi que la valeur limite globale:

$$V_{\rm exp} < \frac{1}{2} \sqrt{\sigma_{\rm exp}^{2_a} + \sigma_{\rm exp}^{2_b}} = 4 \cdot 10^{-3}$$

établie à partir de deux populations de taille N=34,494 chacune.

Remarque. Le choix de $V_{\rm exp}$ comme mesure de la violation de C n'est évidemment pas unique, les valeurs de D_{α} peuvent également être considérées comme une mesure de la violation de C.

5. Discussion et conclusion

Des tests d'efficacité de dépouillement ont été effectués sur plus de 50% de l'ensemble des films. L'efficacité trouvée est supérieure à 95%. De plus, ces tests ont montré que les événements manqués lors d'un des deux dépouillements ne présentaient aucune caractéristique particulière.

Les résultats du Tableau II montrent que notre échantillon satisfait bien à l'invariance sous les rotations, ce qui indique l'absence de polarisation du faisceau d'anti-protons incident.

992 V. Vuillemin et al. H. P. A.

Nous pouvons donc assurer l'invariance de la conjugaison de charge à mieux que $4 \cdot 10^{-3}$. Cette valeur est à comparer avec l'ensemble des résultats publiés jusqu'à maintenant (cf. Tableau III).

Ce travail a bénéficié de l'appui financier du Fonds National Suisse pour la Recherche Scientifique.

RÉFÉRENCES

- [1] O. E. OVERSETH, Scientific American 221, 89 (1969).
- [2] L. Caneschi et L. van Hove, CERN 67-27 (unpublished).
- [3] L. MICHEL, Lecture given at the Nobel Symposium, 1968 (unpublished).
- [4] E. J. Gucker et E. H. Thorndike, Phys. Rev. D4, 2462 (1971).
- [5] D. Bodansky, W. J. Braithwaite, D. C. Shreve, D. W. Storm et W. G. Weitkamp, Phys. Rev. Lett. 17, 589 (1966).
- [6] W. von Witsch, A. Richter et P. von Brentano, Phys. Rev. Lett. 19, 524 (1967).
- [7] D. S. Ayres, A. M. Cormack, A. J. Greenberg, R. W. Kenney, D. O. Caldwell, V. B. Elings, W. P. Hesse et R. J. Morrisson, Phys. Rev. D3, 1051 (1971).
- [8] N. H. Xuong et G. R. Lynch, Phys. Rev. 124, 575 (1961).
- [9] B. C. Maglic, G. R. Kalbfleisch et M. L. Stevenson, Phys. Rev. Lett. 7, 137 (1961).
- [10] C. Baltay, N. Barash, P. Franzini, N. Gelfand, L. Kirsch, G. Lütjens, J. C. Severiens, J. Steinberger, D. Tycko et D. Zanello, Phys. Rev. Lett. 15, 591 (1965).
- [11] L. Dobrzynski, N. H. Xuong, L. Montanet, M. Tomas, J. Duboc et R. A. Donald, Phys. Lett. 22, 105 (1966).
- [12] T. F. Hoang,, E. Yen, D. Rhines et W. A. Cooper, Nucl. Phys. B38, 62 (1972).
- [13] J. B. GAY, Thèse, Université de Neuchâtel (à paraître).
- [14] A. Pais, Phys. Rev. Lett. 3, 242 (1959).
- [15] M. G. KENDALL, The Advanced Theory of Statistics (C. Griffin, London 1967-9), Vol. II, p. 435.
- [16] W. T. EADIE, D. DRIJARD, F. E. JAMES, M. ROOS et B. SADOULET, Statistical Methods in Experimental Physics (North-Holland, 1971), pp. 259-262 et 268-271.
- [17] W. FELLER, Ann. Math. stat. 19, 177 (1948).