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Escuela superior de Fisica y Matemâticas, Instituto Politécnico Nacional,
Mexico, D.F. Mexico

(17. IV. 72)

Abstract. An algebra, containing operators which create single particle excitations on a correlated

fermion ground state, is developed. The operators are unitary and self-adjoint and any two
either commute or anticommute. Any observable can be represented within this framework. A set
of rules determines the matrix elements in the limit of large numbers of particles.

1. Introduction

Recently, Baltensperger [1] has discussed a many-body wave function, which
contains correlations between Fermions of both, opposite and parallel spin, namely

i «/- >=n o.t+»«r Q)k+»«i ch) i°> t1)
a

0<uaa,vaa<l, u2a + v20 l V a, a. (2)

The Caa, Cqa are Fermion operators with the usual anticommutation rules (18) and |0>
is the vacuum state. The orbitals and the corresponding amplitudes vao follow from
variational equations for the energy [1]. Single particle excitations \aa, xjiy are defined
by the prescription [1] :

\aa, xpy is obtained from \xpy by setting

Ka + "«O -»• (vaa ~ ««„C).
and

vbpVbi -^-vb\,-vbl
for all orbits b with double brackets left to those of a in (1). \aa, xpy is normalized and
orthogonal to |</>>. The energy of excitation becomes then [1] :

Eao E™(u2aa - vla) +2LaXa (3)

where E™ is the Hartree-Fock one-particle energy and

K Uar 1>a\ ««i VaX (4)
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!<, 2 Jab Xb (Jab : exchange integral), (5)
b

La is a measure for the off-diagonal spin coherence.

2. Excitation Operators

We now introduce excitation operators £aa such that

èaa\xpy i\acr,xpy (6)

(the factor i is put in for convenience). It is easy to verify that the operators

È,r *(C.r-C*t) (7.1)

Li i(Cai - C:x) (1 - 2C+ Cat) (7.2)

have this property. The operators £aa are unitary and self-adjoint and therefore
involutions :

Lo L+o U, 0,-1 Va, a. (8)

By construction the following orthogonality relations hold :

<Ä„hA> o v«,o- (9)

and

^\Laèbo-\4>y Kb8„a- (io)

A general «-particle excitation can be formed by applying n different excitation
operators on \x\iy:

n

i"|«, ax,...,a„a„,«/<> Tl L]aj|<A>- (u)
j=i

Particularly the double excitation of two Fermions in the same orbit with opposite
spin is

LrLi\^> - \a,,ai,xpy - \a,ipy. (12)

The corresponding excitation energy becomes [1] :

Ea 2Ett0(u2tt0-v2aa) (13)
a

3. Inverse Transformation
The Caa and C*a cannot be expressed in terms of the £aa alone. Therefore we introduce

for each orbital the additional operators

Va,=Cat+C:r (14.1)

Vat (Cai + C:,)(l -2C+ Cflt). (14.2)

The operators ryan are again unitary and self-adjoint and therefore involutions:

Vaa Vta Vac, Vlc l y a, a. (15)
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The inversion of (7) and (14) then becomes

C.T-ifa,t-tf.T) (16-1)

Cïr-lfa.t+»£.t) (16-2)

and since 1 - 2Cfl"îCaî irja] £,T

Ca^WVal+LJVarLt (17.1)

Ci-K^i-f.iJiï.tf.t. (17-2)

4. The Operator—Algebra
From the commutation rules for Fermion operators

\C„, Cba,]+ 0, [C„, Cî*]+ 8ab 8aa, (18)

the following commutation relations for the tjao's are derived :

[Lo,L*]- 0 (19.1)

[*«,.&,•]+= 0 («*&) (19.2)

or

[f-..^]+ 2^f„.8Ä (19.3)

and analogously for r\aa :

hao,V«,-]- 0 (20.1)

[Va„,Vba']+ 0 («9*6) (20.2)

or

h™. ^6<7']+ 27jfl(7 ryaa, SflD (20.3)

and finally

[La,Vaa]+=0 (21.1)

K«.^a]--0 (21.2)

[£«pWL 0 («*6) (21.3)

or

[£,*¦ Vba']+ 2f„, *,„_„ 8fl6 §_„„,. (21.4)

Thus any two of the operators (7) and (14) either commute or anticommute. These
rules, together with (8) and (15), simplify calculation with these operators.

It must be noted however that, despite a certain resemblance, the above algebra
is not a representation of the Clifford Algebra.

It is convenient to introduce the short-hand notation

Ça — Car ?a[ Sal Sal (22)

Va - Va, Val Val Val (23)
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£a creates the double excitation (12). Both £a and na are unitary and self-adjoint:

L ta=ta\ L2=V V« (24)

Va="Vi 7lä1, 12 1, Va (25)

as is verified immediately using (8), (19) and (15), (20) respectively. From the same
relations it finally follows that, for each orbit a, each of the sets

{VLuLl.Q (26)

and

{VVavVal.Va) (27)

forms an Abelian Lie-Algebra, i.e. a Lie-Algebra with vanishing commutators.

5. Hamiltonian
Using (16), (17) and the commutation relations (19) to (21) the reduced Hamiltonian

given in [1] :

¦"red 2 laCaaCaa + \ 2, V-> ab ~Jab80a') 0aoC aaCba,Cb*
aa aa ,ba

- * 2 Jab(Ctr Cal Ct, Cat + Cti Cat C+ Cai) (28)
a,b

can now be re-written in terms of the operators £a<7 and naa

Hrea i 2 Ta(l-iVaaîaa) + i 2' Vao - Jot 8a*) (1 - tVaa La) (1 ~ *W La')
aa ao,ba'

- is 2 JabiVaVb + VaL + LVb + LL
a,b

- (Vat Li - Val L,)(Vbl L-t - Vbf Ll)l (29)

Where 77a is the diagonal kinetic energy, Uab the Coulomb coupling constant between
the orbitals a and b and Jab the corresponding exchange integral.

6. Expectation Values

The matrix element of an arbitrary operator between any two states (11) can be
reduced (using the above relations) to the expectation value for the ground state of a
linear combination of products of the operators £ao, r\aa.

Now, because of (8), (15) and (21) the operator ir)aaLo *s unitary and self-adjoint.
But, as a unitary and self-adjoint operator has the only eigenvalues ±1, we have

-l<<$\iVaaLa\>Py<+V
Therefore we can write

<#1.a£,al<A> COS0ao (30)

with some parameter §aa. For the same reason we may write

(ii\VaVValW) ^lK^Kl (31)

with some other parameters -&•'„„.
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In the present formalism, we have not imposed so far any condition on the ground
state \xjiy besides the normalization condition

<./#> 1 (32)

and the orthogonality relation (9) and (10) :

<</•!£><#> 0, Vao-

#l£.t^> o. v«-
We now characterize the ground state by requiring that

Ko ®aa (33)

and

0\Vaa\>P>=O, Vaa (34)

in analogy to (9). But from (8) and (21) we get

(jj,ao\irjaai;aa\a<j,xpy (xp^i-q^g^xpy -cos#a(7 (35)

<</»,aa\na1 r;al |«o-, i/r> <^|£,0r)„r n^ La\*fr -sin#aîsin#ai (36)

W,ao\Vao\ao,ty <>P\LaVaoLo\<l>> 0. (37)

Therefore, the action of i;aa on the ground state is equivalent to the transition
'Uaa -*¦ ftao + ""• Thus |ao-, xpy LaW) satisfies (33) and (34) as well as \xpy. In order to
further specify the ground state we request that

0<§ao<TT, Vaa. (38)

In general terms it may be tricky to prove the existence of a state satisfying (33),
(34) and (38). However, this problem is already solved by the explicit construction
(1), (2). We note that full agreement with Reference [1] is achieved, setting for each (aa)

(39.1)

(39.2)

Mao
"aa

COS
2

Vaa
daa

sin —
2

so that

cos &aa uaa "-v2c

sin ftaa 2uaa vaa

(40.1)

(40.2)

sin#atsin#ai=4Aa. (40.3)

Obviously, the condition (38) is equivalent to the positiveness of uaa, vaa as requested
in (2). As pointed out in Reference [1], the expectation value (34) is spurious, i.e.
practically zero for large systems, if the orbitals are arranged randomly in the product
of double brackets appearing in (1).

Up to now only expectation values of expressions referring to one orbital alone
have been considered. In any product of operators the commutation rules (19) to (21)
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together with (8) and (15) can be used to join the operators belonging to one orbital,
giving one of the forms

1. VaVVal, i-VaaLo, -VaL (41)

La, Vaa, La Va, VaoL, Li Ll- (42)

The expectation values of these expressions are respectively

(1, sin#aîsin#ai, -cos#aff, cos#aîcos#ai (43)

lO, 0, 0, 0, 0. (44)

We now postulate that

II) The expectation value of a general product of operators is equal to the product of
the expectation values of the factors belonging to the individual orbitals.

This statement is again easily verified using the representation (1), (2) of the
ground state \xpy. It contains the assumption of random phases for different orbitals,
which are assumed to be completely independent from each other. Since spurious terms
are neglected in this scheme, the requirements I) and II) may be fulfilled only in the
limit of large numbers of particles.

In this way all the matrix elements of any product of the operators £a(7, naa are
determined. Therefore the ground state is completely specified by the above assumptions

I) and II). They form an alternative way to describe the properties of the many-
body wave function \xpy, without referring to its explicit form.
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