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An Algebra of Excitation Operators for a
Correlated Fermion State

by E. Isler and W. Baltensperger

Theoretical Physics, ETH, Honggerberg, 8049 Ziirich, Switzerland

and J. S. Helman

Escuela superior de Fisica y Matemdticas, Instituto Politécnico Nacional,
Mexico, D.F. Mexico

(17. 1V. 72)

Abstract. An algebra, containing operators which create single particle excitations on a corre-
lated fermion ground state, is developed. The operators are unitary and self-adjoint and any two
either commute or anticommute. Any observable can be represented within this framework. A set
of rules determines the matrix elements in the limit of large numbers of particles.

1. Introduction

Recently, Baltensperger [1] has discussed a many-body wave function, which
contains correlations between Fermions of both, opposite and parallel spin, namely

|S[‘> =11 (“aT + Vay :T)(ual + Vq C:.l,) |G> (1)
0 <Ugg,Vg<l, w2 +v=1 Va,o. (2)

The C,,, CJ, are Fermion operators with the usual anticommutation rules (18) and [0}
is the vacuum state. The orbitals and the corresponding amplitudes v,, follow from
variational equations for the energy [1]. Single particle excitations |ac, ) are defined
by the prescription [1]:

|ac, ) is obtained from [f) by setting
(Mao + Voo Cag) = (Vag — %hao Co),
and
Upt» Upy > —Upts —Upy

for all orbits b with double brackets left to those of  in (1). |ac, ¢ is normalized and
orthogonal to |¢>. The energy of excitation becomes then [1]:

Eaa = EE:(“EG - vt%a) + 2La ’\n (3)
where E}; is the Hartree—-Fock one-particle energy and

Ay = Ugp Vgy Uy Vg (4)
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L,=3JuA, (Jap: €xchange integral), (5)
b

L, is a measure for the off-diagonal spin coherence.

2. Excitation Operators

We now introduce excitation operators §,, such that

€aolh> = t]ao, 4 (6)

(the factor 7 is put in for convenience). It is easy to verify that the operators
gaT =1(Cay — C:}) (7.1)
§a1 = 1’(Ca1 )( 2C+ aT) (72)

have this property The operators £,, are unitary and self-adjoint and therefore in-
volutions:

gaa = f:;: = ‘f;o!: fao = Va,o. (8)
By construction the following orthogonality relations hold:
Wléalfy =0 Va,o (9)
- and
<‘/’I£aa fba’ I‘/‘> = Sab S00" (10)

A general n-particle excitation can be formed by applying » different excitation
operators on | :

610018y > = TT 0, > 1y

Particularly the double excitation of two Fermions in the same orbit with opposite
spin is

Earba P> =—ar,al, ) = — |a, . (12)
The corresponding excitation energy becomes [1]:
Eo=2 Eug (ua; — vao) (13)

3. Inverse Transformation

The C,, and C}, cannot be expressed in terms of the £,, alone. Therefore we intro-
duce for each orbital the additional operators

Nap =Cap +C5 (14.1)
May = (Cay +Ca)) (1 — 2C3; Cay). (14.2)
The operators 7,, are again unitary and self-adjoint and therefore involutions:

Nao 'nao T’am nga =1 v a,o. (15)
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The inversion of (7) and (14) then becomes

Cat = 3(Mar — 2€ay) (16.1)

C;# = %('th F if«n) (16.2)
and since 1 — 2C;, Cop = 104y €4y

Cal = %(inal i gal) naT ‘gaT (171)

le = %(inal - gal) Nat faT- (17.2)

4. The Operator—Algebra

From the commutation rules for Fermion operators

[Cag:Crol+ =0, [Cag,Ca]s = 84050 (18)
the following commutation relations for the £,,’s are derived:

[£a0: aa]-=0 (19.1)

[£ag: €borl+ =0 (a#D) (19.2)
or

[€a0: b0-)+ = 2600 baor Ba (19.3)
and analogously for 7,,:

[Mags Nao’]- =0 (20.1)

(Mags Mporls =0 (@ #1D) (20.2)
or

(Macs Mo+ = 2Mag Mag- Sap (20.3)
and finally

[£a0: Maol+ =0 (21.1)

(€apr Nlao)- =0 (21.2)

[£aosMbor]s =0 (a#b) (21.3)
or

[€a0s Moar)+ = 2806 Nao 8ab g6 (21.4)

Thus any two of the operators (7) and (14) either commute or anticommute. These
rules, together with (8) and (15), simplify calculation with these operators.

It must be noted however that, despite a certain resemblance, the above algebra
1s not a representation of the Clifford Algebra.

It 1s convenient to introduce the short-hand notation

fa = ga‘]‘ gaj, = gaj, §a1 (22)

Ma = Mat May = Nay MNat (23)
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£, creates the double excitation (12). Both £, and 7, are unitary and self-adjoint:

b.=¢i=¢64  €l=1, Va (24)
Ne="s="a", i=1, Va (25)

as is verified immediately using (8), (19) and (15), (20) respectively. From the same
relationsit finally follows that, for each orbit a, each of the sets

{1’ ’Ea‘r’\gal’ ga} (26)
and
{1: 7’::1‘! nalx na} ) (27)

forms an Abelian Lie-Algebra, i.e. a Lie-Algebra with vanishing commutators.

5. Hamiltonian
Using (16), (17) and the commutation relations (19) to (21) the reduced Hamil-
tonian given in [1]:

Hred = Zﬂ TaC:a Cao 5 Z’ (Uab _Jab 800’) C:o Caer C-b*-a’ Cba"

ao bo

—sk z JalChCa € Cps +CJ Cit Ch Cay) (28)

can now be re-written in terms of the operators £,, and 7,,

Hred = % 42(:7 Ta(l - 'inaa gaa) + % Z' ([]ab —Jab 800’) (1 - inao gaa)(l - inba' fba’)

ao ,ba’

_'i%azb.]ab[nanb'*‘ Nabs + EaM + Ea

- (nat fel — MNay far)("lbl be — Mot fbl)]- (29)

Where T, is the diagonal kinetic energy, U,, the Coulomb\coupling constant between
the orbitals @ and b and [, the corresponding exchange integral.

6. Expectation Values

The matrix element of an arbitrary operator between any two states (11) can be
reduced (using the above relations) to the expectation value for the ground state of a
linear combination of products of the operators £,,, 740 '

Now, because of (8), (15) and (21) the operator i7,, £,, is unitary and self-adjoint.
But, as a unitary and self-adjoint operator has the only eigenvalues 41, we have

—1 < Pline buolp) < +1.
Therefore we can write

<'|bli7’aa faal')l’> = Cos "9'ao' (30)
with some parameter #,,. For the same reason we may write
($|Mat May [§F> = sindyg, sindy, (31)

with some other parameters ¢,,.



824 E. Isler, W. Baltensperger and J. S. Helman H.P A.

In the present formalism, we have not imposed so far any condition on the ground
state |4 besides the normalization condition

gy =1 (32)
and the orthogonality relation (9) and (10):

<¢'|§aa|¢’> =0, V ac
<'1b[£at gﬂl I*/’> =0, VY a.

We now characterize the ground state by requiring that

'&;a = 19':10 (33)
and

{P|Nalp> =0, Vao (34)
in analogy to (9). But from (8) and (21) we get

(P, a01iM4g €ag |0, D = Pl gt Mao E2o 1D = —COS Dy (35)

<!‘b, “Ul’?ar Na) IaO', ¢> = <¢'l§aa Nat MNay fao |'1[’> = _Sin'&at Sin'ﬂaj, (36)

i, ac|naelac, ) = (|€ag Nag £ao 1> = 0. (37)

Therefore, the action of £,, on the ground state is equivalent to the transition
Dao —> Bao + 7. Thus |ac, ) = £,, |4 satisfies (33) and (34) as well as |¢). In order to
further specify the ground state we request that

0< P <, V ao. (38)

In general terms it may be tricky to prove the existence of a state satisfying (33),
(34) and (38). However, this problem is already solved by the explicit construction
(1), (2). We note that full agreement with Reference [1] is achieved, setting for each (aq)

P
Ugy = COS— (39.1)
2
Bao
Vae = SID (39.2)
2
so that
cos 79acr = “Eo - vz'o . (401)
Sind,y = 20y, 0,4 (40.2)
sind,y sind,; = 4A,. (40.3)

Obviously, the condition (38) is equivalent to the positiveness of #,,, v,, as requested
in (2). As pointed out in Reference (1], the expectation value (34) is spurious, i.e.
practically zero for large systems, if the orbitals are arranged randomly in the product
of double brackets appearing in (1).

Up to now only expectation values of expressions referring to one orbital alone
have been considered. In any product of operators the commutation rules (19) to (21)
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together with (8) and (15) can be used to join the operators belonging to one orbital,
giving one of the forms

1, nay nal ’ 'I’.naa faa: /P fa (41)
gacr: Nao» fco Na» Nao ga’ fﬂT gal- (42)
The expectation values of these expressions are respectively
‘ 1, sind,,sind,, — 08P,y  COSTyy COSTy, (43)
D)
0, 0, 0, 0, 0. (44)

We now postulate that

IT) The expectation value of a general product of operators is equal to the product of
the expectation values of the factors belonging to the individual orbitals.

This statement is again easily verified using the representation (1), (2) of the
ground state |¢>. It contains the assumption of random phases for different orbitals,
which are assumed to be completely independent from each other. Since spurious terms
are neglected in this scheme, the requirements I) and II) may be fulfilled only in the
limit of large numbers of particles.

In this way all the matrix elements of any product of the operators £,,, 1,4, are
determined. Therefore the ground state is completely specified by the above assump-
tions I) and II). They form an alternative way to describe the properties of the many-
body wave function [, without referring to its explicit form.
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