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From the Asymptotic Condition
to the Cross-section

by Philippe A. Martin

Department of Mathematics, University of Denver, Denver, Colorado 80210, USA
(15. III. 72)

Abstract. A relation is established in the framework of algebraic scattering theory between
the time dependent formalism and the cross-section: the formula concerning ‘scattering into cones’
is shown to.hold essentially as a consequence of the asymptotic condition.

1. Introduction

In the algebraic formulation of non-relativistic scattering theory, one expresses
the asymptotic condition by imposing convergence of the time evolution of a certain
algebra of observables [1]-[5]. The algebra .o/ to be considered must contain a complete
set of commuting observables characterizing the particles participating in the scattering
process, i.e., individual momenta and spins. This requirement implies that .o/ has an
abelian commutant &/’ < /. A suitable choice for & is the von Neumann algebra
generated by the momenta or the von Neumann algebra of all constants of the free
motion. Given &/ and the group of total evolution V,, the system (&7, V) satisfies the
asymptotic condition if

s-lim VAV, y=A, 4 (1)

t—>to
exists for all 4 € o on the set of scattering states .

Under suitable conditions (namely that the correspondences between &/ and the
asymptotic algebra &/, are one-to-one and the image of a maximal abelian algebra is
still maximal abelian for single channel scattering), one may deduce the existence of
two classes of isometries £2, such that

A, =0, AQ* 2)

£2, are determined only up to multiplication from the right by a unitary operator
belonging to &/’. It is then possible to define a class of scattering operators S by the
usual formula

= IR0 (3)

As a consequence of the indeterminateness of the wave operators, two S -operators
in the class can differ by a unitary factor in &/’.

In order to establish a bridge between the time dependent formulation of scattering
and the cross-section, one needs to relate the theoretically calculated S-operator to
the quantities actually measured in a scattering experiment. Experimental setups are
concerned with the probability of finding the scattered particle located in a cone C in
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space, whose apex coincides with the position of the scattering center. If V, 2 _¢ is
the scattering state at time #, this probability is [¢|(V,£2_¢)(x)|*d>x.
On the other hand we can compute from the asymptotic condition the probability

for the outgoing particle to have its momentum in the same cone C in momentum space.
With (1), (2) and (3) this quantity is

lim (Q_¢,VEF.V,2_4) = [ [(SHK) |2 a*

1>

where F¢ i1s the projection operator on C, and $(k) is the Fourier transform of ¢(x).
The desired link will be established if one can prove the equality of these two quantities
when £ goes to infinity [6, 7, 8].

lim [ |V, Q)@ [dx = [[SHMWPa k. @

It is clear that the right-hand side is independent of the choice of the representative
in the equivalence class of S-operators, so that this indeterminateness is irrelevant for
the computation of physical quantities.

We want to show in this work that the validity of (4) is essentially a consequence
of the asymptotic condition (1). For this, one must study the asymptotic time behavior
of the scattering state V,£2_¢. It is not postulated that the motion becomes free in the
usual sense as ¢ — +oo, but rather its nature will be investigated as a consequence of
the asymptotic condition for each scattering system (&, V).

An asymptotic evolution is a time dependent family of closed operators T,
each of them affiliated to &', such that

Qh=slim V¥ T, h. (5)
t—>00
% belongs to a domain & dense in # and invariant under &/.') Only the asymptotic
properties of T, are of importance, and we shall call equivalent two asymptotic evolu-
tions T} and T? which satisfy

tlilgol (TE—T?h|=0 for 4 belonging to a common dense domain

Two equivalent asymptotic evolutions define the same wave operator £2. The asymp-
totic evolution T, should be distinguished from the free motion U, generated by the
purely kinematical part of the energy. They agree in the case of short range forces,
but for long range interaction, the T, incorporate their residual effect at large distance
from the scattering center.

It can be proved that a scattering system (&7, V,) always admits a class of asymp-
totic evolutions T, [1, 2, 5]. The asymptotic condition (1) also puts strong restrictions
on the time behavior of T,. These restrictions, supplemented by convenient assumptions
on T,, are precisely those under which the formula (4) can be derived. The supple-
mentary hypothesis concerns the possibility of choosing a sufficiently regular repre-
sentative in the class of asymptotic evolutions (i.e., unitarity, with continuity and
differentiability properties in ). Without further specification of the interaction, these
properties cannot be deduced from the abstract formulation of the asymptotic condi-
tion. However, they are verified for all the potentials for which the asymptotic condition
is known to hold.

1) In the following we shall only consider the limit # — +. Similar statements hold for ¢ — —o.
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2. General Properties of Asymptotic Evolutions

The wave operator intertwines two groups V, and W, where W, is defined by the
equation :

W,=0*V,Q. (6)

W, is a strongly continuous unitary group of operators in &/" which differs in general
from the asymptotic evolution 7. For short and long range potentials, W, is found to
be identical with the group generated by the kinetic energy H, = |p|?/2m. We shall
assume in the following that this is the case, although we could allow more general W,
taking into account a renormalization of the free energy.

The relation between W, and the asymptotic evolution 7', is described by the
following lemma.

Lemma 1. Let T, be an asymptotic evolution. Then for any real T,
m |7y, =W, T)hl| -0,  heD.
Proof. Since V, is unitary, one has
Um (Tepr = W, T) bl =Um (V¥ Ty — VET, W) .
But for & € @, the asymptotic condition (5) and the intertwining relation implies

ssimV¥ T, ,h=slmVE T h=V,s-lmVFT,h

=V, Qh=0QW h=slmV¥T ,W_h. u
It we denote by ﬁ/, = W¥ T, the effective difference between T, and W, we obtain
Lim [|(¥ ., — W) Al = 0. (7)

A family of vectors ¢, having the property (7) cannot be a too rapidly increasing
function of ¢, as is shown in Lemma 2.

Lemma 2. Let ¢, be a uniformly strongly continuous family of vectors for t € [¢,, )
such that

lim |¢, ., — $ll = 0 V7 € [0, 7]

then

Il _

lim 0.

oo

Proof. For a fixed 7, one can find a number K such that ||$,,,, — .|| < € for
#n > K. Then we can write

1 1 N-1
H.N'—‘r ”¢N-r” = E”¢Q + ,.zo (¢(u+1)1 — ¢n‘r)”

N-1

1
o Ne Z [Acns1yr — Paell-

n=K

960 s ”go (¢’(N+1)r - <}S'n‘r)

1
< —
Nt
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The last term is less than /7, so that we obtain hm 1/N7|/¢y.|| = 0. For an arbitrary ¢
we have with |[N7 —¢| <7

el |1 N7 —1t\ ¢y,

— ;(¢:—¢~f)+(1+ . )N—r
1 el
~<\;||¢: ¢NTII+(1+t) o

The uniform continuity of ¢, implies that ||, — ¢y, is uniformly bounded in¢. Therefore
lid,/|/t converges to zero as ¢ goes to infinity. n

The same result could be obtained under the weaker condition that ¢, is strongly
continuous and hmllgb, +7— @]l =0 for all + >0 ([12], Chapter VIII, 7, Ex. 5).

Itis always p0531b1e to select a particular representative of the equivalence class
of asymptotic evolutions which has continuity and differentiability properties in £.
The construction is done in the following way [2]. Let ¢ be a cyclic vector for &/ chosen
in the domain of H,, and let & be the dense set of vectors of the form 2 = Ade, A € .
We define

Tih=ACV,8e. (8)
C is the projection on the subspace spanned by the set {2/’ ¢}.

Lemma 3. The asymptotic evolution defined by Equation (8) is uniformly continuous
and uniformly differentiable on 9, t € [0, «).

Proof. The uniform continuity of T', 4 follows from that of the group V,.If e € 9,
then Qe € Dy, and we have
V,—
1 Qe||<e

for 7 < & in view of the differentiability of the group V. |

< [|4C]|

T,,.—T!
(—’*—’—’)h +1ACV,HQe
.

The particular asymptotic evolution 7, is not known to be unitary, nor is it even
known whether it is uniformly bounded in ¢{. However, in all explicitly treated cases it
is possible to find a unitary family T, in the equivalence class. A necessary and sufficient
condition for this has been given in [5]. We shall therefore assume that we can find a
unitary uniformly differentiable asymptotic evolution. Such an evolution is of the form

T, =exp[—i(Hot + F,)] (9)
where F, is a family of self-adjoint operators affiliated to «#’. We shall also assume that

T, gives rise to a differential equation for the asymptotic motion of the scattering
state:

4T, dF,
1 h = HQ +

T.h . 10
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Proposition 1. Let T, be a unitary asymptotic evolution, uniformly differentiable
on & for t € [{,, ), then

lim
t=a0

—h” = lim [|(Fpyr — )hll—llm—”F k|| =0

Proof.
: aT,
Rl =||l2 T, |h
T,,..—T T, ., — W, T wW,—1
_ (dT t4r t)h-ki( t+ t)h—t—Tt(z' —Ho)h
dt 2 T T
(th TH--r - Tt) ( .W‘r —1 ) “
< — 7 hil .
dt T T

For a sufficiently small fixed 7, the first and the third terms can be made less than €

forany ¢ € [¢y, ) and the second term converges to zero as f goes to infinity by Lemma 1.
The two other limits follow from the identities

aF
dt

l

‘ "“( t+r t)h’H+

t+71

' aF,
s-hm(FH,—F)k-s}lm at' ——h 0
t>00 -0
t
t
1 1 1 dF,
shm F h=slim{-F, h+- | d' —h )= 0. L
t»o\ § 7O t at
%o

One sees that the ‘distortion” F, which appears in W, = ¢iFt also has the characteristics
described in Lemma 2: it cannot increase faster than ¢.

3. Scattering into Cones

For sake of definiteness, we choose .o/ to be the maximal abelian algebra generated
by the momentum p for single channel scattering. The ‘distortion’ F, is some real
function F,(p). In order to study the trajectory T#¥Q;T, of the particle under its
asymptotic motion, it is necessary to introduce some more detailed assumptions on
the function F,(p). A suitable set of properties is

1)  There exists a dense set € on which the p; are essentially self-adjoint and which
is a common domain for all F,, ¢ > 0.

i) The vectors F, ¢, ¢ € ¥, belong to the domain of Q,Q,, 7,7 =1, 2, 3 (that is, F,(p)
1s at least twice differentiable in p).

ili) The vectors Q, F,¢ and Q,Q; F, ¢ are strongly uniformly continuous for ¢ € [£,, ).

(11)
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Proposition 2. Assume that T, is a unitary uniformly differentiable asymptotic
evolution with properties (10) and (11). Then

1
s—lim(— T*0, T,—ﬁ)g6=0, 1=1,2,3, ¢e%. (12)
m

too\ ¢

and the formula (4) holds.

Proof. 1t follows from (11), (i) and (ii) that 7', ¢ belongs to the domain of Q; and a
simple calculation yields

be, it iFOb_iOFi
12 t ¢

The first term converges obviously to zero, as well as the second by Proposition 1.
Let us show that it is also the case for the third one. One obtains by Schwartz inequality

”Qk t+1 9'5”2 t+-r - F:) ?5” ”Q%(Fw‘r - F,) 95”

(11), (ii) and (iii) insure that |QF(F,,, — F,) ¢|| is uniformly bounded in ¢ for fixed 7.
Thus the family of vectors Q, F, ¢ verifies the hypothesis of Lemma 2 and consequently

i 19 F: 4l
1 ——

t—->®© ’ t

1
—T*QkT ¢__

=0.

This proves equation (12). The convergence of the family of self-adjoint operators
(1)) T¥Q, T, to p;/m on a core of p, entails the convergence of the respective spectral
famllles ((13], Chapter VIII, Th. 1.5 and 1.15). Arguing as ]auch Lavine and Newton
[8] we conclude that

lim [ (T, §)(x)[2dx = [ 1400 2d B

for a general class of cones C. The proof of this fact is precisely the content of their main
theorem. Then the formula of scattering into cones (4) follows from (13) and the
asymptotic condition in the form (5) (see Lemma 3 of [7]). o

The formula (4) remains true if the generator of the group W, differs from H,,
provided that it is of the type considered in [8] (i.e., a function of |p| with positive
derivative).

Unitary asymptotic evolutions have been explicitly constructed for the Coulomb
potential by Dollard [9] and for more general long range forces in [1, 10, 11]. We
sumrmarize the results in quoting the theorems proved in [11].

Let the long range part V(x) of the potential and all its partial derivatives Dj
of order %, k < 3 satisfy the estimate

DV ()| <e(l+ [x[)=** (14)
with o > . Then the function F,(p) is given by
t
pt’
Fp)= [V (_) at'.
m

0

Let us indicate how all the regularity conditions used in propositions 1 and 2 are
verified.
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(1) F,(p) is clearly differentiable, and since V(X) is a bounded function F,(p)
satisfies a Lifschitz condition

|Frsr(P) — Fi(p)| < M. (15)
From this it is easy to see that F, is strongly differentiable on 5#. Then

aF, pt
— 7 P
so that the conclusions of proposition 1 hold.?)

dt
(2) With the help of inequality (14) one proves that the p derivatives of F,(p)
satisfy also a Lifschitz condition in ¢:

t'
D V(p—)
m

If € is chosen as the set of functions of the form |p|?¢(p) where ¢(p) belongs to the
space of test functions of Schwartz, (i) and (ii) are true. One deduces from (15) and (16)
that

2
= lim

t—>0

[f(p)[?@>p =0

lim

t—->0o0

t+7

IDXF,,.(p) — DA F,(p)| < f

t

T

||(QiFt+T'—QiFI)¢”“‘<-MlT) ‘){’e(g
”(QinFt+1- _QinFt) ‘f’” <M,7, 95 €E¥

from which (iii) follows.
In the case where 4 > « > 1/# and the partial derivatives of the potential obey
the estimates (14) up to order n + 2, F,(p) must be defined as [11]

t
Fy(p) = [ hi(p,t) dt
0
where 4,(p,#) = 0 and the 4,(p,?), 1 < k < are determined by the successive iteration

t
pi
h(p,t)=V (;; +V, f h1(p, ) dt’).
0

The inequalities

|Dpha(p.8)| <c

¢
D;V(.p_)' for0 < k<3
m

enable us to conclude that the preceding results remain true in the case 0 < a < 3.
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%)  The uniform differentiability of the asymptotic evolution T, can also be proved.
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