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On the Uniqueness of the Energy Density
in the Infinite Volume Limit for Quantum Field Models

by K. Osterwalder') and
R. Schrader?)

Lyman Laboratory of Physics, Harvard University, Cambridge, Mass. 02138, USA

(25. I1. 72)

Abstract. We isolate two properties of the vacuum energy E, (for volume V') that are sufficient
to ensure the existence and uniqueness of lim E, V. The first property has been recently verified
V-0

by Glimm and Jaffe for the P(¢p), quantum field model. The second property is shown to hold in a
simplified P(¢p), model where the free field energy H, is replaced by the number operator N.

The construction of quantum field models has progressed rapidly in the last few
years [3]. Such models are obtained by starting from cut-off Hamiltonians H(g) with
a space cut-off g, and by taking the infinite volume limit, i.e. the limit g — 1.

A function g is called a space cut-off if g€ L?(R), 0 < g(x) <1 for x e R, and g is
of compact support. (Sometimes one requires additional smoothness properties for g.)
We note that g, (-) =g(- —a) is also a space cut-off for all a e R. The operators H(g)
are given by

H(g) = H, + AH,(g) + counterterms, (1)

where H, is the free Hamiltonian and H,(g) is the interaction. The parameter A is the
coupling constant and is supposed to be positive. In the P(gp), models H(g) is given by

Ho ) = f : Pp(x)) : g(x) dx, counterterms = 0, (1)

where P(£) is a polynomial of even degree with real coefficients, the coefficient of the
leading term is one. The symbol : : denotes Wick ordering with respect to the free
vacuum. In this case the operators H(g) are known to be self-adjoint, semi-bounded
linear operators in the Fock space & of a free boson field ¢(x) of mass m > 0.

Although a great deal is known about the theory in the infinite volume limit
(1, 2], nothing is known about uniqueness. The simplest object to study is the ground
state energy E(g), the minimum eigenvalue of H(g). Our purpose is to study its behavior
when g tends to 1. (The convergence of E(g)/vol. supp. g should yield convergence of
wy as g — 1.) The following theorem is general and model independent.
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We introduce some notation. For a given space cut-off g let ¥, =support of g,
|V,| = measure of V,, and

Vo={xeR;gx)=1}, V,={xeR;0<g(x) <1}

Also for a given sequence {g,},.z+ of space cut-offs, we write V, =V, , etc. Let &

denote the convex set of all space cut-off functions and let E(-) be any real valued
function on 4 which is translation invariant, i.e. E(g,) =E(g) forallaeR and ge &.

Definition: Property P. We say E(-) has property P if there exists ¢ > 0 such that
Jorallg heGwithg+he®

|E(g+h) —E®)| <c(|V,]| +1).
Note that (P) implies the linear bound on |E(g)|, namely
[E@]<c(|Ve] +1). @)

Definition: Property S. We say that E(-) has property S if there exists 4y > 0 and a
monotonically decreasing function p:[4,, ©) — R, with lim p(x) = 0 such that

iel

2 E(g) < E(% gi) +p(A)(% |V,| + 1),

for all finite families {g;}icy in € with >, 8, €€ where each V, is an interval and
4 =inf dist (V, V) > 4,.

Remarks. If E(g) is the ground state energy for the P(p), Hamiltonian H(g),
given by (1) and (1’) then property P is known to hold, see Glimm and Jaffe[2]. Property
S has not yet been established in that case. However, we will show below that S holds
for the ground state energy of a modified Hamiltonian

H@=N+Aﬁp@mym, (3)

where N is the number operator. We note that in this case E(g) is a simple eigenvalue

of H(g), satisfying the estimate (2) for some ¢ > 0. More generally E(g) has property
P [2].

For the discussion of the infinite volume limit we now make precise the way we
will let the space cut-off g tend to 1.

Definition. A sequence {g,}ncz+ Of space cut-offs tends to 1 if
a) V, is an interval (o, B,) for all n € Z*, and

b) |V, = 0 and |Vy|-|V,|™t >0asn — .

Condition a) may be weakened, but for simplicity we will work with this definition.
The main result of this paper is the
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Theorem. Let E() be any translation invariant real valued function on the set €
of all cut-offs g which has properties P and S. Then for any sequence {g,}nez+ 1n €, tending
to 1, the limat

€= lil'nE(gw)lVrt'_1

n—o00

exists and is independent of the special choice of the sequence.

If E(g) is the ground state energy for a Hamiltonian H(g), then the theorem gives
sufficient conditions for the uniqueness of the energy density in the infinite volume
limit. In particular e is unique if H(g) is given by (3).

Corollary. Let ¢ = e(]) denote the infinite volume energy density for the ground state
obtained from a P(p), Hamiltonian or from a Hamiltonian given by (3), and assume
uniqueness. Then e(d) is a convex function of the coupling constant for non-negative
values of A.

The corollary implies that e(2) is continuous in A. It would be interesting to know
for the P(p), model, where () < 0, whether e(A) < 0. At least we may conclude that
if ¢(A) < 0 for some A, > 0, then e(A) < 0 for all A > A,.

To prove the corollary it is of course sufficient to show that E(g) = E(A,g) is a
convex function of A for any space cut-off g. However, this follows from

E(ad; + (1 — ) Ay, )
= (oA, + (1 — ) A3, ), {aH (A, 8) + (1 — o) H(A;, 8)} 2(ahy + (1 — ) A2, 8))
> aE(Ay,8) + (1 — ) E(A,,8),

where Q(aA; + (1 — ) A,,2) is the ground state of the Hamiltonian

H(ahy + (1 — ) Ay, 8) = Ho + (edy + (1 — o) Ag) Hg),  or
H(ad; + (1 =) X3, 8) =N + (ady + (1 =) A) Hf(g); O<a<l

Proof of the theorem: We use arguments familiar from discussions of the thermo-
dynamic limit of the free energy density of continuous systems. In statistical mechanics
the perturbation property P is replaced by a monotonicity property, and the sub-
additivity property S follows from a temperedness condition on the potential, see
e.g. [4], chapter III and literature quoted there.

We start from a special sequence of space cut-offs. Denote by §;(x) the character-
istic function of the interval [—,+¢], 7€ Z*. Then the linear bound (2) gives the existence
of a subsequence §;, 1 <1y <%, such that lim E (£5,) (244)~" = ¢ for some ¢ € [—c,c].

Let us denote &;, by y, and [, %] by W,. For any € > 0 there is a K(), such that for
all 2> K(e), ¢, 4, and p(x) as in (P) and (S),

|E(xi) [We| ™t —e| <, 2c|W |~V <, _
(W) <€, W25 4, 5)

We abbreviate yg., and Wy, by x. and W, respectively. Now we take any sequence
of space cut-offs g,(+) which tends to 1. We assert that

E@g)|Va™ —e as 7 — o, (6)
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This of course implies the theorem. The proof of (6) involves two steps. The first step
is to bound E(g,)|V,|™ from below by

E(gn) | an_l — B3 —TE (7)
First choose N(e) so large that for all #n > N/(e)
[Val > [Wel. 2¢(IV5

+ )|V, <e, 2e|W ||Vt <e (8)

Such an N(e) always exists since g, tends to 1. Now we fill T/’,’, with translates Wi of W,
such that they are at a mutual distance of at least |W|1/2. More precisely we set

Vo= (H Wg)u (L;J: Ai)U Ry, ©)

where 4! is the interval separating W! from W' (i =1, 2, ... r — 1) and is supposed
to be of length |W |12, R, is the ‘remainder’ and with a suitable choice of » we obtain
0< R < |We| +|W V2 (10)

Corresponding to (9) there is a decomposition of g,

FM-

gal2) = 2 xe(x) + h(#),

i

where y! is the characteristic function of W and A(x) = g(x) on (U;Z} 4})U R,U V,,
and zero otherwise. Note that due to the definition of 4, and due to (10), the measure
of the support of 4 is smaller than #|W |2+ |W | + |V, |- Thus we get using property P

BlE) |Vl > E(S4t) IVal7 —cllW,['2 + (W] + V3] + DIV,

[(7|W€|)_1 - ‘Vn|—1]

=2 (g xé) W)™ - ‘E (g xé)
— | W 2+ Wl + [Val + DIV (11)
Furthermore, using property P together with (5), (8) and (9) we get

£(5x)

Wl = [Vl D < 2 W[ (V| =7 [W)[We| [Val)

< 2| W12 4 [W,| + Vi) |Vl
< 3e. (12)

Inserting (12) into (11) and using property S, (5) and the translation invariance E(-)
we get

E@)|Val ' = E(x)|We|™' —6e=e—Te,

which implies (7).
The second step is to bound E(g,)|V,|! from above by

8e> E(g,) |V —e. (13)



750 K. Osterwalder and R. Schrader H. P. A.

Take any # > N () and keep it fixed. Then pick a & > K(e) (see (5)), such that
] -1
W= (Uvi)u(Uas)u z. 1)
i=1 i=1

with > 2ce™!. V! are intervals of length |V,|, Vi being separated from V:*' by the
interval 4; of length | V,|1/2. The remainder R, is estimated by 0 < | R,| < |V,| + | V.|V~
The decomposition (14) and the same sequence of arguements as above leads to the
following chain of inequalities (y% denotes the characteristic function of V}):

EGIWil = E(3 a8 WA= = 2601V, + [V, (V1)
> E(3 ) v = B S at) v - wig-

— 2c(| V| 2+ |V V)T

> E(xn) |Val ™ — 6e
> E(g)|Val™ —c(|Vi] +1) — be
= E(gn)Ian—l - 76)

and (13) follows after another application of (5).

Since € is arbitrary, inequalities (7) and (13) prove the relation (6) and hence
the theorem.

The remaining part of this work will be devoted to the proof that the ground state
energy for the Hamiltonian given by (3) satisfies property S. More precisely we have the

Proposition. The ground state energy E(g) for the Hamiltonian H(g) defined by (3)
satisfies S with Ay = 3 and

p(d) = ¢, exp (—%A)

Jor some ¢, < o, where m is the mass of the free boson.

For the proof we use certain localization projection operators in the one particle
space which have been introduced by B. Simon [5]. We recall the definition: Let the
one particle space be described by 2 = L*(R). For any interval | =[a,f] of R with
—o < a < f < wo,let £ be the closure of the linear subspace consisting of all f € #(R),
such that suppu}?f is a compact subset of J. The operator u}/? is multiplication by
p2(p) = (m? + p)* in the Fourier transform space, i.e. pL2f(p) = u/2(p) f(p), where
~ denotes the Fourier transform. Let P, be the orthogonal projection onto %7 and
let ;- be the orthogonal complement of ;. Denote by &#, &#,, #,, the Fock spaces
built with the one particle spaces ", X, and 4"} respectively. Then # = %, x %,
and H;(g) = H,(g)|#, x 1 if suppg < J. Likewise dI'(P;) = N|%, x 1, where dI'(-)
denotes the second quantization of a one particle operator. Note that N =d4dI'(1).
We improve Theorem III.1 in [5] to yield the
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Lemma. There exists ¢, < o such that for any finite set {J;}ic; of intervals with
4 =infdist (J,.]) >3
J

m
12 Pyl <1+ Czexp(—gﬁ)-

iel

The proof of the proposition is now straightforward. Let {g;};.; be as in (S) and set
P; =Py, . Then

E(g;) = inf spec H(g;) < inf spec (d'(P;) + AH,(g;)) <dl'(P,) + AH,(g))-

Since biquantization preserves positivity, summing yields

EI E(g) <dl’ (1| (1 + czexp(—gd))) + AH,(iégi)
= H(!ZEI gl)—l— ¢ exp(——d)

In particular if we take the expectation values in the ground state 2 > g; of H(3 ;1 £1),
then

> E(g) < (2 gl) + ¢, exp (——A) (R5,, NQs,). (15)
tel tel

To estimate the error term in (15), we write [1]

(‘Q'Zyp N‘Q}:g;) = (ng';’ 2H (Zg i) — 2Zg ) Zgi
< c:(z |Vl + 1).
iel

The last inequality follows from (2) and the prime on ¢’ indicates that we have taken
(2) for the coupling constant A" = 2. This proves the proposition.

Proof of the lemma: For convenience we assume that I is the set {1, 2, ... |I|} and
that the interval J, ., lies to the right of J,. We complete the set {];},., to an infinite

set of intervals {J;};.;, such that we still have 4 _—mf dist (J;,J;) =3, with J,;.4 to
the right of J;. Then

d,;=dist(J,.],) =i —7j|4.

It has been shown by B. Simon ([5], Theorem A.2) that if { P,},.z is a family of projec-
tions on a Hilbert space and if d;; = | P; P;| is the matrix of a bounded operator D
on l,(Z), then |31 _, Pl < ||D| for all n,n'. We set P; = P, and prove the lemma by
estimating first d,; =||P; P,| and then ||D|. We assert that there is a constant c;,
independent of J; or J,, such that

m
dij=||P1Pj||gcaexp(—gli—jld), (16)
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Inequality (16) of course follows if we can prove that for all ¢, ¢ € Z(R)
(. Pi P;Y)| < Gev‘iXP(——lZ —JlA)HfPII 1351 (17)

In order to use the support properties of ul/2 P, @, we pick Cg functions p; which are
equal to 1 on J;, 0 at points whose distance from [, is larger than land 0 < py(2) <1
for all x € R. We denote the support of p, by J.. Furthermore we require that pj(x) is

of the form §{(—x + o) — é(x — B,) for all 4, where «; and f; are the endpoints of the
interval J; and ¢ € C§([0,1)) is independent of 7. Then there is a constant o, such that

sup |pf (x)| < o,
where p¥ stands for p,, p; or p;. Note that x efi, yeJ;and ¢ #j imply |x —y| >1

by the assumption of the lemma.
Now we write

(Pi, Pyh) = (uz' 2 pipi? Py, p3'?p;ui?Pyh) =A + A, + Az + Ay,

Ay = p?pip? Prp, p3?pipz? Py,

Ay =W pip? Prp,  px'p; pdl n3? Pyy),
Az = (u"po 2 p3?? Prp,  p3?p;p3? Py,
Ay= (', pBl w32 P, wx'?p;, p3 pnz>? Pyih).

Note that the operator p, is multiplication by p;(x). Each of the four terms A4, will be
estimated separately

41| < llpe 2 ol w321 Pl 11

| 42| < lips psliog 3] 02221 =1 el 151,

14| < llpy palpo 2] =221 w2 ol [8hl,

|Aal < 1z, u2] w3 py, 1] =21 lpll 1L (18)

In order to establish (17) we have to estimate the operator norms occurring on the
right-hand side of the inequalities (18).

The operator s Tis multiplication by u” () in Fourier transform space and therefore
convolution with pj(x) = [ '"»*u” (p)dp in x-space. For 73 even integer uj(x) is a
smooth function for x ;é 0 Wthh decreases exponentially at infinity.' More precisely
for all real 7, 7/2 ¢ Z™, there is a constant y, such that for |x| > 1, u}(x) is C* and

9] <o exp = el a9
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This follows easily from an integral representation of uZ(x) for r < 0 (see e.g. [6], p. 185)
and the relation

pae() = [ p2nte — ) pily) dy

& "
2 T
= (— E; +m ) px(x). (20)
In (20) we have used the fact that u2 is the differential operator [—(d2/dx?) + m?].
This also makes it possible to compute the commutator of u2 and p;, namely

[pi, n3] = p{ + 2p; 0, = —p; + 20x py, (21)

where 9, p; is the product of the operators @, = d/dx and p;.

Now we are prepared to estimate the operator norms occurring in (18). Obviously
Iz = m~3/2. Denoting by ||-||gs the Hilbert Schmidt norm we get for p¥=p; or
pjorp;,and 7/2 ¢ Z*

lpe 2 P32 < llps o7 pF11g
= [ lou») w3y — 2) pf ()2 dx dy
<yio? | exp(m|x—y|) dxdy
JPE-;;
-
< const. exp (—md,))
< const. exp (—m|i — j|4). (22)
Furthermore,

llos alps 13 13221 < llpu e P 172721 + 2llpi px o O =2l

<m2pyg pus pjll + 2llpy pix 31 10, 7372
m.. .
< const. exp (-—§|z —j|A) ; (23)

where we have used (22). Note that 9, ;%2 is a bounded operator because it is multi-
plication by the bounded function #pu=3/2(p) in Fourier transform space. Finally

r -1

lw=>"2pi, p2] = '[py p3] 3721 < m73||p] u3t pjll
+ 2m=32(||pf wxt pill + llpi st p7INIIO, w372
+ 4lpi ux? pill 10, =322

m
< const. exp (_E |2 —jld). (24)



754 K. Osterwalder and R. Schrader H. P A.

Combining the estimates (22), (23) and (24) with (18) we prove (17) and hence (16).
Finally we have to estimate ||D||. For » € Z let B® be the bounded operator on
l,(Z) which is given by the matrix

por_ [ ==
i 0 otherwise.

Obviously
m
”B(r)H < max |di f.—l’l < C3€Xp (—— ‘rld) ’
ieZ 2

by (16) and
B® =1, since | P}|| = || P;ll = 1.
On the other hand we have D = >, B™. Hence

o m
IDIl< 2, 1BV <1+ 2¢5 3, exp (_E fA)

r=1
m
<1 +czexp(——2-4).

This proves the lemma.
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