
Zeitschrift: Helvetica Physica Acta

Band: 45 (1972)

Heft: 4

Artikel: Hyperfeinstruktur des Elektronenspinresonanzspektrums von
molekularem Sauerstoff in der Gasphase

Autor: Gerber, P.

DOI: https://doi.org/10.5169/seals-114405

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-114405
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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Vol. 45, 1972. Birkhäuser Verlag Basel

Hyperfeinstruktur des Elektronenspinresonanzspektrums

von molekularem Sauerstoff in der Gasphase

von P. Gerber

Physikalisch-Chemisches Institut der Universität Zürich

(17. I. 72)

Summary. The hyperfine structure of the ESR-spectrum of gaseous J60170 could be described
using as a basis the eigenstates of the Hamiltonian for molecular rotation and electron spin in an
external magnetic field. The following hyperfine coupling-operator was treated as the perturbation.

*b, b(si) + cSz Î. + -~^-T\ (3?! - î') + f (K, Î).
4/(2/ — 1)

The perturbation calculation was carried out to second and, in part, to third order. We
obtained the following values for the hyperfine coupling constants.

b (-101.441 ± 0.010) MHz
c (140.123 ±0.036) MHz
e2Qq (-8.42 ± 0.18) MHz
/= (-55 ± 15) kHz

The values of the magnetic hyperfine coupling constants b and c are compatible with the less
accurate data determined from micowave spectra by Miller and Townes. The values of e2Qq and
/were previously unreported. The coupling constants were interpreted by simple MO-models, making
use of approximations introduced by Miller, Townes, Dailey and Kotani. Some refinements to these
approximations were made, based on the results of Kelly's calculations on the oxygen atom.

1. Einleitung

Die Rotationszustände des Sauerstoffmoleküls, das einen Triplettgrundzustand
besitzt, haben aus vielfältigen Gründen besonderes Interesse gefunden. Einerseits
verursachen sie in der Atmosphäre Absorptionsbanden für Mikrowellen im Millimeter-
und Submillimetergebiet, was für Radar und Nachrichtenübertragung von grosser
Bedeutung ist. Andererseits sind sie aus wissenschaftlicher Sicht ein interessantes
Objekt, weil sie sich wegen der Kopplung des Elektronenspins an das Molekülgerüst
sehr charakteristisch von den Rotationszuständen von linearen Molekülen im Singulett-
oder im Dublettzustand unterscheiden.

Durch das magnetische Moment der Elektronen werden die Mikrowellenübergänge

des symmetrischen Moleküls erlaubt für magnetische Dipolstrahlung. Die
Struktur der Rotationszustände wurde einerseits durch Beobachtung des Mikrowellenspektrums

im 60-GHz- und 130-GHz-Gebiet vor allem durch Burkhalter et al. [1]
und Mizushima et al. [2, 4] studiert. Tinkham und Strandberg [3] fassten die Messwerte
und bisherigen Interpretationen in einer recht vollständigen Theorie zusammen. In der
eben erwähnten Arbeit sowie im Buch von Townes und Schawlow [8] finden sich die
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Zitate der früheren Arbeiten, die für die vorliegende Untersuchung nicht direkt
benötigt wurden. Die Theorie von Tinkham wurde durch wiederholte Messungen von
West und Mizushima [5] sowie durch Beobachtung neuer Übergänge im 450-GHz-
Bereich durch McKnight und Gordy [7] und durch eine erneute Analyse der Messungen
durch Tischer [6] bestätigt und verfeinert.

Andererseits eignen sich die Rotationszustände wegen ihrer Verkopplung mit den
Elektronenspinzuständen, die zu einem linearen Zeemaneffekt führt, für das Studium
mittels Elektronenspinresonanzspektroskopie. In den Arbeiten von Beringer und
Castle [13] gelang durch Intensitätsmessungen bei 300 K und 85 K die Zuordnung der
wichtigsten Resonanzen des linienreichen ESR-Spektrums im X-band zu den Quantenzahlen

K der Molekülrotation. Präzisere Messungen im 10-GHz- und 3-GHz-Bereich
ermöglichten es Tinkham und Strandberg [10] den Zeemaneffekt der Rotationszustände

und damit das komplexe ESR-Spektrum zu erklären. Nach molekularstrahl-
spektroskopischen Untersuchungen von Hendry und Kusch [11] fanden Bowers,
Kamper und Lustig [12] aus eigenen präzisen ESR-Messungen für die Parameter der
Zeemanwechselwirkung Werte, die von Tischer [6] durch Beobachtung des 8-mm-ESR-
Spektrums von anderen Übergängen (AJ 1) verifiziert werden konnten.

Die Hyperfeinstruktur in diesem Molekül lässt sich nur am Kern 170 studieren,
dem einzigen stabilen Sauerstoffisotop mit nicht verschwindendem magnetischem
Dipol- und elektrischem Quadrupolmoment. Miller und Townes [15] beobachteten
das 60-GHz-Mikrowellenspektrum des Moleküls 160170. Es gelang ihnen, die gefundenen

Übergänge durch eine magnetische Dipolkopplung zwischen Elektronenspin
und Kernspin und durch eine Fermi-Kontaktkopplung zu deuten. Die kleineren
Hyperfeinwechselwirkungen wie elektrische Quadrupolkopplung und Kernspinrota-
tionskopplung liessen sich bei der erreichten Messgenauigkeit nicht bestimmen.

Zur Ermittelung der Hyperfeinstrukturkopplungskonstanten sollte sich die X-
Band-ESR-Spektroskopie besonders eignen, weil bei gleicher relativer Messgenauigkeit
wegen der tieferen Übergangsfrequenz noch kleinere Kopplungen beobachtbar sein
sollten. Allerdings ist zu erwarten, dass bei der komplexen Struktur des Spektrums die
Deutung der Hyperfeinstruktur recht aufwendige numerische Rechnungen erfordert,
die ohne die Hilfe von modernen Rechenmaschinen kaum mehr zu bewältigen sind.

Die Bestimmung der Quadrupolkopplungskonstante von 02 ist aus zwei Gründen
besonders lohnend. Erstens sind, wohl wegen des seltenen natürlichen Vorkommens des

Isotops 170, nur für sehr wenige Moleküle in der Gasphase die Kopplungskonstanten
des Sauerstoffs bekannt, nämlich für OCS [19, CO [18], H20 [20] und H2CO [17].
Andererseits ist das Sauerstoffmolekül wegen seines Triplettgrundzustandes von
besonderem Interesse für die Quantenchemie, deren Näherungsmethoden für Open-
shell-Systeme bisher nicht so weit entwickelt wurden wie für die viel häufigeren Closed-

shell-Singulettgrundzustände.
Die Hyperfeinstrukturkopplungskonstanten enthalten Erwartungswerte der

Elektronenzustandsfunktion von Operatoren der Form f(ê)lr3, wo/(#) eine
Winkelfunktion und r den Elektronkernabstand bedeuten. Die Erwartungswerte sind teils
über sämtliche Elektronen zu nehmen (Quadrupolkopplung), teils nur über die unge-
paarten (magnetische Dipolkopplung). Ausserdem enthält die Fermi-Kontaktkopplung
die Spindichte am Kernort als wesentlichen Faktor. Diese Eigenschaften der Elektro-
nenzustandsfunktionen werden in zunehmendem Masse als Testgrössen für berechnete
Wellenfunktionen benützt. Dabei ist der Quadrupolkopplung ein besonderes Interesse
gewidmet worden [27], weil sie für Singulettgrundzustände, die bei den meisten
Molekülen auftreten, nicht verschwindet. Die Interpretation dieser Konstante wurde
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einerseits oft auf halb empirischem Weg unter Zuhilfenahme von gemessenen
Atomkopplungskonstanten nach einem Vorschlag von Townes und Dailey [26]
durchgeführt, andererseits aber auch durch strenge Berechnung des Erwartungswertes des
elektrischen Feldgradienten am Kernort aus mit «ab initio»-Methoden berechneten
Wellenfunktionen [27]. Wegen des Faktors r~3 ist dieser Erwartungswert stark von
einer korrekten Beschreibung der Wellenfunktion in der nächsten Umgebung des
betrachteten Kernes abhängig. Die Quantenchemie legt jedoch vor allem Wert auf
eine korrekte Beschreibung der Bindungen, die zur Hauptsache durch die kernfernen
Teile der Elektronenwellenfunktionen bestimmt werden. Deshalb führen die einfachen
Interpretationen der Quadrupolkopplungskonstanten nach Townes und Dailey oft zu
besseren Erfolgen als selbst sehr aufwendige Molekülrechnungen.

Aus diesen Gründen haben wir es unternommen, die Hyperfeinkopplungskon-
stanten des Sauerstoff-17 im 02-Molekül aus Elektronenspinresonanzmessungen zu
bestimmen.

2. Theorie des Spektrums

2.1 Rotationsniveaux von 02 [1-7]
In der Born-Oppenheimer-Näherung hat das 02-Molekül im elektronischen

Grundzustand einen Vibrations- und zwei Rotationsfreiheitsgrade sowie einen
Spinfreiheitsgrad dreifacher Multiplizität. Als Koordinate für die Vibration werde die
Grösse f (R — Re)/Re gewählt (R momentaner Kernabstand, Re Gleichgewicht-
skernabstand). Der Hamiltonoperator für diese Freiheitsgrade ist der folgende :

Jtv r JtAS) + Jtrot

Jtmt B(i)K2 + 3/2-A(f){3(S-Â)2 -S2} + p(K,S)

I Oi(ç;)jtL
i-l

hK Drehimpulsoperator für die Molekülrotation
hS Operator des Gesamtelektronenspins
A Operator des Einheitsvektors in Molekülachsenrichtung
h Plancksches Wirkungsquantum/27r
Jtv(i) enthält die kinetische und potentielle Energie der Molekülschwingung.

ß(£)K2 ist die Energie der Molekülrotation. Die Rotationskonstante B(£) hängt
von der Vibrationskoordinate £ ab: ß(f) Be(l - 2Ç + 3$2 + (Be
Gleichgewichtsrotationskonstante)

3/2-À(£){3(S,Â)2 — S2} beschreibt im wesentlichen die Spin-Spin-Wechselwirkung
der beiden ungepaarten Elektronen, enthält aber auch Beiträge, die durch die

Spin-Bahn-Wechselwirkung erzeugt werden. Die ^-Abhängigkeit von À wird in Form
einer Potenzreihe angesetzt: A(£) Xe + Xx£ + X2£2 +

ju.(K,S) beschreibt eine Spinrotationskopplung, verursacht hauptsächlich durch
Spin-Bahn- und Bahn-Rotationskopplung. Die £-Abhängigkeit des Parameters p ist
so gering, dass wir auf ihre Berücksichtigung verzichten können, da wir keine
Absolutmessungen durchführen, sondern lediglich verschiedene Hyperfeinstrukturlinien des

gleichen Elektronenspinübergangs miteinander vergleichen.
Zur Berechnung der Rotationsenergien befreit man sich zuerst von der Vibrationskoordinate

durch Bilden eines effektiven Spinrotationshamiltonoperators. Wir
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betrachen jèv als Hauptenergie und jêIO, als Störoperator. Die Eigenzustände von
jftv seien \v). Der Störoperator hat dann im Raum der Spinrotationszustände für den
Vibrationszustand |t»> in erster Ordnung die Form:

Jtl(v)=2 <v\c,(i)\v>JtT'ot

i-l
Die Beiträge zweiter Ordnung werden :

Jt2(v) I 2 iv\cM)\v'Xv'\cM)\vyj(ECl-E°).JttlotJtL
l,J-l v'rv

Für unsere spezielle Form (1) führt das zu:

Jt(v)=Jt1(v)+Jt2(v)

Bvk2 + (Av - r,„){3(S,Â)2 -S2} + p(K,S) + XvK4

+ o-„[K2{3(S,Â)2 -S2} + {3(S,Â)2 -S2}K2], (2)

wobei die Koeffizienten die folgende Bedeutung haben :

Bv (v\B(Ç)\v>

An <v\3l2-X(i)\v}

X»= 2 <v\B(Ç)\v'Xv'\B(i)\v>l(E°v-E})
v' * V

Vv= I <v\3l2-\(d\v'Xv'W2-\(Ù\v>HE°v-E!.)
V'* V

av= l <v\3I2-\(&\v'Xv'\B(Ç)\v>I(E°,-E;.) (3)
v'* V

Ein zum letzten Term von (2) analoger, in Form eines Kommutators, verschwindet,
weil der Imaginärteil von av verschwindet. Im Raum der drei Zustände eines Tripletts
(S 1) sind die Operatoren {3(S,Â)2 -S2}2 und [2 -{3(S,Â)2 -S2}] äquivalent, was
sich durch direktes Berechnen der Matrixelemente leicht zeigen lässt. Deshalb müssen
die Parameter Av und nv nicht einzeln bekannt sein, sondern nur in der Kombination
Av — vv. Der konstante Term 2t/„ wurde in (2) weggelassen, was einer Änderung des

Nullpunkts der Energieskala entspricht. (Die hier gewählten Parameter vergleichen
sich mit denjenigen von Tinkham und Strandberg [3] durch folgende Beziehungen:

BV=BV, p p, a„ 4/3-e2A1, v„ -ABe2,

Av-r,v 3/2 • A„ + 4/9 • X2 e2/ß.) (4)

Die Eigenzustände des effektiven Spinrotationshamiltonoperators Jt(v) sind
Eigenzustände des Gesamtdrehimpulses J2 (J =S + K). Als Basis im Zustandsraum
bieten sich die Zustände \J,K,M/ an, die dem Hundschen Kopplungsfall (b)
entsprechen [8], und die Eigenzustände gut annähern. (K Quantenzahl des Molekül-
rotationsdrehimpulses, / Quantenzahl des Gesamtdrehimpulses, M magnetische
Quantenzahl zu/.) Da das Problem volle Rotationssymmetrie besitzt (Erhaltung von
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J), können nur Zustände mit gleichem / und M miteinander gemischt werden. In
einem Basiszustand mit Quantenzahl K kann / nur die drei Werte K — 1, K, K + 1

annehmen, die ersten beiden jedoch nur für K # 0. Ausserdem mischen sich aus
Paritätsgründen nur gerade oder nur ungerade if-Zustände untereinander. Deshalb
reduziert sich das Eigenwertproblem auf ein zweidimensionales mit den Zuständen

\J,K=J-1,M) und \J,K=J+ 1,M>, während die Zustände \J,K=J,M} schon
Eigenzustände sind. Im 327~-Grundzustand der Elektronen können die Isotopenzusammensetzungen

1602 und 1802 nur in ungeraden Zf-Zuständen vorkommen, weil die
Gesamtwellenfunktion symmetrisch sein muss gegenüber dem Vertauschen der Kerne
[9]. Für die übrigen Isotopenkombinationen sind sämtliche K-Werte erlaubt.

2.2 Zeemaneffekt [6, 10-12]
Die Wechselwirkung des 02-Moleküls mit einem statischen äusseren Magnetfeld

besteht zur Hauptsache aus der Energie des magnetischen Spindipols der Elektronen
im Magnetfeld :

^magn=-gsVB(H,S)

g| g-Faktor des Elektronenspins
pB Bohrsches Magneton
H externes Magnetfeld

Dazu kommen drei Korrekturterme :

1. Anisotropie des g-Faktors, verursacht durch Spin-Bahn-Wechselwirkung :

^magn -gl^({S ~ (S,Â)Â},H).

g£ berücksichtigt die Beimischung von Elektronenzuständen mit nichtverschwinden-
dem Bahnmoment [10].

2. Energie des magnetischen Momentes der Molekülrotation im Magnetfeld [10] :

AJt2agB -gRpB(H,K).

3. Der g-Faktor im Hauptbeitrag, g|, kann, verursacht durch relativistische und
diamagnetische Effekte, vom Wert des freien Elektrons abweichen [11, 12],

Zusammen mit K J — S und mit einem Magnetfeld H parallel zur raumfesten
w-Achse ergibt sich für den totalen Zeemanhamiltonoperator der Ausdruck:

£* HB{-(ges + gl - gSß* + gi(S,k)kw - gRjw}H. (5)

gR ist der einzige g-Faktor, der sich mit der Isotopenzusammensetzung ein wenig
ändert. In Tabelle 1 sind die folgenden Parameterkombinationen eingetragen :

gi=-gl-gï., gi -gl, gi -gR- (6)

2.3 Elektronenspinresonanzübergänge [6, 10, 12, 13]

Zur Berechnung der Energielagen der Spin-Rotations-Zustände im Magnetfeld
H muss der gesamte Hamiltonoperator J$ Jt(v) + $z (2), (5) diagonalisiert werden.
Unter dem Einfluss des Magnetfeldes mischen nun auch Zustände mit verschiedenem

/, während aus Symmetriegründen (CJ M eine gute Quantenzahl bleibt. Der
Gesamtdrehimpuls J ist also im Gegensatz zum feldfreien Fall keine Erhaltungsgrösse mehr.
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Tabelle 1

Parameter des Hamiltonoperators : Jf(v 0) + Jfz.

Parameter 16o2 "0"0 17Q1SO 18o2

Ba (MHz) 43102,90 41833,18 39439,44 38315,40
An - Vo (MHz) 39667,73 39666,56 39664,36 39663,30
IM (MHz) -252,67 -245,20 -231,14 -224,54
Xo (kHz) -147,15 -138,60 -123,17 -116,24
oo (kHz) 19,23 18,66 17,59 17,09
gi 2,004929 2,004929 2,004929 2,004929
gi 0,002816 0,002816 0,002816 0,002816
gi 0,000128 0,000125 0,000121 0,000118

EfànWwMm
W'-n

mammm

UM, 1

mm

um i

10 H(kGaussf
Abbildung 1

Zeemanenergien für die Gruppe von Zuständen mit K 0, / 1. Die Energiemasstäbe der
Abbildungen 1 bis 4 haben den gleichen Nullpunkt. Von den eingezehchneten Uebergängen (9,2 GHz)
wurden die Hyperfeinstrukturlinien des Moleküls l60"0 ausgemessen.
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Zeemanenergien für die Zustände mit K 1, J 1.

Der Raum der Zustände lässt sich in eine direkte Summe von Unterräumen
aufteilen, welche Eigenräume des Operators J„ zur Quantenzahl M sind. Der Hamil-
tonoperator zerfällt dann in eine direkte Summe von Operatoren, die je auf einen
solchen Unterraum beschränkt bleiben. In Formeln :

V ® VM,
M

jt — @ JtM

Die Diagonalisierung von Jt gliedert sich also in die Teildiagonalisierungen der JtM
in den Hilberträumen VM auf.

Das Aufsuchen der Eigenwerte von JtM wurde für verschiedene M-Werte
numerisch in einem endlichen Teilraum von VM vorgenommen : Nimmt man als Basis

in VM die Zustände \J,K,M}, so ist leicht zu sehen, dass JÎM zwischen Zuständen, die

sich in K um mehr als zwei unterscheiden, keine Matrixelemente mehr hat (Anh. 1).

Die Zustände mit hohem K, deren Energie etwa mit K2 anwächst, werden deshalb
auf sehr indirekte Weise den Zuständen mit tiefem K beigemischt. Deshalb bietet sich

für die Berechnung der Energieeigenzustände, die hauptsächlich aus Vektoren mit
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Abbildung 3

Zeemanenergien für die Zustände mit K 1, J --

tiefen K-Werten bestehen, die Möglichkeit, in der Basis \J,K,My nur eine endliche
Zahl von K-Werten zu berücksichtigen. Die Diagonalisierungen der JtM in solchen
endlichen Vektorräumen wurden auf einer Rechenmaschine durchgeführt und lieferten
für die tiefsten Niveaus hinreichend genaue Energiewerte und Eigenzustände. Bei der
verwendeten Rechengenauigkeit traten Beimischungen mit AK 3: 6 nicht mehr
auf. Als Resultat der Diagonalisierung erhält man die unitäre Transformationsmatrix
RM, welche die Energiematrix JtM auf Diagonalform bringt : RMJtM i?^1 ist die in der
Basis der Energieeigenvektoren aufgestellte diagonale Energiematrix.-Die Matrix
Rm1 enthält als Spalten die Eigenvektoren in der ursprünglichen Basis.

Für die numerischen Rechnungen wurden im Anschluss an die Arbeit von Bowers
et al. [12] die in Tabelle 1 zusammengestellten Parameter für den Vibrationsgrundzu-
stand benützt. Neuere Messungen haben leicht veränderte Parameterwerte ergeben
[5-7]. Für die vorliegenden Relativmessungen innerhalb von Hyperfeinstruktur-
multipletts machen sich jedoch kleine Parameteränderungen nicht bemerkbar.

In den Abbildungen 1 bis 4 sind einige Energieniveaus als Funktion des Magnetfeldes

dargestellt. Die Energien wurden mit den Parametern für 160170 berechnet. Der
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Zeemanenergien für die Zustände mit K 3, / 3.

Kernspin von 170 ist noch vernachlässigt. Die eingetragenen Werte für K und /
entsprechen den Werten des im Eigenvektor hauptsächlich vorkommenden
Basisvektors \J,K,M>. Aus der Darstellung lassen sich die zu erwartenden ESR-Übergänge
direkt ablesen durch Bestimmen der Magnetfelder, bei welchen der Energieabstand
zwischen zwei Niveaus, zwischen denen ein magnetischer Dipolübergang erlaubt ist
(AM 0, ± 1), der Mikrowellenfrequenz des Spektrometers entspricht.

2.4 Hyperfeinstruktur [14-17]

2.4.1 Der Wechselwirkungsoperator

Die Hyperfeinwechselwirkung eines 170-Kernes in einem Sauerstoffmolekül
lässt sich durch einen Operator beschreiben, der aus vier Teilen besteht :

JtHF Ô.(S,Î) + C(S,Â)(Î,Â) + e2Qql(8P - AI) -{3(Î,Â)2 -î2)} +/(K,Î). (7)

Die Kern-Zeemanwechselwirkung —pNgK(I,H) hat auf die hier betrachteten «erlaubten»
ESR-Übergänge (Am, 0) keinen Einfluss, weshalb sie für unseren Zweck weggelassen
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werden kann. In (7) bedeuten AI den Kernspinoperator und e2Qq die Quadupolkop-
plungskonstante.

Die Methode für die Behandlung der Hyperfeinwechselwirkung wird durch die
GrössenVerhältnisse der Kopplungskonstanten nahegelegt. Für die magnetische
Kernspin-Elektronenspin-Wechselwirkung bestimmten Miller und Townes [15] aus
der Hyperfeinstruktur des Mikrowellenspektrums von 160170 die Grössen b —102

MHz und c 140 MHz. Für \e2Qq\ erwartet man aufgrund der Messwerte an Formaldehyd

(12,37 MHz) [17], CO (4,43 MHz) [18], OCS (-1,32 MHz) [19] undH20 (-9,83 MHz)
[20] einen Wert in der Gegend von 10 MHz. Die zu b und c analoge Kopplungskonstante
3e2Qql(8P — AI) fällt also für den Kernspin I 5/2 in den Grössenbereich unter ein
Megahertz. Für die Kernspin-Rotationskopplungskonstante/sind Werte um 0,1 MHz
zu erwarten [17]. Beachtet man ferner, dass ein typischer Energieabstand der
Spinrotationsniveaus bei etwa 10* MHz liegt (Abschnitt 2.3), so bietet sich die Methode an,
die ersten beiden Terme mit Störungsrechnung bis zur zweiten (evtl. dritten) Ordnung
zu behandeln und die beiden letzten Terme in erster Ordnung zu berücksichtigen.

Bezeichnet man das raumfeste Koordinatensystem mit (u,v,w), so erhält der
Hyperfeinwechselwirkungsoperator, in Komponenten ausgeschrieben, die folgende
Gestalt (VL\\w-Achse) :

jtHF b{sw /w+i(s+ L+s_ /+)}

+ c(S,k){ÂJw + i(ÂJ_ + ÂJ+)}

+ 8{Â2U î2 + À\ î\ + Â2W îl + Âu Âv(îu îv + îv /„)

+ ÂUÂW(ÎJW + ÎJU) + ÂVÂW(ÎJW + ÎJV) -P/3}

+f(KuIu + KvIv + KwIJ (8)

mit den Grössen :

S+=Su±iSv, î± îu±iîv, Â± Âu + iÂv,

8 3e2Qql(SP-AI). (9)

2.4.2 Störungsrechnung bis zur zweiten Ordnung
In erster Ordnung Störungsrechnung erhält man den folgenden Energiebeitrag

von der Hyperfeinwechselwirkung in einem Zustand \k,m, >, wobei \ky ein
Eigenzustand von Jt(0) + Jtz ist (m, magnetische Kerspinquantenzahl) :

lE*F b(k\Sw\kymi + c<[k\(S,k)Âw\kym j
+ 8(k\(3Ä2w- l)l2\ky{m]-/(/ + l)/3} +f(k\Kw\kymi. (10)

Dabei wurden die folgenden Beziehungen benützt, die sich direkt aus
Symmetrieargumenten ergeben :

(k\s±\ky <Ä|(S,A)i±|Ä> (k\ku\ky (k\Kv\ky o

<k\ÂuÂv\ky (k\ÂuÂw\ky (k\ÂvÂw\ky o

<k\Â2u\ky <k\Â2\ky i(i - <k\Â2\ky)

<mI\î2\m,y= <m1\p\miy ^(P + I-{mI\H\mIy). (11)
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Die zweite Ordnung in b und c führt zu den folgenden Beiträgen zur Hyperfein-
wechselwirkungsenergie :

2EkHF= l \<k\bSw + c(S,A)Âw\iMy\2jEk ~E,u )-m\
•itf

+ 1/4- l \<k\bS_ + c(S,k)Â_\iM+xy\2l(Ek-EiM+l)
'm+i

¦(P + I + m, -m\)

+ 1/4- 2 \<k\bS+ + c(S,k)Â+\iM_xy\2l(Ek-EiMJ
<M-1

¦(P+I-mj-mj) (12)

Mit iM werden die Zustände in VM indiziert.
Bei einem ESR-Übergang, bei welchem sich mx nicht ändert, addiert sich demnach

zur Energiedifferenz vz der ungestörten Zeemanniveaux (Abschnitt 2.3) noch die
Differenz vHF der entsprechenden Hyperfeinzusatzenergien. Die beobachtete Ueber-
gangsfrequenz ist also v vz + vHF. vHF kann als Potenzreihe in mt geschrieben werden

vHF A + B-mx +C-m\ + (13)

2.4.3 Berechnung der Koeffizienten A, B,C
Die Koeffizienten A, B, C sind linear von 8 und / und quadratisch von b und c

abhängig (10), (12). Da für b und c schon Werte b0 und c0 bekannt sind [15], lässt
sich die Abhängigkeit von b und c in den Grössen ß b — b0 und y c — c0 linearisieren.

Die Koeffizienten lassen sich als Differenz von Beiträgen des energetisch höheren
Niveaus und Beiträgen des tieferen Niveaus schreiben: A =Ah — At, B Bh — Bt,
C =Ch-C Für ein Niveau k gilt mit (10) und (12) der folgende Ausdruck für die
einzelnen Koeffizientenbeiträge Ak, Bk, C* :

Ak=I(I+ l)[ß{b0l2-(pk+pl) + c0j2-(qk+ + qlt)}

+ y{V2 • (q+ + qk) + Co/2 ¦ (r+ + rk)}- S/3 • sk

+ blJA ¦ (p\ + pk_) + b0 c0j2 ¦ (qk + qk_) + c2jA ¦ (rk + rk)]

Bk ß{sk + b0j2 ¦ (pl - pk_) + c0/2 • (qi - qk_)}

+ Y(4 + b0j2 ¦ (qk - qk_) + c0j2 ¦ (rk - rk)} +fsk

+ b0sk + c0sk + blJA.(pk-pi)+ b0 c0I2¦ (qk - qi) + c2jA¦ (rk - rt)

Ck ß{b0j2 ¦ (±pk -PX- pt) + c0j2 ¦ (Aql -qk- q*)}

+ y{b0j2 ¦ (Aqk - qk - qk) + c0/2¦ (Ar* -rk- rk_)} + 8sk

+ blJA.(4-pl-p*- pk) + b0 c0j2 ¦ (Aqk -qk- qk)

+ c20jA-(Ark-rk-rH). (14)
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Dabei wurden die folgenden Abkürzungen benützt :

P+ I\<k\S-\itt+i>\2l(Ek-EiM+)
'JW + I

Pi 2'\<k\sw\iMy\2i(Ek-EiM)

Pk- I I^I^Km-i)!2/^-^«,,)
<m-i

qk= 2 <k\S-\iM+iXiM+i\(S,k)A+\kyi(Ek-E,M^)
>M + 1

?£ 2' <k\sw\iMy(iM\(s,k)Âw\kyi(Ek-E,M)
'" "

(15)
?*-2<*|5+|»M-iX»M-il(S.AM_|*>/(£lk-Elj|.i)

<M-1

rk 2 |<*|(S,A)i_|ili + 1>|a/(£>-£lj|f+i)
'« +

ri=2'|<*l(S-Â)iw|^>|2/(£t-£iM)
'M

r*= 2 |<Ä|(S,A)^+|iA#_1>p/(£t-£lM_i)
'M-l

«N<*|S„|*> 52k=<£|(S,Â)iw|A>

s* <£|(3i2 - l)j2\ky s* <*|XW|*>.

Für die Berechnung der Grössen p,q,r, s müssen die Matrixelemente der vorkommenden

Operatoren im Basissystem der Energieeigenvektoren bekannt sein
(Eigenvektoren des Operators Jt Jt(0) + Jtz, Abschnitt 2.3). Sind die Operatoren in der
Basis \J,K,My gegeben (Anh. 1), so können sie durch Anwenden der Transformationen
RM (Abschnitt 2.3) auf die gewünschte Basis bezogen werden. Als Beispiel für einen
Operator, der die Unterräume VM invariant lässt, wird die Transformation für Sw

hingeschrieben :

S' RMSWR~MV (16)

Der Apostroph zeigt an, dass sich die Matrix auf das System der Energieeigenvektoren
bezieht. Die Operatoren S+ und (S,k)A+ bilden die Räume VM je auf VM+X ab, undS_
und (S,A)^4_ bilden die VM je auf VM_. ab. Die Matrizen dieser Abbildungen werden
durch die folgenden Transformationen auf die Basis der Energieeigenvektoren bezogen :

S; RM+1S+RH S1 RM_XS_R-MV (16a)

In (16) und (16a) sind natürlich die Teiloperatoren von S betrachtet, die lediglich auf
den Raum VM wirken. Die in dieser Weise transformierten Matrizen enthalten die in
(15) benötigten Elemente.

Bei der Bestimmung der Koeffizienten A, B,C zeigte es sich, dass ihr Wert sich
von Linie zu Linie innerhalb eines Hyperfeinmultipletts leicht ändert. Diesen Ander-
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ungen wird mit genügender Genauigkeit durch die Ansätze A A0 + Axmv B B0 +
Bxmt, C Cr, + Cxm, Rechnung getragen. Damit ergibt sich für vHF die Potenzreihe:

vHF A0+ (B0 + Ax)m,+ (C0 + Bx)m2 + (17)

2.4.4 Beiträge von der Störungsrechnung dritter Ordnung in b und c

Für die Energiekorrekturen dritter Ordnung gilt die Formel :

3Ehf 2' Œ <*\*ar\p><p\*nr\TXr\*ae\K>l[(EK - Ep)(EK - ET)]

\2\- <«|jr„|p><p|*HFl*X*|*'«|«>/(£« - EA'). (18)

Die Zustände k, p und t in Formel (18) enthalten auch die Kernspinvariablen.
Die ausgemessenen Linien haben die Eigenschaft, dass sie je Übergänge in einer

Niveaugruppe sind, in der stets nur ein Elektronenspin-Rotationszustand pro Wert von
M vorkommt (vgl. Abb. 1 bis 4). Deshalb fallen der grossen Energienenner wegen
Niveaus mit gleichen M-Werten als Störniveaus ausser Betracht. Die Summe über r
hat, weil die Störung JtHF nur Zustände mit \AM\ 1 verbindet, als einzigen
namhaften Term denjenigen mit t p, wobei |p> einen Zustand darstellt, der in der gleichen
Niveaugruppe liegt wie | k > und sich von diesem in der magnetischen Quantenzahl M
um eins unterscheidet, während die Summe M + mx konstant bleibt. Solche Zustände
|/>> gibt es in einer Gruppe höchstens zwei, so dass nur vier (bzw. zwei) Terme der
dritten Ordnung zu berücksichtigen sind. Da es sich hier um kleine Korrekturterme
handelt, können wir in JtHF die Näherungswerte b0 und c0 verwenden und ß und y
vernachlässigen. Es gilt dann :

3EkF Yk(P + I + m1-m2I){XlMJm1-l)-Xkmi}

+ Yk(P +I-mt-mj){Xiui (m, + 1) -Xkm,} (19)

mit den Ausdrücken :

Y* 1/4- |<*|60S_ + c0(S,k)Â_\iM+1y\2l(Ek - Eiuj2
Y'L l/A-\<jk\b0S+ + c0(S,k)Â+\iM_ly\2l(Ek-EiMi)2

Xj Erwartungswert des Operators b0Sw + c0(S,A)^4W im Zustand |;>. (20)

Die Zustände l^+x) und \iM-,y in (19), von welchen einer auch fehlen kann, gehören
zur gleichen Niveaugruppe wie |/e).

Aus (19) ergeben sich die folgenden Beiträge zu Bk und Ck (14) :

ABk=Yk{XiMJP + I-l)-Xk(P + I)}

+ Yk_{XiM_i(P + I-l)-Xk(P + I)}

ACk Yk(2XiM+i -Xk + Yl(Xt - 2XlM_\. (21)

Die wrAbhängigkeit dieser kleinen Terme kann ohne weiteres vernachlässigt werden.
Deshalb, und weil das konstante Glied in (17) für die Auswertung nicht benötigt wird,
müssen wir AAk nicht berechnen.



668 P. Gerber H. P. A.

2.4.5 Schlussformel

Addiert man nun zu der Reihenentwicklung von vHF nach der Variablen mt (17)
die Beiträge (21), so erhält man:

1. Koeffizient von mt

K1 BQ + AX+AB.

2. Koeffizient von m2

K2 C0 + BX+ AC.

(22)

(23)

Die beiden Koeffizienten Kx und K2 sind Linearformen in den Variablen ß, y, 8

und/. In Kx sind die Koeffizienten von ß, y und/von der Grössenqrdnung eins, während
8 nicht vorkommt. Dagegen sind in K2 die Koeffizienten von ß und y von der Grössen-

ordnung 0,01, während hier 8 mit einem Faktor der Grösse eins eingeht und/nicht
auftritt. Deshalb liegt es auf der Hand, Kx für die Bestimmung von ß, y und / zu
benützen und K2, nach Einsetzen von ß und y, zur Bestimmung von 8.

3. Experimentelles

3.1 Proben

Das Sauerstoffgas wurde in Quarzröhrchen von 11 mm Aussendurchmesser und
etwa 120 mm Länge eingeschmolzen. Um die nötigen Drücke von einigen 0,1 Torr
einigermassen genau herstellen zu können, wurde ein kleines bekanntes Gasvolumen,
dessen Druck sich gut mit einem Quecksilbermanometer messen liess, auf das
sechshundertfache expandiert. Die dazu benützte Glasapparatur ist in Abbildung 5
skizziert.

Während mit fallendem Probendruck die ESR-Linienbreite sinkt (sie ist etwa
2 MHz pro Torr), verringert sich gleichzeitig wegen Sättigungseffekten das Signal zu
Rauschen-Verhältnis. Um ein Optimum an Auflösung bei noch genügender Signal-

10 <y-

ai Fl l
3 3

-THF-

Â
^^

Abbildung 5

Apparatur zum Abfüllen der Gasproben. 1 alte Vorratsampulle, 2 neue Vorratsampulle, 3 Hähne,
4 Brechventile, 5 kleines Volumen (2 cm3), 6 grosses Expansionsvolumen (1200 cm3), 7

Probenampullen aus Quarz, 8 Abschmelzstellen, 9 zum Hg-Manometer, 10 zur Diffusionspumpe.
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intensität auszumachen, wurde eine Reihe von Proben verschiedenen Druckes
hergestellt. Es zeigte sich, dass die geeignetsten Druckwerte im Bereich von 0,2 bis 0,4
Torr lagen.

Das verwendete 02-Gas wurde von Dr. W. Meier und Dr. W. Morf in den Jahren
1964/65 durch Thermodiffusion im Trennrohr nach Clusius und Dickel an 170-Isotop
angereichert. Es standen die in Tabelle 2 angegebenen Zusammensetzungen zur
Verfügung.

Obwohl die Zusammensetzung 1 den grössten Gehalt an I60170-Molekülen
aufweist, eignet sie sich nicht für die Messungen, weil die I702-Konzentration recht hoch
ist. Die Linien der 1702-Moleküle haben bei gleicher Konzentration eine bloss dreimal
kleinere Intensität als diejenigen der 160170 Molekeln. (Die Rotationszustandssumme
ist näherungsweise um den Symmetriefaktor 2 kleiner, die Kernspinzustandssumme
um den Faktor 6 grösser.) In der Zusammensetzung 1 können deshalb die Lagen der
170160 Linien wegen Überlagerung von relativ intensiven 1702 Linien verfälscht werden.

Aus diesem Grunde wurden die Messungen mit Proben der Zusammensetzungen 2

und 3 durchgeführt.

Tabelle 2

Isotopenzusammensetzungen der 02-Proben.

Zus. Nr. %,6o %"o %16o2 %I6o,7o %"o2

1

2
56,58
91,41

43,42
8,59

32,01
83,56

49,13
15,70

18,86
0,74

%'8o %»o %18o2 %lso17o %17o2

3 79,13 20,87 62,62 33,03 4,35

3.2 Messungen

Zur Messung diente ein Varian-E-9-EPR-Spektrometer sowie ein AEG
Kernresonanz-Magnetfeldmessgerät. Die Frequenzen wurden mit einem Hewlett-Packard-
Counter Typ 5246L mit Frequenzuntersetzer Typ 5255A gezählt.

In den Abbildungen 6 und 7 sind zwei Ausschnitte aus dem Spektrum einer Probe
der Zusammensetzung 1 bei 0,3 Torr Druck dargestellt.

Für die Bestimmung der Quadrupolkopplungskonstante eignen sich besonders die
Linien mit tiefem K-Wert, weil für sie die Änderung von ((3Â2W — l)/2> beim Übergang

vom einen Niveau zum andern recht gross wird. Deshalb wurden die folgenden
Linien ausgemessen :

Linie 1 K 0,/ 1, M -l<->0
Linie 2 K 0,J 1, M 0<->1

Linie 3 K =1,J 1,M 0<r-rl

Linie 4 K 1,J 2,M -l<->0
Linie 5 K 1,/ 2, M 0^-1
Linie 6 K=1,J 2, M= l<->2

Linie 7 K 3,J 3,M -3<->- -2
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J5 36 3.7 H (kGauss)

Abbildung 6

Hyperfeinstrukturlinien der Übergänge 1 und 2 (K 0, / 1). Die beiden Sextette rühren von den
I60170 Molekülen her. Die zwei linienreicheren Multipletts stammen von den 1702 Molekülen.
Hier sind nur die symmetrischen Kernspinzustände erlaubt, was zu der eigenartigen Struktur
führt. Für die verdeckten Linien wurden mutmassliche Positionen eingezeichnet. Für 1602 fehlt
dieser Übergang. Das Intensitätsverhältnis entspricht der benützten Zusammensetzung 1.

Probendruck 0,3 Torr, Mikrowellenfrequenz 9,2 GHz.

Die entsprechenden Übergänge sind in den Abbildungen 1 bis 4 mit der gleichen
Numerierung eingetragen. Der Übergang K =1, J 1, M —l<-r0 konnte nicht
berücksichtigt werden, weil die Hyperfeinlinien zufälligerweise so nahe beieinanderliegen,

dass sie nicht getrennt werden konnten. Der Übergang K 1,J 2, M —2 <->

—1 liegt bei 8,6 kGauss, wo sich eine so grosse Menge anderer Linien befindet, dass eine
Messung hier unmöglich war.

Die sieben ausgewählten Übergänge wurden an einer Probe der Zusammensetzung
2 mit 0,4 Torr Druck, die Linien 4 und 5 ausserdem mit Zusammensetzung 3 (0,4 Torr)
ausgemessen. Bei den Übergängen 3 bis 7 wurden die Resonanzmagnetfelder sowohl
der Hyperfeinlinien als auch der entsprechenden intensiven 1602 (bzw. 1802) Linien
bestimmt, die hier stets eine der Hyperfeinlinien (mx \ oder m, —Jr) überdeckten.

Zur Messung einer Linie wurde das Magnetfeld auf die Nullstelle des abgeleiteten
Absorptionssignals eingestellt und unmittelbar nacheinander die Frequenz der Pro-
tonenresonanzprobe und die Klystronfrequenz gezählt. Dieses Procedere wurde je
dreimal wiederholt.

3.3 Auswertung

Als erstes wurde jeweils mit Hilfe der entsprechenden bekannten hyperfeinstruk-
turfreien 1602 (bzw. 1802) Linie und den Parametern aus Tabelle 1 der Ümrechnungs-
faktor von der gemessenen Protonenresonanzfrequenz auf die Magnetfeldstärke in der
ESR-Probe bestimmt. Da diese Faktoren für die Übergänge 3 bis 7 nur sehr wenig
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Abbildung 7

Übergang 6 (K 1, / 2, M 1 <-> 2). Das bezeichnete Sextett gehört zum 160170 Molekül, die
intensive Zentrallinie zum 1602 Molekül. Zusammensetzung 1, Probendruck 0,3 Torr, Mikrowellen-
frequenz 9,2 GHz.

variierten, wurde ein geeigneter Wert für die in 1602 und 1802 verbotenen (K 0)
Linien 1 und 2 übernommen. Da nur die Relativlagen der Hyperfeinlinien für die
Auswertung von Bedeutung sind, genügte für diesen Faktor eine Genauigkeit von
einigen 10 ppm. Mit Hilfe dieses Faktors und der Parameter von Tabelle 1 wurden
danach für die gemessenen Protonenresonanzfrequenzen der Hyperfeinlinien von
160170 die Ubergangsfrequenzen vz berechnet, die sich beim Fehlen der
Hyperfeinwechselwirkung bei den entsprechenden Magnetfeldern ergeben würden. Die Differenzen

vHF von Klystronfrequenz v und berechnetem vz (vHF v — vz) wurden als Funktion
der Kernspinquantenzahl m, durch eine Regresssionsfunktion zweiten Grades angenähert.

Eine Annäherung durch eine Potenzreihe dritten Grades erwies sich als unnötig,
weil wegen der Schwankungen der Einzelmessungen dem Koeffizienten von m\ keine
Signifikanz mehr zukam. Die Koeffizienten von mt und m2, dieser Parabeln, kx und k2,
wurden den Grössen Kx (22) und K2 (23) gleichgesetzt. Dadurch ergab sich ein System
von neun linearen Fehlergleichungen Kx kx für die Grössen ß, y und/ (vgl. Abschnitt
2.4.3). Durch Einsetzen der ausgeglichenen Werte für ß und y in K2 ergaben sich dann
neun Werte für 8 aus den Gleichungen K2 k2. Die Fehlergleichungen sind im Anhang 2

zusammengestellt. Für die Linien von 170180 wurde der Koeffizient von/ verglichen
mit 170160, proportional der Rotationskonstanten B0 erniedrigt. Als Ergebnis der
Ausgleichsrechnung ergaben sich die folgenden Parameterwerte :

b (-101,441 ± 0,010) MHz

c (140,123 ±0,036) MHz
e2Qq (-8,42 ± 0,18) MHz

/= (-55 ± 15) kHz (für 160170)
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4. Interpretation

4.1 Magnetische Hyperfeinkopplungskonstanten

Die Kopplungskonstanten b und c haben in erster Näherung die Bedeutungen
[14,21]:

b + c/3 16rrl3-gKpN pB\ip(0) \2 (Kontaktwechselwirkung)

c 3gK pN pB( (3 cos2# - 1) jrfy (Dipol-Dipol-Wechselwirkung) (24)

gK g-Faktor des 170-Kerns

pN Kernmagneton
pB Bohr'sches Magneton
\ip(0) \2 Dichte eines ungepaarten Elektrons am Kernort
& Winkel zwischen der Kern-Elektron-Verbindungsgeraden und der Mole¬

külachse
rx Abstand Elektron-Kern 1 (170)

Der Mittelwert < > bezieht sich auf die Bahnfunktionen der ungepaarten Elektronen
und ist pro Elektron zu nehmen. Zu diesen Ausdrücken kommen noch Beiträge höherer
Ordnung, verursacht durch Spin-Bahn-Wechselwirkung der Elektronen und Kernspin-
Elektronenbahn-Wechselwirkung [14]. Ihre Werte sind von der Grösse 0,1 bis 1 MHz.
Diese Korrekturen werden wegen ihrer relativen Kleinheit bei der Interpretation von
b und c vernachlässigt. Mit den gemessenen Werten für b und c ergibt sich somit:

<(3cos2# - l)/rf> -8,72 1024cm-3, |0(O)|2 0,6121024cm-3

Zum Vergleich lässt sich für die Grösse <(3 cos2$ - l)lrxy in einem einfachen
Molekül-Orbital-Bild eine Abschätzung durchführen. Die beiden ungepaarten
Elektronen sollen sich in einem -n-g- und einem 7r£-Orbital aufhalten von der Form :

|7r»> (2-2S2)-*(|7T1>-|7r2». (25)

|77,> steht als Abkürzung für ein 2jVOrbital am Atom i. S2 ist das Uberlappungs-
integral zwischen den beiden Atomorbitalen : S2 <7rlx|7r2x> <Trly|7r2j>>. Damit ergibt
sich:

<(3cOS2# - l)lr3y <M> ««¦1|«|7r1> - 2<7T1|M|772> + <7T2|M|772»/(2 - 2S2). (26)

Die Zweizentrenintegrale werden nun vernachlässigt, weil sie wegen des Faktors rj3
klein werden und weil ihre Elektronendichten ausserdem in einem Gebiet liegen, wo die
Winkelfunktion 3cos2$ — 1 klein ist und ihr Vorzeichen wechselt. Mit diesen
Vernachlässigungen erhält man analog zu Miller et al. [21] :

<M> <TTi\u\m y 1(2 - 2S2) -2/5-<rr3>Wi /(2 - 2S2), (27)

da der Erwartungswert der Winkelfunktion in einem ^-Orbital —2/5 ist. Nimmt man für
(rx3yni nach Kelly [22] einen Wert von 35,01024 cm-3 und für das Überlappungsintegral
S2 den Wert von Sauerstoff-Slaterorbitalen (S2 0,146), so kommt man zu dem
numerischen Ergebnis :

<(3cos2# - l)/r73> -8,2d024cm"3.
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Aus einer «ab initio»-Berechnung [23] ergaben sich je nach der gewählten Basis die Werte
-7,88- IO24 cm"3 und -10,1 • 1024 cm"3.

Dieses einfache Orbitalbild gibt natürlich über \üi(0) |2 keine weitgehende Auskunft
(|</r(0)|2 verschwindet hier). Aus Symmetriegründen verschwindet aber auch für eine
restricted Hartree-Fock-Wellenfunktion, bestehend aus einer einzigen Slater-Deter-
minante, der Wert für <p(0). Erst die Hinzunahme ausgedehnterer
Konfigurationswechselwirkung für den Grundzustand ergibt Beimischung von Konfigurationen mit
ungepaarten Elektronen in w-Orbitalen. Der Wert von |i/<(0)|2 aus den Messungen
entspricht nach Miller et al. [21] einer 2s-Beimischung von 2,5%.

4.2 Kernspin-Rotationskopplungskonstante
Bei der von Posener [16] beschriebenen Kernspin-Rotationskopplungskonstante :

-/= i(Mkx + Mky) Mkx hat gemäss Abschätzungen von Flygare und Lowe [17] nur
der folgende Term Bedeutung:

Mxx AegKpN Bj(hcm) ¦ Re (2 <0|L#> <*|77*|0>/(£0 - EA)
P>0

mitnk= m 2 ^3[rf -r,)xv,]x. (28)
i

\py bezeichnet angeregte Elektronenzustände, |0> den Grundzustand. Der Index i
bezieht sich auf die Elektronen, k indiziert den betrachteten Kern (hier k= 1). Der
Ausdruck (28) lässt sich, nach Anwenden einer Näherung, mit anderen Grössen
korrelieren. Wird der Operator n* durch

Ü* <rr3>L (29)

approximiert [14], so ergibt sich aus (28) :

-f=AegKpNBI(hcm)-(r-3y-Re{2 \<[0\Lx\py\2j(Eo-Ep)}. (30)
P>0

Vergleicht man damit den g-Faktor g\\ in Gleichung (5), der nach Tinkham und Strandberg

[10] die folgende Bedeutung hat :

gL* -2#Ä-2-Re{2 (0\Lx\py<p\ÂLx\0yj(Êo-Ep)}, (31)
P>0.

so lässt sich, wieder durch Herausziehen einer Spin-Bahn-Kopplungskonstante A,
die Summe über p aus (30) und (31) eliminieren. Für <>73> ergibt sich damit der folgende
indirekte Näherungswert:

<r-x3y=fAI(AgkgipNpBB) (32)

Mit A -21 cm"1 [10] und g£ -2,8M0-3 [12] erhält man

<>-3> 13,7d024cm-3.

Vergleicht man diesen Wert mit der aus dem Parameter c errechneten Grösse :

Or3> S -5/2-<(3cos2# - l)/r3> 21,S4024cnr3,
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so fällt auf, dass der erste Wert recht klein ist. Dass daran nicht nur die indirekte
Bestimmung über angeregte Zustände \py schuld sein kann, zeigt ein Vergleich mit
den entsprechenden Messdaten von 14N160 [24], wo die Werte <>Ä3> 14,9- IO24 cm-3
und <r^3>s-5/2. <(3 cos2# - l)/r3> 26,0-IO24 cm"3, die, im Gegensatz zu hier,
beide Grundzustandserwartungswerte sind, in einem ähnlichen Verhältnis zueinander
stehen. Die von Kelly [22] berechneten effektiven Werte ^-3)! 30,8- IO24 cm"3 und
(T3>s<i== 35,0-IO24 cm-3 für das Sauerstoffatom scheinen bei qualitativ ähnlichem
Verhalten den Unterschied nur teilweise erklären zu können. Der Einfluss der
Zweizentrenintegrale ist zu klein, um die verbleibende Differenz ganz zu erklären, was durch
unsere MO-Abschätzung für <>73> nahegelegt wird :

<rf3> (2 - 2S2)-2«r73>„i - 2S2-8/it3 + R~3) 17,6-IO24cm"3. (33)

Re Gleichgewichtsabstand der Kerne 1,207 Â
<Vf% <jr-r3yx von Kelly.

Es scheint also, dass die Approximation (29) von Frosch und Foley [14], die auch bei
der Ermittelung der NO-Werte [24] verwendet wurde, für Moleküle weniger genau ist
als für Atome, deren Einelektronen-Wellenfunktionen in der Zentralfeldnäherung
noch in Winkel- und Radialteil faktorisiert sind. Für unseren Messwert für/sind wegen
des grossen Fehlers die letzten Schlüsse allerdings nicht sehr zwingend.

4.3 Quadrupolkopplungskonstante

Die Quadrupolkopplungskontante e2Qq ergibt, mit einem Wert für das Quadru-
polmoment von 170 [22, 25] Q 0,0263 • 10"24 cm2, für den Mittlewert der Grösse

q (d2 Vjdz2)xje (V elektrisches Potential, 2-Achse Molekülachse) :

<?> <(3cos2# - l)/r73> 9,2-1024cm-3.

Als Gewicht bei der Mittelwertbildung von (3cos2# — l)jrx3 ist die Ladungsdichte zu
nehmen.

Zur Interpretation dieses Feldgradienten wurde wieder die folgende einfache
Elektronenstruktur angenommen :

2 Elektronen in |ct> (2 + 2S1)-*(|o-1> + |o-2»

je 2 Elektronen in |7r,"> (2 + 2S2)-*(|t71j> + |tt2é», i x,y

je 1 Elektron in |t7?> (2 - 2S2)-*(|t7U> - |7r2i», i x,y

Die Einzentrenintegrale ergeben zum Feldgradienten den Beitrag :

<?>i =<'r3>„, 2/5 -{-2/(1 +Sx)+2j(l+S2) + 1/(1 -SJ} 15,8-1024 cm-3, (34)

wobei für <r73>pl der Wert 28,5-1024 cm-3 [22] eingesetzt wurde. Für die
Überlappungsintegrale wurden wieder Slater-Atomorbitale benützt, die die Werte Sx
<°"i|ff2> 0,307 und S2 <7r1|rr2> 0,146 ergaben. Die Beiträge von den inneren ls-
und 2s-Elektronen von Atom 1 sind näherungsweise durch die Benützung des effektiven

Wertes für </73>pl mit berücksichtigt. Die kleinen Zweizentrenintegrale mit
beiden Atomorbitalen am Zentrum 2 werden sich etwa gegen den Beitrag vom zweiten
Kern und von seinem Elektronenrumpf aufheben. Von den Zweizentrenintegralen mit
je einem Orbital an Kern 1 und an Kern 2 wird der Beitrag der ^„-Orbitale klein sein,
weil die Überlappungsladungen in einem ungünstigen Winkelbereich liegen (3 cos2?? —1
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sehr klein). Deshalb bleibt einzig das Integral <a1|(3cos2^ — l)jr\\a2y übrig, das wir
grob durch 2Sxj(Rej2)3 annähern. Damit ergibt sich als zusätzlicher Beitrag zu <<?> die
Grösse :

<5>a—-2/(1 +S1)-2S1/(i?e/2)3= -4,3-1024cm-3. (35)

Für den gesammten Feldgradienten führt diese grobe Abschätzung also zu :

<<7> <?>i + <?>2 H,5-1024cm-3.

Die oben erwähnte «ab initio»-Rechnung [23] ergibt je nach der gewählten Basis Werte
von (tqy zwischen 13,2 und 13,6- IO24 cm"3.

Der Beitrag <<7>x entspricht der Berechnungsart nach Townes und Dailey [26, 27],
welche die Kopplungskonstante im Molekül mit der gemessenen Konstanten im Atom
in Zusammenhang bringt. Da jedoch umfangreiche Rechnungen für das Atom [22] einen
Wert für das Quadrupolmoment des 170-Kernes liefern, lässt sich der Feldgradient im
Molekül näherungsweise absolut bestimmen. Das führt zur Möglichkeit, auch die
Beiträge von Zweizentrenintegralen zu berücksichtigen, die nicht direkt mit Atom-
grössen korreliert werden können. Offensichtlich korrigiert der Beitrag <<?>2 (35) den
Einzentrenterm (qy, (34) um einen respektablen Betrag in der richtigen Richtung.

Werden die Sauerstoff-Atomorbitale s/>-hybridisiert, so ergibt sich eine weitere
Erniedrigung des in unserer Näherung berechneten Wertes von (qy. Es ist jedoch
kaum sinnvoll, aus dem gemessenen (ç^-Wert einen Hybridisierungsgrad zu bestimmen.

Herrn Prof. Dr. H. Labhart, an dessen Institut ich diese Untersuchungen
durchführen konnte, schulde ich besonderen Dank für das Interesse und die
Diskussionsbereitschaft, die er dem Verlauf der Arbeit stets widmete. Ich danke Herrn
Prof. H. Fischer und Herrn H. Paul für die Überlassung von Messzeit auf der ESR-
Apparatur, Herrn J. Fischer für seine selbstlose Hilfsbereitschaft bei einigen Experimenten

und Herrn P. Abegg für die Beratung beim Programmieren der
Rechenmaschine.

5.1 Anhang 1

Da in der Literatur verschiedene relative Phasen der Zustände \J,K,My
gebräuchlich sind, werden hier die Matrixelemente der benützten Operatoren für eine
feste Phasenwahl zusammengestellt. Für einen Triplettzustand (S 1) genügen die

ganzen Zahlen/, K,M den folgenden Bedingungen: K 0, \J — K\ 1, für K 0

ist/ 1, \M\ <; /. Ô gilt als Abkürzung für den jeweils betrachteten Operator.

K2
Ô\J,K,My K(K + l)\J,K,My

K4
0\J,K,My K2(K + l)2\J,K,My

(K,S)
Ô\J,K,My=UJ(J+l) -(K+ 1) - 2}\J,K,My

3(S,Â)2-S2

0\K + l,K,My -—r—z- V(K + 1)(K + 2) \K + \,K + 2,M>
2A + o

K+l,K,My2K + 3
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Ô\K,K,My \K,K,My

K+l 3
Ô\K-l,K,My= \K-l,K,My + VK(K-l)\K-l,K-2,My1 ' 2K-V 2K-1

K2{3(S,A)2 -S2} + {3(S,A)2 -S2}K2

Ô\K + l,K,My & V(K + 1)(K + 2)\K + 1,K + 2,My
2K + 3

2K2(K + 1)
¦ -\K+l,K,My2K + 3

- - /

Ô\K,K,My 2K(K + l)\K,K,My

2K(K + l)2
0\K-l,K,My -\K-\,K,My2K-1 ' /

K2-K+l
+ 6 VK(K - \)\K - \,K - 2,My

2K-1

M K (K+l)2-M2OK + l,K,My K + l,K,My /- \K,K,MyK+l1 K+lsJ K(2K+1)
'

K (K + l)2-M2 M
OK,K,My --— r- 1 \K+l,K,My + \k,k,m>1 K+1*J K(2K + 1)

' y K(K+iy '
K+l / K2-M2/ \K-l,K,MyK V (K+l)(2K+iy

-, K+l / K2-M2 M
0\K - l,K,My / \K,K,My \K- l,K,MyK V (K+l)(2K+iy Kl

0\J,K,My= M\J,K,My

(S,k)Âv

Ô\K+l,K,My — (K + 1-(K + 3>
V(K + 2)2 - M2\K + 2,K + 2,M>

2K + 3*J (K + 2)(2K + 5)
'

/ |Ä + 1,K + 2,M>
2K + 3V (K+l)(K + 2)'
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K + 2

(K + l)(2K + 3)
I - V(K + l)2-M2\K,K,My

Ô\K,K,My — /—K<"K+ —V(K + l)2-M2\K+l,K + 2,My17 2K + 3*J (K + 1)(2K+1)
V '

*±* rEZv(K + l)2-M2\K + l-K'M>
(K+1)(2K + 3)kJ 2K+1

M
+ \K,K,My

K(K+iy 7

K-l K + l
K(2K-1)\J 2K+1

-VK2 - M2\K -\,K,My

-_i_ /^ + 1"K-|)Vg=iiiur-i.g-i.io2K-1\I K(2K + 1)
'

Ô|K-l,iC,M> K~1 K + l VK2-M2\K,K,My1

X(2K - 1) a/ 2K + 1

+ — |K-l,iC,M>^(2^-1)'

+
M / - |K-1,Ä-2,M>2K-1\] K(K - 1)

'

î— / X(g 2)
V(x-i)2-m2[k-2,a:-2,m>2K-l\j(K-l)(2K-3)

S+

1

0\K + l.K.My V(K + M + 2)(K - M + 1) \K + l.K.M + 1>
K + l

/ V(K-MMK-M + 1)\K,K,M + 1>
K+lis/2K+l K '
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Ô\K,K,My —— / - V(K + M+l)(K + M + 2)\K+l,K,M+iy1

K + l-S/ 2K + 1 ' "

+ i V (K + M + 1)(K - M)\K,K,M + iy
K(K+1)

v A " y

-^J^r\V(K-M)(K-M-l)\K-l,K,M+iy

1 /.K+lÔ|K-1,a:,M> - / V(K + M)(K+ M + l)\K,K,M, + 1>

- —•V(^ + m)(k-m-i)|ä:-i,ä:,m + i>

(S,AM +

0|Ä+l,K,Af> —i— / (g + *Kg + 3)
V(g + M + 2)(X + M + 3)1

2K + 3\I (K + 2)(2K + 5)
K '2)(2K + 5)

1

x\K + 2,K + 2,M + iy +
2K + 3\/ (K+l)(K + 2)

X^(K + M + 2)(K-M + l)\K + l,K + 2,M + iy

1

+ V(K + M + 2)(K-M+1)
(K+l)(2K + 3)

K A ;

K + 2 / K
x\K+l,K,M+iy

(K + 1)(2K + 3)\J 2K+1

X V(K - M)(K - M + 1)\K,K,M + 1>

Ô\K,K,My= / +2^ V(K + M+l)(K + M + 2)1

2K + 3*J (K + l)(2K+l)
V

x|üC+l,Ä' + 2,Af+l> + -

^-1"2 K
(X+1)(2X + 3)V 2#+l

x V(K + M + 1)(K + M + 2)\K + 1,K,M + 1>
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+ V (K + M + 1)(K - M)\K,K,M + iy
K(K+1)

v A /l t /

K-l /K+l
tf(2K - 1) V 2K + 1

V(K_M)(K-M-1)

1 (K-1)(K+1)
x K-l,K,M + iy /- ——2K-1-SJ K(2K+1)

x V(K - M)(K - M - 1) \K - \,K - 2,M + 1>

Ô\K-l,K,My= K^K\) J^-\^ (K + M)(K + M+ 1)\K,K,M+iy

1

+ Kt2K_l)V(K + M)(K-M-l)\K-l,K,M+iy

1

+ W^iJw^T)V{K + M){K-M-1)

x\K-l,K-2,M+iy
' ' K{K~2)

2K-lrsJ (K-l)(2K-3)

VK-M-1)(K-M-2)\K-2,K- 2,M +1>

i(ZA2w-l)

K + l
0|K + 1'^M>=W7^KiF7^V^vWW^'K(K+3)'-M2)

3M
x\K+3,K+2,My- 2K+3\I (K+ 1)(K+ 2)(K+ 3)(2K+ 5)

x V(K + 2)2 - Af2|/T + 2,K + 2,My

3{(K+l)(K + 2)-3M2} / 1

-— - / \K+l,K+2,My(2K+1)(2K+3)(2K+5)\J (K+l)(K+2y

K{(K+l)(K + 2)-3M2}
+ — \K + l,K,My

(K + l)(2K + l)(2K + 3)
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3M / 1

(K+l)(2K + 3)rs/ K(2K+1)

3

JkWTT)V{K + 1)2-m2^k'm>

(2K - 1)(2K + 1)(2K + 3)rJ K(K + 1)

V(K2 - M2){(K + l)2 - M2}\K - l,K,My

K-l+ /- V(K2-M2){(K + 1)2-M2}
2(2K-1)(2K + 1)\J K+l v mis

x\K-l,K-2,My

ô\K,K,My
3 / *(* + 3)

2(2K + 3) V (K + 1)(K + 2)(2K + 1)(2K + 5)

x V{(K + l)2 - M2}{(K + 2)2 - M2} \K + 2,K + 2,My

3M I 1

¦V (K+l)2 -M2
2K + 3V K(K+1)(K + 2)(2K + 1)

3M / 1

x\K+l,K + 2,My--
(K + 1)(2K + 3)\I K(2K + 1)

x V(K + 1)2-M2\K + l,K,My

K2 + K-3
K(K+l)(2K-l)(2K + 3)

3M

{K(K + l)-3M2}\K,K,My

K(2K-1)\I (K+1)(2K+1)

3M

VK2-M2\K-l,K,My

2K-lrsj K(K-1)(K+1)(2K+1)
¦ Vk2 - M2

3 / (K-2)(K+1)x\K-l,K-2,My+- i \ i\ i

2(2K - 1) V K(K - 1) (2K - 3) (2K + 1)

x V{(K - l)2 - M2}(K2 - M2) \K - 2,K- 2,My
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O I TS i O

Ô\K-l,K,My / V(K2 - M2){(K + l)2 - M2}1 x
2(2K + 1)(2ä: + 3)V X V av / /

x|ä:+1,K + 2,M>
(2JT - 1)(2X + 1)(2K + 3) V X(Ä + 1)

: V(K2 - M2){(K + l)2 - M2}\K + 1,K, My

3M / 1/ Vk2-m2\k k MyK(2K-1)aJ (K+1)(2K+1)
' ' ' V

/^ -t- 1

+ (K(K - 1) - 3M2}|K - l.K.MyK(2K-1)(2K+1)X v ' "

3{(K-1)*-3M2} _ ,K_1(^_2)M>
(2K - 3)(2K - 1)(2K + 1) V K(K - 1)

3M / î V(iC-l)2-M2
SJ K(K-2)(K-l)(2K-3)2K - Is] K(K - 2)(K - 1)(2K - 3)

o I JC

x\K-2,K-2,My + -

2(2K-3)(2K-1)\J K-2

xVp - 2)2 - M2}{(K - I)2 - M2)\K -Z,K-2,My

5.2 Anhang 2

Die folgenden Fehlergleichungen Kx kx in MHz für b0 -101,58 MHz und
c0 140,76 MHz sind in der Form aufgeschrieben : (Beitrag von B0 und A x)ß + (Beitrag
von B0 und Ax)y + (Beitrag von B0)f+ Beitrag von B0 + Beitrag von Ax + AB kx.
Die Beiträge von Ax zu den Koeffizienten von ß und y beeinflussten höchstens die
letzte angegebene Stelle. Vor jeder Gleichung steht die Nummer des Übergangs. Der
Stern kennzeichnet die 170180-Linien.

1 0,9282^ + 0,2228y + 0,0785/- 62,678 - 0,013 + 0,012 -62,678
2 0,8957/3 + 0,2034y + 0,0982/- 62,558 - 0,013 + 0,014 -62,580
3 0,1828(8+ 0,4545y +0,8167/+45,416+ 0,003-0,004= 45,111

4 0,4649,8 + 0,0717y + 0,5372/- 37,065 - 0,003 + 0,002 -37,066
4* 0,4635jS + 0,0708y + 0,5079/- 37,051 - 0,003 + 0,002 -37,064
5 0,50660 + 0,1035y + 0,4919/- 36,714 - 0,003 + 0,003 -36,735
5* 0,50420 + 0,1034y + 0,4659/- 36,728 - 0,003 + 0,003 -36,756

6 0,6100/3 + 0,1358y + 0,3829/- 43,095 - 0,003 + 0,006 -43,112
7 0,55490 + 0,2654y + 0,4457/- 18,986 - 0,000 + 0,000 -19,116
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Die Ausgleichsrechnung ergibt die Werte ß= (0,139 ±0,010) MHz, y (-0,637 ±
0,036) MHz und/= (-0,055 ± 0,015) MHz.

Die folgenden Gleichungen K2 k2 in MHz für b0 -101,58 MHz und c0 140,76
MHz sind in der Form aufgeschrieben : (Beitrag von C0 und Bx)ß + (Beitrag von C0 und
Bx)y + (Beitrag von C0)8 + Beitrag von C0 + Beitrag von Bx+ AC k2. Die Beiträge
von Bx zu den Koeffizienten von ß und y beeinflussten auch hier höchstens die letzte
angegebene Stelle. Die Bezeichnung der Gleichungen ist gleich wie oben.

1 0,00630 + 0,0015y + 0,21438 - 0,2144 + 0,0036 - 0,0048 -0,3550
2 0,00620 + 0,0014y - 0.2177S - 0,2135 - 0,0012 + 0,0044 -0,0772

3 0,00060 - 0,0026y + 0,4104a - 0,1502 - 0,1302 + 0,0001 -0,5314
4 0,00200 + 0,0005y + 0,0418g - 0,0653 - 0,0013 - 0,0001 -0,0825

4* 0,00200 + 0,0005y + 0,0443a - 0,0656 - 0,0014 - 0,0001 -0,0926
5 0,00220 + 0,0007y - 0,20285 - 0,0759 + 0,0209 + 0,0009 0,0722

5* 0,00220 + 0,O007y - 0,20233 - 0,0763 + 0,0210 + 0,0009 0,0736

6 0,00280 + 0,0007y - 0,2589a - 0,0799 - 0,0252 + 0,0032 0,0801

7 0,00020 + 0,0O04y + 0,11640 + 0,0341 - 0,0324 + 0,0000 -0,0627

Mit 0 0,139 MHz und y -0,637 MHz ergibt sich eine Quadrupolkopplungskon-
stante e2Qq (-8,42 ± 0,18) MHz.
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