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The Parametrization of ir~p Scattering Experiments

by G. Rasche

Institut für Theoretische Physik der Universität, Schönberggasse, 9, CH-8001 Zürich,
Switzerland

and W. S. Woolcock
Research School of Physical Sciences, The Australian National University, Canberra, Australia

(3. I. 72)

A bstract. The difficulty of making a precise statement of charge independence for pion-nucleon
scattering is pointed out. We emphasize that in taking account of electromagnetic effects in the
analysis of -n~p scattering experiments, it is necessary to consider the radiative capture process
¦nTp -*¦ yn. A procedure for doing this is given. The unsatisfactory aspects of recent statements
about time-reversal violation and possible isotensor current contributions in pion photoproduction
and radiative capture are pointed out.

1. Introduction

In the analysis of pion-nucleon scattering experiments it is generally assumed that
the hypothesis of charge independence holds. What this means can only be specified
precisely within the framework of a specific model for electromagnetic effects. Looking
first at tt+P scattering in the elastic region, it is well known that the nuclear scattering
amplitude can be approximated by a truncated partial-wave expansion and can be
parametrized by means of one real phase shift for each state of fixed total angular
momentum and parity. The long-range electromagnetic effects of the Coulomb
interaction are taken into account in the analysis of experiments by adding the point-
charge Coulomb amplitude to a modified nuclear amplitude. Further electromagnetic
corrections to the phase-shifts determined from experiment are then necessary if the
statistical errors on these phase-shifts are much smaller than, or of the order of
magnitude of, these residual electromagnetic effects. Methods for making these
corrections have been worked out by several authors using different models [l]-[6].

Turning now to the case of tt"P elastic and charge exchange scattering, we can
again approximate the nuclear scattering amplitudes by truncated partial-wave
expansions. In the charge independent limit, one needs two real phase shifts for each
state of fixed total angular momentum/ and parity P, corresponding to the two
possibilities for the total isospin, T 1/2 and T 3/2. Furthermore, charge independence
implies that the T 3/2 phase shifts can be taken from the analysis of n+p experiments.
Again, the long range electromagnetic effects of the Coulomb interaction are taken
into account by including the point-charge Coulomb amplitude (for tt~P elastic
scattering) and modifying the nuclear amplitudes. If one does not make the charge
independence hypothesis, the situation for the analysis of ir~p scattering data changes
drastically, and the number of parameters to be determined for each (J,P) state is
increased. Following earlier work by Chiu [7], it was emphasized by Oades and Rasche
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[8] that three real parameters (two phase shifts and a mixing angle) are necessary for
each (J, P) state, to fit the ir~p elastic and charge exchange data. This is correctly taken
into account in approximate models, such as the method for making 'outer' Coulomb
corrections proposed by van Hove [1].

The fact that in the tt~P case three parameters are necessary to specify the scattering

amplitudes for each (/, P) state is independent of the specific model used to calculate
the mixing angle and the electromagnetic corrections to the phases. Attempts to make
models for these corrections arise from the situation that the experimental data are
not accurate enough to determine these three parameters directly. Each model tries to
express the three parameters in terms of two charge independent phase shifts. Then,
if one accepts the model, these two parameters can be determined from experiment with
reasonable accuracy. The present models all use non-relativistic potential theory in
one form or another. This might be satisfactory in the very low energy range, but it
certainly is not reliable in the region of the (3/2,3/2) resonance. This, and other difficulties

in the analysis, make the numbers for the parameters of the (3/2,3/2) resonance,
as quoted for example by Carter et al. [9], very doubtful.1)

This paper is mainly concerned to point out another electromagnetic effect
which hitherto has been neglected completely in the analysis of -rr~p data. As soon as

one takes into account corrections to charge independence, the influence of the radiative
capture process

tt~P -> yn
has to be considered as well. The value of the Panofsky ratio indicates that at low energies

at least there is quite a high probability for this process. As we shall show, this means
that for each (J,P) state, we require ten real parameters, except for the (1/2, ±1)
states, where the number of parameters reduces to six.

It should be noted that any conclusion about 'charge independent' phase shifts,
or parameters obtained from them (such as scattering lengths) is invalid if one has not
already taken into account this increased number of parameters in the analysis of
experiments. This remark applies in particular to numerical calculations for testing
charge independence, methods for which have been developed by Törnqvist [10]. If,
because of the limited statistics of the experiments, it is not possible to include these
parameters in some way or other in the analysis of the data, then all electromagnetic
corrections are doubtful and no firm conclusions can be reached concerning the charge
independent phases.

In Section 2, we write down the consequences of the unitarity of the S-operator
for the case of n two-body channels, at energies where no other channels are open.
We also point out the consequences of time-reversal invariance and parity conservation.
A very simple example with two channels only is provided by np elastic scattering
and radiative capture and we discuss this in Section 3. In particular, we point out the
modification of the low-energy behaviour of the np elastic scattering cross-section.
In Section 4, we turn to the case of (tt~P), (ir°n) and (yn) and show that, for each
(J,P) state, except those with (1/2,±1), it is necessary to consider a 4 x 4 unitary,

Explicit introduction of a potential can be avoided by using a certain ansatz for the wave
function, but this ansatz can be justified only from non-relativistic potential theory. Auvil
[8] has used the Klein-Gordon equation, which involves making the static approximation
for the target motion. His work is purely speculative and suggests one possible extension of
the results from the Schrödinger equation to relativistic situations.
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symmetric matrix. We then indicate how an approximate knowledge of pion photo-
production multipole amplitudes can be used to reduce to three the number of
parameters required for each (/, P) state to fit tt~P experiments. Section 5 will summarize
our conclusions.

2. Unitarity
Consider the case of n two-body channels, i 1,..., n, at an energy where no other

channels are open. With plane wave states normalized so that <p'|p> S<3) (p' — p) we
define the quantity SJt for the process (i) -> (j) as follows :

<py> A?1' ;p«> Af>|5|p</> A^'> ;p<2> A<2>>

N,N,
-(2tt)~28<4\pp + pc? -pa> -pf>)

[EC1' £<2> £</> Ef]1 /2

x Sj, (E2 - P2 ; n^n, ; X'J
« > X'}2 > A'1 > A<2)).

Here P is the total three-momentum, E the total energy and n, and n, are unit vectors.
The vector n( is defined as the unit vector in the direction of the vector (m(tli + m\2)l)~l •

(mS^XfCp — mpvP), and similarly for n,. Nt and Nj are products of two factors, one
for each particle, the factors being (mass)1'2 for a fermion and 2"1/2 for a boson. The
superscripts (1), (2) label the two particles in each channel and the quantities X(P,
A(i2\ Aj(1), A}<2) are the helicities of the respective particles. We now go to the centre-of-
momentum system (CMS), so that P 0 and nf may be identified as the unit vector in
the direction of motion of particle (1) in channel (i). The magnitude of the three-
momentum of either particle will be denoted by qt. The invariant quantity (E2 — P2)

on which Sj, depends is just the Mandelstam variable s.
Now by a modification of the argument leading to eq. (30) of Jacob and Wick

[11] we have the following partial wave decomposition :

S,i(s;n,nj;A'i1>A'i2>M,)A<,2))

277S1'2

NiNMiü JfM
-2 2 (J+*)säw • 'a<',)a,.2>

(s) D^ {+»6j-2n _ ^ d'mx' {<f>"0"2n ~ ^
In this equation Af Xp - A(;2), A; A;(1) - A;(2) and (dt,fi), (9j,cf>j) are the polar angles
of n(, nj. respectively in some established system of spherical polar coordinates. We may
now deduce from the unitarity of the S operator,

S*S 1,

that

2 2 SI»«»*» jA'/»A'<2) («) SkX'WfK iAr>Af (s) 8U8 A«>Af § A'2>Af>

*-1 a;U), Aj(2)
« « j j

This means that if, for fixed s and/, we construct a finite square matrix

SjXiw,\-p\inir>A¥>(s),

labelling the rows and columns by means of the possible combinations of helicities for
each of the n channels in turn, then this matrix is unitary.
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It is shown by Jacob and Wick [11] that from the time-reversal invariance property

of the S-operator it follows that the matrix S^'J«)A^2>,iA<1>A(2)(s) is symmetric. This
means that, if it is an N x N matrix, it may be specified in terms of %N(N + 1) real
parameters, which may be chosen as ^N(N — 1) moduli of matrix elements and N
phases.

The consequences of conservation of parity are a little more complicated to state.
Again using the calculation of Jacob and Wick, we find that

S/_Af)-Af>, /-A<»-A«> (s) Vj VF ' SjX-px-m, ,A<»A<2> (s)

where rjt is a phase factor which depends only on the particles in channel (i). As Jacob
and Wick point out, this means that the number of independent matrix elements is
reduced by 'roughly' a factor 2. The word 'roughly' takes account of the possibility
that, if there are two or more channels involving only massive bosons, there will be
entries in the matrix which correspond to all four helicities being zero, and conservation
of parity says nothing about these entries. In the example of Section 4, we show how
the 8x8 matrix corresponding to a given / can be transformed into the direct sum of
two 4 x 4 submatrices (still unitary and symmetric) which can be considered separately.

Note finally that if there are further conserved quantum numbers (such as total
isospin), the number of independent matrix elements is further reduced. Appendix
A gives expressions for the differential cross-section for the binary process (i) -> (j) and
for the optical theorem.

3. The Influence of Radiative Capture on Elastic np Scattering
If one considers np elastic scattering, even at low energies, there is another two-

body channel, namely (yd), and the exothermic reaction np -> yd is possible (d denotes
the deuteron). We are interested in the influence of the (yd) channel on the (/ 0,
L 0) scattering length for np scattering. In considering this, it is convenient to neglect
non-central forces; this means that we assume that, as well as the total angular
momentum /, the orbital angular momentum L is also a good quantum number. It is
obvious that for our present purpose this approximation is adequate; the (/=1,
L 2) state admixture has a very low probability in the deuteron.

We look at the np initial state with / 0, L 0. The final nuclear state consists
of the deuteron, with / 1, L 0. According to the well-known selection rules for
y-emission, the emitted y must be magnetic dipole radiation. Thus, we are left with a
2x2 matrix 5Jf, i, j =1,2, where 1 refers to the (np) channel, 2 to the (yd). We do not
consider the possibility of triplet scattering and look only at the contribution to the
cross-sections from the (/ 0, L 0) state. From Appendix A,

»ii-**"2|S„-l|2,
0-2, =7Tt7"2|S21|2,

where ffnis the total cross-section for np elastic scattting, o2x the total cross-section
for radiative capture np -> yd and q is the magnitude of the three-momentum of either
nor pin the CMS.

It can easily be seen that a unitary, symmetric 2x2 matrix can be written,
using the three real parameters p, a and ß, in the following way :

Sxx=pe2ia, S22 pe2'ß,

SX2=S2x=i(l-p2)i'2eiC"+ß\
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The parametrization has been chosen in such a way that in the limiting case of neglecting
the (yd) channel (p 1), a is the conventional phase shift for np elastic scattering in the

(/ 0, L 0) state. Thus p can be interpreted as an inelasticity parameter. One easily
checks that

axx Trq~2[(l -p)2 + 4psin2a], a2X Trq~2 (1 - p2).

The cross-section o-2i can be calculated using certain approximations [12]. Since
we are only interested in the very low energy behaviour, we write

a2X TrCq~l,

where C is a constant which can be taken from the calculation of Ref. [12]. Then

p2 i-cv
Assuming that the low-energy behaviour of the phase a is given by

oc -qs + 0(q3),

as suggested by effective range theory, we obtain

cr,, 4tt[S2 + i C2 - 2C(s2 -iC2)q + 0(q2)] (*)

The interesting point to note is that the low-energy behaviour of axx is modified;
a term linear in q appears, which would not be present if C 0.

The phase <x is not to be confused with the real phase ocN which would describe
np scattering if the yd channel were absent (we neglect all other corrections to nuclear
scattering, in particular those due to the magnetic moment interaction). The 'purely
nuclear' scattering length sw is defined via the low-energy behaviour of <xN :

<*n -q*N + 0(q3)

To get the experimental value for the parameter s, C is taken either from Ref. [12]
or from experiments on radiative capture [13]. Then eq. (*) can be fitted to experiments
by adjusting the parameter s. It turns out that the numerical value of s changes only very
little compared with the statistical error if one puts C 0 in eq. (*). This does not necessarily

mean that (s — sN) is small.
Since we are really interested in sN (for example, to test the charge independence

of the nucléon-nucléon interaction), it is necessary to resort to a model in order to
determine it. This can be done by fitting C and s in a phenomenological way by means of
a complex potential. Having determined the parameters of the potential, the imaginary
part is put equal to zero and sN calculated using the real part only. Making a simple
numerical estimate in this way, it turns out that (s — sN) is much smaller than the
experimental error on s [14], so that at the present experimental accuracy the influence of the
(yd) channel on the determination of sN can be completely neglected.

4. ifp and Related Channels

We consider now the system consisting of the three channels (rr~p), (Tr°n) and
(yn), at energies below the threshold for n° production. We make the approximation
of neglecting higher order electromagnetic processes in which more than one photon is
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involved. Furthermore, we neglect Bremsstrahlung, since we confine ourselves to two-
particle final states.

For the three channels the parity factors may be chosen as —1, —1 and +1, respectively.

When time-reversal invariance and parity conservation have been taken into
account, the 8x8 matrix for fixed / has just twenty independent entries; we now
write it out fully. The numbers in brackets which are given for each row and column
are the helicities of the particles in the channel concerned.

(TT-P) (TT°n) (yn)

(n p)

(TT°n)

(yn)

(Oi)

I (o-i)

(Oi)

(o-i)

(li)

(~l-i)

(1-i)

I (-li)

(Oi) (o-i) (Oi) (o-i) (li) (-1-i) 1-i) (-li)
~s, s2 S3 s4 s5 s6 s7 s8"

s2 S, s4 S3 -s6 -s5 -s8 -s7

S3 s4 59 S10 Sn Sn S,3 s14

s4 S3 s10 s9 -S.2 Su -s14 —S13

s5 -s« S„ -S,2 ' sI5 Sie S,7 S18

S12 —Sn SX6 SX5 S18 o17

S7 —S8 5n —S,4 SX7 Sxg SX9 S20

-o7 SX4 —sxi sxs SX7 s,9

Now multiply this matrix on the right by the matrix R and on the left by RT, where R
is the real orthogonal matrix given by

10 0 0 10 0 0

10 0 0-10 0 0

010001 00
Ri

V2

0 10 0 0-100
0 0 10 0 0 1

00-1000 1

0 0 0 0 0 0

000-100 0 1
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The transformed matrix, which is also unitary and symmetric, now takes the form

SX+S2 S3+S4 S5 — S6 S-r—Sn 0 0 0 0

S34-54 S9+SX0 SXX—SX2 Sxi—Sx

S; S6 SXX—SX2 SX5— SX6 SX7—SX° 0

S7 S8 S)3—5,4 S,7 — S,8 SX9—S

0 0

0 0

0 0

0 0

0 sx-s2 s3-s4 s5+s6 S7+Sa

O3 — J4 tJg — *->10 ^11 ~^~ •-* 12 "^13 ' H

0 i5+o6 Oj, +o,2 o15+S,6 SX7+Sxi

0 Sy+S* S,3+5,4 5i7+5i8 Sx9+S20

Each of the 4x4 submatrices is thus unitary and symmetric. The upper submatrix
corresponds to parity (—1)J+1/2, the lower to parity (—1)J_1/2. The transformation with
the matrix 7? corresponds to the well-known transition from helicity eigenstates to
electromagnetic multipoles.

Corresponding to each fixed total angular momentum/ and parity P, we thus have
a4 x 4 matrix, except for the states with/ \, for which the matrix is 3 x 3. A
convenient notation for the elements of the matrix is

(rr-p) (TT°n) (yn,l) (yn,2)

(tT~P) S__ Sn_ 5,_ S2_

(TT°n)

(yn, 1)

So- S00 Sxo S2

S\- sxo sxx s,2

(y«,2) S2_ 520 S,2

Now for the energies under consideration, there is an approximate dispersion theory of
pion photoproduction which yields the four complex numbers S,_, S2_, S,0, S20, which
are of first order in the proton charge e. The multipole amplitudes £,(+'1,3), Af,(2,1,3) are
tabulated by Berends, Donnachie and Weaver [15] and in Appendix B explicit formulae
are given for computing S,_, S2_, Sxo, S20 from them.
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Knowing these four numbers, the three complex numbers S S0_, S00 required
for the analysis of the reactions 7r~^> -> 7r~^>, 7t""^> -> 7t°m, Tr°n -> rfn respectively
may be obtained in terms of three real parameters. If we write S \S \e2ia, S0_
i\S0_\e'Y, S00 |S00|e2'^, and et, ß, and |S0_| are left as parameters to be determined,
then \S |, |S00| and y may be obtained from the following three equations:

|S__|2 1-|S0_|2-|S,_|2-|S2_|2,
[Sool 1 — Po-I — |S,o| — |S20|

- *|S__| \S0_\e^"-y^ + i\Snn\ \S0_\elcr-2f» +SX_SX0 + S2_S20 0.

If in the last equation we introduce 8 defined by

y oc + ß+8
we obtain the two equations

cosS|S0_|(|S00| - \S__\) Re[ie-'c«-f»(S._SX0+S2_S20)],

sinS|S0_|(|S00| + |S_|) lm[ie-«"-P>(Sx_SXn+S2_S20)].

The second of these equations shows that 8 is of order e2, so that the two equations
become, keeping terms of order e2 only,

|S0_|(|S,_|2 + |S2_|2 - |S10|2 - |S20|2) ta 2(1 - \S0_\2y<2Re[ie-'<«-ß> (SX_SX0

+ S2J20)l

8 * i[|S0_|(l - |S0_|2)'/2]^ lm[ie-'c«-fr(Sx_SXn + S2_S20)]

If the photoproduction amplitudes were known with sufficient accuracy, the first of
these equations could be taken as a relation between |50_|, a and ß, so that only two
parameters would be required for each (/, P) state in order to fit the experimental data
on tt~P elastic and charge exchange scattering. However, the photoproduction theory
is not reliable enough for this purpose; it uses Watson's final state theorem, 'charge
independent' pion nucléon phases, equal masses for the pions and for the nucléons and
the approximate solution of integral equations. It would be better to say that very
accurate ir~p experiments might eventually be used to give a relation between the
photoproduction amplitudes and thus a check on the reliability of photoproduction
theory.

What we have pointed out is that, instead of the ten parameters required to specify
the full 4x4 unitary symmetric matrix for each (/, P) state, it is possible to use our
approximate knowledge of the pion photoproduction multipole amplitudes to express
the two amplitudesS S0_ required for the analysis of 7r"^> elastic and charge exchange
scattering in terms of three parameters |50_|, a and ß, via the equations

\S__\ ta (l-\Sn_\2y>2-$(l-\Sn_\2)-"2(\Sx_\2+\S2J,2),

y ct + ß + 8,

\Sn_\2yi2mm[ie-^-ß>(sxjXn+s2_s2n)].

It is perhaps not too much to hope that some day 7r~^> experiments can be performed
which are sufficiently accurate for three parameters for each (/, P) state to be reliably
determined.

s__ |S--\e2i*.

So- i\S0 A\eiy,

8 ta i[|S0--1(1-
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So far, we have not taken account of Coulomb corrections. This can be done only
in a non-relativistic way. The formalism has been worked out by Oades and Rasche
[16]. The formulae of Appendix 1 of that paper can be taken over, with the Sr± and
Sfv appearing there replaced by the Si\, and Sjjf of the present paper, and/ (* ± A_),

P= (—1)'+1. Note that, whereas in Ref. [16] it was shown, using real pion-nucleon
potentials, that the submatrix S\J± (i,j 0, —) is unitary, it is clear from the discussion
of this section, that this is no longer the case when the yn channel is taken into account.
This would also be true in a phenomenological model in which the pion-nucleon potentials

are taken to be complex.

5. Conclusions

Until recently, the statistics of -rr~p experiments were so limited that it was only
possible to determine just one parameter for each (/, P) state. In the evaluation of most
of the experiments, the electromagnetic effects have been taken into account only
via the additive Coulomb amplitude. The nuclear amplitude was parametrized in a
charge independent way by introducing two purely nuclear phases, for T \ and
T 3/2, the latter being taken from the analysis of -n+p experiments.

The better statistics available in the experiments of Carter et al. [9] force one to
think more carefully about the effect of the electromagnetic interactions. We would
like to emphasize that this must be done already at a very early stage, namely as soon
as one extracts phases from the differential cross-sections. Further, we emphasize
that already at that stage, one has to take into account the presence of the yn channel,
by introducing more parameters in the analysis of tt~P experiments. In this paper, we
have shown how some of the parameters can be fixed by an approximate knowledge of
pion photoproduction multipole amplitudes, so that in the analysis of the data only
three parameters have to be included for each (/, P) state.

Unfortunately, even for the presently available tt~P experiments with the best
statistical accuracy, it is impossible to determine three parameters for each (/, P)
state. On the other hand, it is clear that taking one parameter from the analysis of
tt+P experiments and including a second parameter for fitting 7r~^> experiments is
not adequate to obtain a good statistical fit, unless an attempt is made, using a model,
to obtain 'purely nuclear' phases from the 'nuclear' phases extracted from the analysis.
We are thus in an awkward intermediate stage where it is necessary to resort to some
kind of 'charge independent' model, however inadequate, in order to fit the ^p
experiments, but we cannot determine enough parameters to test any such model. To
conclude, then, we have proposed a method for parametrizing 7r~^> experiments which
requires three parameters to be determined at each energy for a given (/, P) state.
Since these three parameters cannot be reliably determined from the presently available
experiments, it is necessary to use a specific charge independent model which enables
TT-p experiments at a given energy below the threshold for pion production to be
analysed in terms of just two parameters for each (/, P) state. However, since the model
cannot be tested as to its reliability, the 'charge independent' phases which are extracted
from the analysis of the experiments are open to considerable uncertainty.

One corollary of this negative conclusion is that models for time reversal violation
in pion photoproduction and radiative capture, and evidence for an isotensor term in
the electromagnetic current [18, 19] must be viewed with suspicion. Apart from the
different conclusions of these references, we wish to emphasize the unsatisfactory
features of current photoproduction models which are listed in Section 4. These models
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use 'charge independence' in a very crude form. No account is taken of Coulomb or
mass difference effects and, most important, the 'charge independent' phases which
are used are uncertain to a degree which makes the unambiguous isolation of residual
effects like an isotensor current impossible.

One of us (G.R.) wishes to thank Professor K. J. Le Couteur and the Research
School of Physical Sciences, Australian National University, for their kind hospitality
during the three months in which the ideas of this paper were worked out.

We also wish to thank Professor J. Hamilton and Dr. G. C. Oades for critical reading

of the manuscript.

Appendix A
The expression for the differential cross-section for the process (i) -> (;) is

da a-N2N2
— (s; n,n, ; A;'1' A;<2> A<» A<2>) U-^L | T„ (s ; n,nf ; A™ Xf > A<» A«>) |2,
aiJnj qt 4:ttzs

where Tjt is defined by

<PJ,)A'/1>;p<2>Af \S -1 \p\l)Xp;ppXfy

-i(2n)~2 8<4)(PP + pp - pep - pP) ^A _V I \f] ^ Pj y i Pi I r£U)£(2)£(l>£<2)-jl/2

xTj^Ujn^X'i^X'^Xpxp).
In terms of partial wave decompositions, this means that

SfxpXf>,iA<»A<2> (s) - 8tj8Xwx-w8xwxfi »T^(1)Af>,a<1>Af)(s)-

It is customary to take a system of axes for which n, is in the direction of the polar
axis (n, e). Since

DiiAt(+t,0. tor-M-r*'*****,.
we have

Tj^s-.njeiX'^XfyXpXP)

2-TTS1'2

NiNjVq.qj
,i(A,-A^ 2 tj+i) Tf^x-^ixinx^dlxjj),

since (A( — A^) is always an integer. Integrating over all directions nJt we obtain the
total cross-section aJt for the process (i) -> (j) :

2tt
aji(s;X'}»X'P> XP A«>) =—£ (J+ i) 12fy*a>>iW> (s) |2.

Using an obvious notation for the matrices, it follows from

(sjysJ -1, (sJ)T=sJ, sJ -1 »r1
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that

2lmTJ= (Tjy TJ.

In particular,

2 Im riA«>A<2>, ûfffiff» (s) 2 2 I ^jW«>, «A«»A'2> (s) 12

' j~i Af>Af>
J ' ' '

and thus

2 2 <rji(s;X'f»X'}»XpXP)
j-l A'«»A'/2>

477 -^-V2, (J + i)Im riW>, <A<»A<2> (s)

2JV2

rjrlmT^s-.ee^XpXpXpXP).
q,s1/2

This is the optical theorem; to express it in manifestly covariant form, one simply
notes that

q, ss '2 A_[ - (mp + mP)2]ll2[s - (mp - mP)2]1'2.

Appendix B

We now give the formulae connecting the pion photoproduction amplitudes
S{!_, S2£, S(g, S20* with the usual electric and magnetic multipole amplitudes. The
details of the calculation can be reconstructed from Refs. [15, 17].

We shall use q_, q0, q to denote the magnitude of the three-momentum of either
particle in the CMS, for the channels (7r~^>), (ir°n), (yn) respectively. Then

/- Vi Vi
1

3 ' 3 'Si*=V2li__Jy

where i 1,2 and

Ai™ -(/ +1) Eltin - (/ - i) M{?_in,

M™ V(/-i)(/ + f)[£g>_è)+ - Mlkli)+],
when P (-1)J+1'2 and k 0, 1, 3, while

AJxPm (J - i) E\?+i)_ - (/ + f) M$+i)_,

Ai™ V(/ - i) (/ + i) [£&*,_ + M&*)-].
when P (-1)J"1/2 and * 0, 1, 3.
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