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The Parametrization of #—p Scattering Experiments

by G. Rasche

Institut fiir Theoretische Physik der Universitit, Schonberggasse, 9, CH-8001 Ziirich,
Switzerland

and W. S. Woolcock

Research School of Physical Sciences, The Australian National University, Canberra, Australia
(3. 1. 72)

Abstract. The difficulty of making a precise statement of charge independence for pion-nucleon
scattering is pointed out. We emphasize that in taking account of electromagnetic effects in the
analysis of 7~p scattering experiments, it is necessary to consider the radiative capture process
7w~ P — yn. A procedure for doing this is given. The unsatisfactory aspects of recent statements
about time-reversal violation and possible isotensor current contributions in pion photoproduction
and radiative capture are pointed out.

1. Introduction

In the analysis of pion-nucleon scattering experiments it is generally assumed that
the hypothesis of charge independence holds. What this means can only be specified
precisely within the framework of a specific model for electromagnetic effects. Looking
first at 7™ p scattering in the elastic region, it is well known that the nuclear scattering
amplitude can be approximated by a truncated partial-wave expansion and can be
parametrized by means of one real phase shift for each state of fixed total angular
momentum and parity. The long-range electromagnetic effects of the Coulomb inter-
action are taken into account in the analysis of experiments by adding the point-
charge Coulomb amplitude to a modified nuclear amplitude. Further electromagnetic
corrections to the phase-shifts determined from experiment are then necessary if the
statistical errors on these phase-shifts are much smaller than, or of the order of
magnitude of, these residual electromagnetic effects. Methods for making these
corrections have been worked out by several authors using different models [1]-[6].

Turning now to the case of 7~ elastic and charge exchange scattering, we can
again approximate the nuclear scattering amplitudes by truncated partial-wave
expansions. In the charge independent limit, one needs two real phase shifts for each
state of fixed total angular momentum J and parity P, corresponding to the two possi-
bilities for the total isospin, T = 1/2 and T = 3/2. Furthermore, charge independence
implies that the 7" = 3/2 phase shifts can be taken from the analysis of #* p experiments.
Again, the long range electromagnetic effects of the Coulomb interaction are taken
into account by including the point-charge Coulomb amplitude (for 7~ elastic
scattering) and modifying the nuclear amplitudes. If one does not make the charge
independence hypothesis, the situation for the analysis of =~ scattering data changes
drastically, and the number of parameters to be determined for each (], P) state is
increased. Following earlier work by Chiu [7], it was emphasized by Oades and Rasche
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[8] that Zhree real parameters (two phase shifts and a mixing angle) are necessary for
each (J, P) state, to fit the 7~ p elastic and charge exchange data. This is correctly taken
into account in approximate models, such as the method for making ‘outer’ Coulomb
corrections proposed by van Hove [1].

The fact that in the 77~ case three parameters are necessary to specify the scatter-
ing amplitudes for each (/, P) state is independent of the specific model used to calculate
the mixing angle and the electromagnetic corrections to the phases. Attempts to make
models for these corrections arise from the situation that the experimental data are
not accurate enough to determine these three parameters directly. Each model tries to
express the three parameters in terms of two charge independent phase shifts. Then,
if one accepts the model, these two parameters can be determined from experiment with
reasonable accuracy. The present models all use non-relativistic potential theory in
one form or another. This might be satisfactory in the very low energy range, but it
certainly is not reliable in the region of the (3/2,3/2) resonance. This, and other difficul-
ties in the analysis, make the numbers for the parameters of the (3/2,3/2) resonance,
as quoted for example by Carter et al. [9], very doubtful.})

This paper is mainly concerned to point out another electromagnetic effect
which hitherto has been neglected completely in the analysis of #~p data. As soon as
one takes into account corrections to charge independence, the influence of the radiative
capture process

TP —>yn

has to be considered as well. The value of the Panofsky ratio indicates that at low ener-
gies at least there is quite a high probability for this process. As we shall show, this means
that for each (], P) state, we require ten real parameters, except for the (1/2,+1)
states, where the number of parameters reduces to six.

It should be noted that any conclusion about ‘charge independent’ phase shifts,
or parameters obtained from them (such as scattering lengths) is invalid if one has not
already taken into account this increased number of parameters in the analysis of
experiments. This remark applies in particular to numerical calculations for testing
charge independence, methods for which have been developed by Térnqvist [10]. If,
because of the limited statistics of the experiments, it is not possible to include these
parameters in some way or other in the analysis of the data, then all electromagnetic
corrections are doubtful and no firm conclusions can be reached concerning the charge
independent phases.

In Section 2, we write down the consequences of the unitarity of the S-operator
for the case of # two-body channels, at energies where no other channels are open.
We also point out the consequences of time-reversal invariance and parity conservation.
A very simple example with two channels only is provided by np elastic scattering
and radiative capture and we discuss this in Section 3. In particular, we point out the
modification of the low-energy behaviour of the #np elastic scattering cross-section.
In Section 4, we turn to the case of (7~ p), (#°#) and (yn) and show that, for each
(J, P) state, except those with (1/2,41), it is necessary to consider a 4 x 4 unitary,

1y Explicit introduction of a potential can be avoided by using a certain ansatz for the wave
function, but this ansatz can be justified only from non-relativistic potential theory. Auvil
[8] has used the Klein-Gordon equation, which involves making the static approximation
for the target motion. His work is purely speculative and suggests one possible extension of
the results from the Schrédinger equation to relativistic situations.
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symmetric matrix. We then indicate how an approximate knowledge of pion photo-
production multipole amplitudes can be used to reduce to three the number of para-

meters required for each (/, P) state to fit 7~ p experiments. Section 5 will summarize
our conclusions.

2. Unitarity

Consider the case of # two-body channels, 7 =1, ..., n, at an energy where no other
channels are open. With plane wave states normalized so that {p’[p) = 8% (p’ — p) we
define the quantity S, for the process () — (7) as follows:

DY) 0 (2) V@[S YD) -0 (2) X(2)
PP pPA2(S|pP AL pP AR

N,N,

e =2 S(4) [ /(1) (2) _ A1) _ 5(2)
= (277) 8 (PJ +jbj ) P( P(i )[Egl)E(.Z)E(.l)E(.Z)]liz
i J J

2__p2. <)) Y2 1 2)
S (B2 = Pimymg; X X220 XAP),

Here P is the total three-momentum, E the total energy and n; and n,; are unit vectors.
The vector n, is defined as the unit vector in the direction of the vector (#{! 4+ m(®)~1.
(mPp — m{Pp@), and similarly for n;. N; and N, are products of two factors, one
for each particle, the factors being (mass)!/2 for a fermion and 27!/2 for a boson. The
superscripts (1), (2) label the two particles in each channel and the quantities A{,
A2 A X2 are the helicities of the respective particles. We now go to the centre-of-
momentum system (CMS), so that P = 0 and n; may be identified as the unit vector in
the direction of motion of particle (1) in channel (i). The magnitude of the three-
momentum of either particle will be denoted by g¢;. The invariant quantity (E? — P?)
on which S;; depends is just the Mandelstam variable s.

Now by a modification of the argument leading to eq. (30) of Jacob and Wick
[11] we have the following partial wave decomposition:

Sor 858,03 XD XD NP AP)

2msl/i2

B Nth(‘Ith')llz

Z (J+1%) Sijm,\:jm, ADAR (s) 5}{4,\3 (¢, 05, 27— ¢5) Dip, (bi, 6;, 2 — )
I M

In this equation Ay= -/\(,” — AP, A=A — X @ and (0,,¢,), (0;,$,) are the polar angles
of n;, n; respectively in some established system of spherical polar coordinates, We may
now deduce from the unitarity of the S operator,

StS =1,
that

S? Y . ) = 8;; 0y 8 y@e
m(1)YAM(2) A1) (2 12 (1I\(2) ()1 (2))/(2)
Y st i KATOND, XS )A;)(S) KALOND, XA (8) = 015 0 xox® 0 2
T %% %k

This means that if, for fixed s and J, we construct a finite square matrix

Snox@, aga@(s),

labelling the rows and columns by means of the possible combinations of helicities for
each of the # channels in turn, then this matrix is unitary.
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It is shown by Jacob and Wick [11] that from the time-reversal invariance prop-
erty of the S-operator it follows that the matrix ij\'}n)vjm, @ (s) is symmetric. This
means that, if it is an N x N matrix, it may be specified in terms of $N(N + 1) real
parameters, which may be chosen as $N(N — 1) moduli of matrix elements and N
phases.

The consequences of conservation of parity are a little more complicated to state.
Again using the calculation of Jacob and Wick, we find that

I, (2 ; — -1 GJ ;
Sj—)tj‘”—)t}z’, i—A—2@ (5) = 1,7 Sj,\f}n,\}(z)’ AR (S)

where 7; is a phase factor which depends only on the particles in channel (i). As Jacob
and Wick point out, this means that the number of independent matrix elements is
reduced by ‘roughly’ a factor 2. The word ‘roughly’ takes account of the possibility
that, if there are two or more channels involving only massive bosons, there will be
entries in the matrix which correspond to all four helicities being zero, and conservation
of parity says nothing about these entries. In the example of Section 4, we show how
the 8 x 8 matrix corresponding to a given J can be transformed into the direct sum of
two 4 x 4 submatrices (still unitary and symmetric) which can be considered separately.

Note finally that if there are further conserved quantum numbers (such as total
isospin), the number of independent matrix elements is further reduced. Appendix

A gives expressions for the differential cross-section for the binary process (¢) — (7) and
for the optical theorem.

3. The Influence of Radiative Capture on Elastic np Scattering

If one considers np elastic scattering, even at low energies, there is another two-
body channel, namely (yd), and the exothermic reaction #np — vyd is possible (4 denotes
the deuteron). We are interested in the influence of the (yd) channel on the (/ =0,
L = 0) scattering length for #p scattering. In considering this, it is convenient to neglect
non-central forces; this means that we assume that, as well as the total angular mo-
mentum [, the orbital angular momentum L is also a good quantum number. It is
obvious that for our present purpose this approximation is adequate; the (J =1,
L = 2) state admixture has a very low probability in the deuteron.

We look at the #np initial state with J =0, L = 0. The final nuclear state consists
of the deuteron, with /=1, L =0. According to the well-known selection rules for
y-emission, the emitted y must be magnetic dipole radiation. Thus, we are left with a
2 x 2matrix S;;, 7,7 =1, 2, where 1 refers to the (np) channel, 2 to the (yd). We do not
consider the possibility of triplet scattering and look only at the contribution to the
cross-sections from the (J =0, L = 0) state. From Appendix A,

01 =779_2|511 = 1|2,
oy =4 2|5y |2

where o, is the total cross-section for np elastic scattting, o,, the total cross-section

for radiative capture np — yd and ¢ is the magnitude of the three-momentum of either
n or p in the CMS.

It can easily be seen that a unitary, symmetric 2 x 2 matrix can be written,
using the three real parameters p, « and B, in the following way:

S“ - pezm’ 522 s PeZiﬁ:
Si2 =Sy =i(l — p?)!/2e!*P,
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The parametrization has been chosen in such a way that in the limiting case of neglecting
the (yd) channel (p = 1), « is the conventional phase shift for #p elastic scattering in the
(J =0, L =0) state. Thus p can be interpreted as an inelasticity parameter. One easily
checks that '

oy =ng *[(1 — p)2 +4psin?a], oy =mg (1 —p?).

The cross-section o,; can be calculated using certain approximations [12]. Since
we are only interested in the very low energy behaviour, we write

oy =wCq7,
where C is a constant which can be taken from the calculation of Ref. [12]. Then
pt=1-Cyqg.
Assuming that the low-energy behaviour of the phase « is given by
o =—gs + 0(¢’),
as suggested by effective range theory, we obtain
oyy = 4m[s? +3C? — 2C(s2 — $C?)q + 0(¢%)] (*)

The interesting point to note is that the low-energy behaviour of o, is modified;
a term linear in ¢ appears, which would not be present if C = 0.

The phase « is not to be confused with the real phase ay which would describe
np scattering if the yd channel were absent (we neglect all other corrections to nuclear
scattering, in particular those due to the magnetic moment interaction). The ‘purely
nuclear’ scattering length sy is defined via the low-energy behaviour of ay:

ay =—qsy + 0(¢°)

To get the experimental value for the parameter s, C is taken either from Ref. [12]
or from experiments on radiative capture [13]. Then eq. (*) can be fitted to experiments
by adjusting the parameter s. It turns out that the numerical value of s changes only very
little compared with the statistical error if one puts C = 0in eq. (*). This does not necess-
arily mean that (s — sy) is small.

Since we are really interested in sy (for example, to test the charge independence
of the nucleon-nucleon interaction), it is necessary to resort to a model in order to de-
termine it. This can be done by fitting C and s in a phenomenological way by means of
a complex potential. Having determined the parameters of the potential, the imaginary
part is put equal to zero and sy calculated using the real part only. Making a simple
numerical estimate in this way, it turns out that (s — s,) is much smaller than the experi-
mental error on s [14], so that at the present experimental accuracy the influence of the
(vd) channel on the determination of sy can be completely neglected.

4. @ p and Related Channels

We consider now the system consisting of the three channels (w~p), (#°#n) and
(yn), at energies below the threshold for #° production. We make the approximation
of neglecting higher order electromagnetic processes in which more than one photon is
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involved. Furthermore, we neglect Bremsstrahlung, since we confine ourselves to two-
particle final states.

For the three channels the parity factors may be chosen as —1, —1 and +1, respect-
ively. When time-reversal invariance and parity conservation have been taken into
account, the 8 x 8 matrix for fixed J has just twenty independent entries; we now
write it out fully. The numbers in brackets which are given for each row and column
are the helicities of the particles in the channel concerned.

("T;P) (*n'i n) (ﬂ@)

r \ I - r

©) -3 ) ©-H W) 1-H(1-3 (13
Oh[s, S S S, S S S S

L (O—%) 54 53 SIO S9 "'512 —511 “‘514 “513
] (1'&) S —Ss Sy —512 515 st S17 SIS
("1"'1‘) Ss _Ss 512 —Su 516 S:s Sls Sn

(yn) <
A-=H|S; =S¢ S =S S Sis Sie Sz
SEDIE =57 S Sz Sis Sy S Sie

Now multiply this matrix on the right by the matrix R and on the left by RT, where R
is the real orthogonal matrix given by

1 0 0 0 1 0 0 0

1 0 0 0 -1 0o 0 O©

o 1 0 0 o0 1 0 0

L]0 10 0 0o 1 0 o
B=710o o 1 o o o 1 o
o 0 -1 0 o o0 1 0

o 0 0 1 0 0 0 1

(0 0 0 -1 0 0 o0 1
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The transformed matrix, which is also unitary and symmetric, now takes the form

8, 48 S;+58; 55 §,-5 0 0 0 0 ]
Bu+8 S48y Sy—8u 5m—5, 0 0 0 0
S8s—8¢ Siu—8i Si—%Si Su—Su 0 0 0 0
S;—Ss  S13—S14 Si7—Si5 Sis—Sa0 0 0 0 0
0 0 0 0 S;—S, S;—S, S;+S¢ S,;+S,
0 0 0 0 S;—-5Ss S¢—Si0 Sii+S12 Si3+S14
0 0 0 0 Ss+S¢ S +S12 Sis+Si6 Si7+S:s
|0 0 0 0 S;+Ss  Sis+Sis Si7+Sis 519+5ch

Each of the 4 x 4 submatrices is thus unitary and symmetric. The upper submatrix
corresponds to parity (—1)7*1/2 the lower to parity (—1)’~!/2, The transformation with
the matrix R corresponds to the well-known transition from helicity eigenstates to
electromagnetic multipoles.

Corresponding to each fixed total angular momentum J and parity P, we thus have
a4 x 4 matrix, except for the states with J = %, for which the matrix is 3 x 3. A con-
venient notation for the elements of the matrix is

(m=p) (#°n) (yn,1) (yn,2)

@ [S_  So. S_ S,

(yn,1) | Si- Sio S Si2

(yn,2) | Sy S Si2 Szz__

Now for the energies under consideration, there is an approximate dispersion theory of
pion photoproduction which yields the four complex numbers S,_, S,_, S|¢, S14, Which
are of first order in the proton charge e. The multipole amplitudes E{% -3, M{%1.3 are
tabulated by Berends, Donnachie and Weaver [15] and in Appendix B explicit formulae
are given for computing S,_, S,_, S|4, S, from them.



Vol. 45, 1972 The Parametrization of #—p Scattering Experiments 649

Knowing these four numbers, the three complex numbers S__, S,_, Soo required
for the analysis of the reactions n~p — 7~ p, 7~ p — w°n, #°n — 7°n respectively

may be obtained in terms of three real parameters. If we write S__ = |S__|e?*, §,_ =
i|So_|€', Sgo = |Seol¢**f, and «, B, and |S,_| are left as parameters to be determined,
then |S__|, |Syo| and y may be obtained from the following three equations:

IS__2=1—[So_|> = [Si-[> = |S2-]%,
Esoo|2 =1- |So—|2 - |510|2 - |Szolz’
—8|S__||So-[6" @ + §|Spg||So_|e! 2P + S, _ S+ S,-S30=0.

If in the last equation we introduce & defined by

y=a+f+0

we obtain the two equations
005 8|So_|(|Soo| — [S__|) = Re[ie =P (S;_S,4+S,_5,0)],
sin8|Sy_|(|Seo + |S__|) = Im[ie=#="B (S, 5,4 +5,_S,)).

The second of these equations shows that & is of order ¢?, so that the two equations
become, keeping terms of order e? only,

1So-|(1S1=|2 + |S2=1> = |S10]2 = |S20]?) & 2(1 — |So_|2) /2 Re[te =P (S, By
+52-520)]:
H[So- [ = 1Sp- |32 7! Im[e™H*~ B, - 510+52~520ﬂ

If the photoproduction amplitudes were known with sufficient accuracy, the first of
these equations could be taken as a relation between |Sy_|, « and f, so that only two
parameters would be required for each (/, P) state in order to fit the experimental data
on 7~ p elastic and charge exchange scattering. However, the photoproduction theory
is not reliable enough for this purpose; it uses Watson’s final state theorem, ‘charge
independent’ pion nucleon phases, equal masses for the pions and for the nucleons and
the approximate solution of integral equations. It would be better to say that very
accurate 7~ p experiments might eventually be used to give a relation between the
photoproduction amplitudes and thus a check on the reliability of photoproduction
theory.

What we have pointed out is that, instead of the ten parameters required to specify
the full 4 x 4 unitary symmetric matrix for each (J, P) state, it is possible to use our
approximate knowledge of the pion photoproduction multipole amplitudes to express
the two amplitudesS__, S,_ required for the analysis of 77~ p elastic and charge exchange
scattering in terms of three parameters |S,_|, « and B, via the equations

— IS, [S__| & (1= [Sa_[?)2 — 3(1 — [Sa VR (IS,_[2 + [Sa- )
So=i|So_le?, y=o+B+35,
3|So-1(1 = |Se-]%)*/2]7! Im[ie~"==P (S, _ §m +5;..Sz0)]-

It is perhaps not too much to hope that some day 7=~ experiments can be performed
which are sufficiently accurate for three parameters for each (/, P) state to be reliably
determined.
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So far, we have not taken account of Coulomb corrections. This can be done only
in a non-relativistic way. The formalism has been worked out by Oades and Rasche
[16]. The formulae of Appendix 1 of that paper can be taken over, with the S;z and
S?; appearing there replaced by the S’? and Sg* of the present paper, and J = (/ + 1),
P = (—1)"*!, Note that, whereas in Ref. [16] it was shown, using real pion-nucleon
potentials, that the submatrix SiJ, (7,7 = 0, —) is unitary, it is clear from the discussion
of this section, that this is no longer the case when the y# channel is taken into account.
This would also be true in a phenomenological model in which the pion-nucleon poten-
tials are taken to be complex.

5. Conclusions

Until recently, the statistics of 7~ p experiments were so limited that it was only
possible to determine just one parameter for each (/, P) state. In the evaluation of most
of the experiments, the electromagnetic effects have been taken into account only
via the additive Coulomb amplitude. The nuclear amplitude was parametrized in a
charge independent way by introducing two purely nuclear phases, for T =4 and
T = 3/2, the latter being taken from the analysis of 7" p experiments.

The better statistics available in the experiments of Carter et al. [9] force one to
think more carefully about the effect of the electromagnetic interactions. We would
like to emphasize that this must be done already at a very early stage, namely as soon
as one extracts phases from the differential cross-sections. Further, we emphasize
that already at that stage, one has to take into account the presence of the yn channel,
by introducing more parameters in the analysis of 7~ p experiments. In this paper, we
have shown how some of the parameters can be fixed by an approximate knowledge of
pion photoproduction multipole amplitudes, so that in the analysis of the data only
three parameters have to be included for each (/J, P) state.

Unfortunately, even for the presently available 7~p experiments with the best
statistical accuracy, it is impossible to determine three parameters for each (J, P)
state. On the other hand, it is clear that taking one parameter from the analysis of
7*p experiments and including a second parameter for fitting #~p experiments is
not adequate to obtain a good statistical fit, unless an attempt is made, using a model,
to obtain ‘purely nuclear’ phases from the ‘nuclear’ phases extracted from the analysis.
We are thus in an awkward intermediate stage where it is necessary to resort to some
kind of ‘charge independent’ model, however inadequate, in order to fit the #*
experiments, but we cannot determine enough parameters to test any such model. To
conclude, then, we have proposed a method for parametrizing =~ experiments which
requires three parameters to be determined at each energy for a given (/J, P) state.
Since these three parameters cannot be reliably determined from the presently available
experiments, it is necessary to use a specific charge independent model which enables
m* p experiments at a given energy below the threshold for pion production to be ana-
lysed in terms of just two parameters for each (/, P) state. However, since the model
cannot be tested as toitsreliability, the ‘charge independent’ phases which are extracted
from the analysis of the experiments are open to considerable uncertainty.

One corollary of this negative conclusion is that models for time reversal violation
in pion photoproduction and radiative capture, and evidence for an isotensor term in
the electromagnetic current [18, 19] must be viewed with suspicion. Apart from the
different conclusions of these references, we wish to emphasize the unsatisfactory
features of current photoproduction models which are listed in Section 4. These models
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use ‘charge independence’ in a very crude form. No account is taken of Coulomb or
mass difference effects and, most important, the ‘charge independent’ phases which
are used are uncertain to a degree which makes the unambiguous isolation of residual
effects like an isotensor current impossible.

One of us (G.R.) wishes to thank Professor K. J. Le Couteur and the Research
School of Physical Sciences, Australian National University, for their kind hospitality
during the three months in which the ideas of this paper were worked out.

We also wish to thank Professor J. Hamilton and Dr. G. C. Oades for critical read-
ing of the manuscript.

Appendix A

The expression for the differential cross-section for the process (7) — () is

do q; N2 N?
T (s;0m,; XD NP AL AD) =q—’ 4;2; | T4 (s;mymy; XX @AW AD) |2,
J i

where T, is defined by
PPN pD XD |S — 1 |ph AD: p@ A2

Ari Nj
[Egl)Egz) Egl)E§2)]l/2

=—i(@m) 8@ + pP — pP — pP)

X T ji(s; mymy; A 7\;(2) AP A2).
In terms of partial wave decompositions, this means that
Sj—’/\atl),\;gz), ADA@ (s)— 8,0 ALY 3,\(3),\"(2) =1 T}ﬁf’u))‘}m’ AP (s).

It is customary to take a system of axes for which n, isin the direction of the polar
axis (n; = e). Since

Dia, (¢4, 0, 2 — ;) = gt Onap

we have
s Y (D) Y2 1
T ylss n, e,/\f )Aj( > XD A@)

2mrsl/2 o
e APy z (] —|-%) Tﬁ}l)hg(z)’ DA (S) d{a} (BJ) ;
NiN;Vgq; g

since (A; — A)) is always an integer. Integrating over all directions n;, we obtain the
total cross-section o; for the process (i) — (5):

2m
CulSINPNENINE) =23 D U+ DI Thgmago o O

iy
Using an obvious notation for the matrices, it follows from

SHTST =1, (SHT=S8’, S —1=:iT’
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that
2Im T =(THTY.

In particular,

n
2Im Thoye poy@(s) = > 2 |[Thoye po@ (5)]?
At o1 vy
=1 Ay

and thus
n
G-i(Si)\'(”X-(Z))\(i”/\?))
=1 Xy T

4
= 'q_zz (/ +%)Im T‘!A(tl)’\(;n: AA@ (s)
L
ON?

T g,s!/2 Im T(s; ee; AP AP AP AP).
i

This is the optical theorem; to express it in manifestly covariant form, one simply
notes that

quss =4 — (mf + @2 — (mfD — P12

Appendix B

We now give the formulae connecting the pion photoproduction amplitudes
S{E, SJE, SJF, SIF with the usual electric and magnetic multipole amplitudes. The de-
tails of the calculation can be reconstructed from Refs. [15, 17].

We shall use g_, g,, ¢, to denote the magnitude of the three-momentum of either
particle in the CMS, for the channels (7~ ), (7°#n), (yn) respectively. Then

Ve V2
Sif=V2q_q, [‘/51‘13'”0) — 5 AITP + 5 47O,

S = V2oq, [=477O + 3 AIPO 1 3 47PD],
where ¢ =1, 2 and

APP® = —~(J+HES 4y — (J =5 ME 4.4,

AFP® = V(T =P T+ [EG g+ — MEp4],
when P = (=1)?*1/2 and k=0, 1, 3, while

ATPO = (J—PE® .\ —(J+3HME,

AFO = (J =5 (T +DEE - + ME, ),
when P = (—1)’-1/2and =0, 1, 3.
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