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On the Decay of an Unstable Particle')

by Kalyan Sinha

Department of Theoretical Physics, University of Geneva

(22. XII. 71)

Abstract. It is shown that the absence of regeneration of the unstable particle from the decay

products is inconsistent with a Hamiltonian bounded below. Consequences of some decay laws are
also derived.

1. Introduction

In this paper, we study the problem of decay of an unstable particle in the usual
quantum mechanical formalism, following the works of Williams [1] and Horwitz et al.
[2]. There have been many investigations of the problem (Refs. [3]-[7]) prior to those of
the above-mentioned authors, but they initiated a mathematically rigorous formu-
lation of the problem. This study is essentially a continuation of their investigations.
Here we do not attempt to give a physically acceptable detailed model of an ‘unstable
particle’, but we start from an essentially model-independent set-up and derive some
consequences a decaying system forces on the theory. For an interesting discussion of
various models and their relative merits, the reader is referred to the above mentioned
authors.

We shall start by assuming that an unstable particle can be described by vectors
in a Hilbert space 5#,. We shall also assume that J#, can be embedded in a larger Hilbert
space 5 such that s# = #, @ # , where # ; is the Hilbert space of the decay products.
The last assumption is natural to interpret the decay of unstable particle vectors in 5,
as being due to a loss probability from s#, into the Hilbert space of decay products,
K p.

Let V() be the unitary evolution of the total system (i.e. unstable particle and the
decay products), generated by a self-adjoint Hamiltonian H in 4. It is natural to
assume the unitarity of the evolution operator because once we have included all the
decay products in the system, the total system is isolated from the rest of the Universe
as far as the decay phenomenon is concerned. Then the probability that a particle in
the initial state ¥ € #, remain in the same state after time ¢ > 0 is given by

pe(t) = |(F.VO)P)|>.
This quantity py(f) is expected to converge to zero as ¢ — o for every ¥ € £, if it

were to describe a decay. Exact decay law, i.e. the rate of convergence of py(?) to zero,
has a striking influence on the theory, as we shall see in the sequel. Most experiments
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tend to show a very rapid rate of decay, viz. the exponential one. It is convenient to
introduce an operator Z(f), called contracted evolution defined for ¢ > 0 as follows

Z(t) = PV(t) P, where P# =#,

Z(t) is essentially a collection of all matrix elements of the type (D, V() ¥); @, ¥ € #,.
So it describes the decay law of any vector in #, into other. As a natural generalization
of exponential decay law for one dimension, one is tempted to think in terms of a semi-
group law for Z(¢) for positive times. In fact, this is what was done in [1] and [2]. We
shall discuss this more fully, give simpler derivation of similar results and also show that
a relaxation of semigroup law for Z(f) does not alter the conclusions.

2. Semigroup Law for Z(#) and Regeneration

- We assume here that Z(f) = PV (f) P obeys a semigroup law for positive time, i.e.
Z(t) Z(ty) = Z(t, +1,); 1,8, =0. (1)
We write (1) more explicitly, viz.
PV(t,) PV(t,) P= PV(t, +t,) P.

Denoting by P, the projection onto the subspace orthogonal to #,, the subspace of
decay products, we obtain

PV () PV(t,) P= PV(t,) PV(t,) P=0

forall¢,,t, > 0.

This equation means that thereis noregeneration of the vectorsin ¢, in subsequent
evolution from the vectors in J# . In other words, a semigroup law for the contracted
evolution Z(¢) for positive times implies that the decay products at any positive time

cannot regenerate the unstable particle. This point has been emphasized by Fonda
and Ghirardi [8].

As a next step towards generalization, one can assume that regeneration is not
absent for all positive times but rather it continues for an arbitrary finite time 7,
called the regeneration time. Mathematically, this is symbolized by

PV(t,) PV(ty) P=0

forall#, > 0 and for¢; > T, > 0. This implies what we term an ‘approximate semigroup
law’ for the contracted evolution Z(¢), viz.

Z(tl) Z(tz) = Z(ti '+‘ tz); tl > Tr > O, tz ,>, 0 (2)

Now we will study the consequences of (1) and (2). Case (1) has been studied in de-
tail by the authors in [1] and [2]. We give simpler proofs and apply the same technique
to the treatment of (2).

Theorem 2.1. Assume (1). Then H, the generator of V (t), has the whole real line as its
spectrum.

The proof is essentially that of Williams [1].

Proof. Under (1) we have already noted that
PV(t,) PV(t,) P=0 forallt,,t,>0.
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Let us consider the following expression
(PV (=) P)* V(t,)(PV (—t,)P) witht,,t,>0
= PV(t,) PV(t,) PV(~t,) P
— PV(t,) PV(t,) V(~t,) P — PV(t,) PV(t) PV(~¢,) P,

where we have used the fact that P — I — P. The second term in the above is zero
because of (1) and the expression reduces to

PV(t,) PV(liy—1t,) P=0,
if we choose ¢, > #; > 0. Similarly,
(PV(=t)P)*V () (PV (~1,)P);  ty,ty > 0
= PV(t,) PV (~t,) PV(~t,) P
= PV(t,) V(~ty) PV (~t,) P — PV(t,) PV(~t,) PV (~t,) P
= (PV(t,) PV(ty—t,)P)* — PV (t,) (PV (1)) PV (t) P)*
=0
by the same choice ¢, > ¢, > 0. Thus for any vector ¥ € J#,
(PV(~t,) P¥, V() PV(~t,)P¥) =0 if |t| >t >0.

In terms of the spectral family {E£,} of H, the generator of the unitary group V(f),
the above can be written as

f e d|E, PV (~t)PP|2 =0 for |t| >t >0.

Then, by Lemma 6 of Appendix, the spectral measure has the whole real line for its
support and we have the desired result.

Remark. In the literature, there is a lot of confusion about the statement and appli-
cation of Paley and Wiener’s theorem [9]. It is worth mentioning that this theorem
relates to the Fourier transform of L2-functions and hence not immediately applicable
to the problem at hand.

Theorem 2.2. Assume (11). Then spectrum of H s the whole real line.

Proof. Since in this case _
PV(t)PV(t,)P=0 fort,>0andt >7T,>0

we can follow the identical construction as in Theorem 2.1 and conclude that for any
vector ¥ € #,

(PV(~t,) PV, V(}) PV (~t,)P¥) =0 if |¢|>¢, > T,>0.

Hence similar argument as in previous theorem leads to the stated conclusion.
Thus we observe that any absence of regeneration even after a finite but arbitrary
time leads to a Hamiltonian necessarily having unphysical spectrum, viz. it is not
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bounded below. In order to avoid this, one must allow regeneratioh to continue for all
positive times, i.e. one must have

PV({#,)PV({t,)P # 0 forallt, =0,f,>0.

3. Sz. Nagy’s Theorem on Extension and its Consequences

We state Sz. Nagy’s theorem here without proof. For the proof, the reader is re-
ferred to Reference [10].

Theorem 3.1.

Let G be a *semigroup and let {Z(g)} be a family of bounded linear operators in £,
satisfying the following:

(&) Ze)=1, Z(g*)=2Z(®*

() .

i,

(117) 2 (Dy, Z( (¥ h* hg,)) D)) < C;._ZJ(Q% Z(g?gj)@i)

iJj

'aTM=

(P, Z(g,8¥) P;) = 0 for finite set {1} and {5}

with a constant C, > 0, where the same set of {1} and {7} are chosen as in (i1).

Then 3 a triple {#",S(g),0Q} such that
Z(g) =05(g)Q Vg et
&L =QX

and the Hilbert space 2 is minimum in the sense that

USEQA =A

geG

i.e. & is generating under the action of S(g), the unitary representation of G in 4.
Also the structure {o¢°,5(g),0} is unique up to an isomorphism of the structure.

Itis easy tocheck that with G = R!, the additive group onthereals; Z(f) = PV (f) P
in & = Ps# for ¢t > 0 and the additional identification that

Z(—t) = PV(~)P = Z()* fort=0,

Z(t) satisfies all the hypotheses of Sz. Nagy’s Theorem. Then there exists " = Ps#,
a projector Q in ) and a unitary representation of R! in 2", S(¢) such that

OA = P#,
Z(t) =050

and & is minimal, i.e.

#=U SHOA

te R1
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Notice that s, a priori need not be minimal with respect to V(f) and P. But then we can
work with the structure {#",S({),Q} which is by Sz. Nagy’s theorem structurally
isomorphic to all other minimal structures. Also, it seems that minimal structure is
the only one which has any right to describe the process under consideration.

Otherwise, there will be vectors in the Hilbert space which are not obtainable from
the unstable particle states by the given evolution and hence cannot describe decay
product states either. Henceforth by {s#, V' (¢), P} we shall mean the minimal structure
implying

U V() Po# =

teR1

4. Decay Laws and the Spectrum of H

The probability amplitude that the unstable particle with an initial state @ € Po#
will be in a state ¥ after time ¢ > 0 is given by (¥, V(£)®). In a decay process that we
attempt to describe here, one expects this quantity or rather its modulus square
|(W,V()®)|? to decay to zero as ¢t — co. This is achieved economically by asking for
weak convergence of Z(f) to zero as ¢ — oo,

By a decay law, we mean finding a positive function ¢(f) such that for every pair
of vectors

|(¥, Z(t)D)| = 0(¢(?))
(¥, Z2()P)
()

&(t) can in general depend on the vectors @ and ¥.

or, equivalently, < a constant, for large ¢ > 0. In this definition, the function

Remark. From the definition Z(—t) = Z(£)* it is clear that there is complete sym-
metry between positive and negative times as far as the decay law is concerned.

Theorem 4.1. Let Z(t) converge weakly to zero as t — . Then the spectrum of H is
CONBLNUOUS.

Proof of this theorem has been given by Horwitz et al. [1]. We give a simpler proof
using the theorem on means given in Appendix.

Proof.
(¥, Z(0¥) = [ e d|E, P2

converges to zero as f — «, then by Lemma 1 of the Appendix, the spectral measure
|E , P¥|? is continuous and hence Ps# < #,, where by # ., we denote the continuous
subspace with respect to H, as in Kato [11]. Since the structure {s#, V(¢), P} is assumed
to be minimal,

#=UVOPH < H,<H

te R

and thus s# = 5, proving the theorem.
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Theorem 4.2 Let
108, z@y®)|at <

for every W e #. Then Z(t) converges weakly to zero as t — o and the spectrum of H 1s
absolutely continuous.

Proof.
(¥, Z(H)¥) = f e d|E , PY|2.

From Lemma 4 in the Appendix we conclude that (¥, Z(¢)¥) converges to zeroas¢ — o
for every ¥ € # and hence by polarisation identity Z(f) converges weakly. By the same
Lemma, we conclude that the spectral measure ||E, P¥|? is absolutely continuous and
as before, using the minimality of the structure {#, V(f), P} we arrive at the result that
H = H, .., the absolutely continuous subspace with respect to H.

Corollary. If the decay law is given by ¢(t) = 1/t1*€ for € > 0, then the spectrum of H
15 absolutely continuous.

Proof. The result follows immediately on application of the Corollary to Lemma 4
in the Appendix.

Theorem 4.3. Let the decay law be exponential, viz. ¢(t) = e P1*l; B> 0. Then the
spectrum of H 1is the whole real line and is absolutely continuous.

Proof. Let ¥ be any vector in 5. Then
W, Z()¥) = f ¢ d||E, P2

and hence, by Lemma 5 in Appendix, the spectral measure ||E, P¥|| 2must have whole
real line as its support and is an absolutely continuous function. This means that
P# < H#,..Since the structure {s#, 1V (f), P} is assumed to be minimal, as before

H=UVOPH < Hyo S H

teR1

and thus # = #, . , showing absolute continuity of the whole spectrum of H.

Appendix

Here we prove a few useful results regarding the Fourier transforms of a Stieltjes
measure. Let o(A) be a Stieltjes measure on R'(—w < A < o) and f() be its Fourier
transform, i.e,

f(t) = fe"‘"do()\); — <t < o,

It is clear that f(f) is a bounded continuous function on R!. For the properties of such
measures and their Fourier transforms, the reader is referred to Bochner [12].
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We state two theorems on the inverse Fourier transform whose proofs can be found
in Ref. [12].

Theorem 1. Lef a(X) and f(t) be as stated before, then

o(A) — o(0) = lim — f f@ -

w00 27.‘-

We define the mean value m of a continuous bounded function on R! as follows:

m{f0} =lim ff

Note that for such functions the mean value always exists, i.e. m{f(f)} < c.

Theorem 2. Let f(t) be the Fourier transform of a Stieltjes measure o(A). Then the
following relation holds for all A(—o < X < o) '

m{f({®) e} = oA + 0) — oA - 0).

The right-hand side expression is sometimes called the ‘jump’ of the function ¢ at
the point A.

Now we prove a few lemmas which have been used in this investigation.

Lemma 1. Let f(t) converge to zero as t — . Then o(A) is continuous in A, i.e. it has
1o ‘qumps’.

Proof. Since f(t) converges to zero ast — oo, so does f(¢) e~#** for all real A, uniformly
in A; ie.

fOe ] = |f@)] <& when [f] > Ty (e

T

[ ryeiar

-T

S T(}

flf ()]dt + j|f |dt+f o

& 6T Te) Ty +26(T — T

Then

T
J—ff(t) Tt 1 B
2T
=

Letting T — oo with € fixed, we obtain
m{f(t) e} < e.

But since € was arbitrary to start with,
m{f(t) e =0 forall A,

thus giving the required result by virtue of Theorem 2.
A weak converse of the above can be proven.
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Lemma 2. Let o()) be continuous in A, then there exists at least one sequence {t;}
tending to infinity such that f(t,) converges to zero.

For the proof of this result, the reader is referred to Lax and Phillips [13].
The following Lemma is the Riemann-Lebesgue Lemma which we produce for

the sake of completeness. The proof of this can be found in most text books, in particular
(12).

Lemma 3. Let o(A) be an absolutely continuous function. Then f(f) converges to zero
as |t| — .

Remark. For definition of absolutely continuous functions and its relation to the
absolute continuity of the measure generated by it, the reader is referred to Rudin
[14].

It is to be noted that the Riemann-Lebesgue Lemma does not give any idea of the
rate of decay of f(f) as¢ — . The next Lemma is essentially the converse of Riemann-
Lebesgue Lemma, but we need some restriction on the decay rate.

Lemma 4. Let f(f) be the Fourier transform of a positive Stieltjes measure o))
and let f(t) be absolutely integrable in R'. Then o(X) is an absolutely continuous function
and hence the Stieltjes measure associated to it is absolutely continuous with respect to the
Lebesgue measure on R!.

Proof. By Theorem 1,

itA __
a(A) — a(0) —hm—ff £

w-© gy —1t

Since f(#) is continuous, bounded and also integrable in R! and (e~*** — 1)/(—1¥) is
continuous, bounded everywhere, the limit exists as a Lebesgue integral, i.e.

[ o]

—itA __ 1
o()) — 0(0) — i f 10 det.

—00

Now we compute the derivation of the continuous function o(A).

_ ’ o —itA __ ,—itA’
M - _1_ f @) f__._e_ dat,
A=X 27 —it(A — A)

—c0

(A) — o 1 ff i) gy 1 f ' g—itA-A) _ |
| g —i < — _ - :
A—XN  2nm 2 ) 170 _it(A— X))
The function
e—ir(A—/\') =1

P, |
—it(A—A")
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goes to zero for fixed ¢ pointwise in A as A" — A and also
e—it(A—A') -1

—tA=X) !

< Constant for|A — A’| small.

Hence by Lebesgue dominated convergence theorem, we have that the continuous

Stieltjes function o(A) is differentiable everywhere in —o < A < o and the derivative
being,

da(d) 1

X 2m

f f(t)e ™ dt

the right-hand side making sense because f(f) € L!. It is easy to see that the real function
do(A)/dA is locally integrable and one verifies that

1 =itA __ ,—itp
il = ol s f s

Hence by a theorem of Dieudonné [15], the Stieltjes (positive) measure u, associated
with the function ¢ by the rule u,(a,b) = o(b) — o(a), is absolutely continuous with
respect to Lebesgue measure in R!.

Remark. Since the measure generated by o is finite, the derivative do(A)/dA is not
only locally integrable, but also integrable. Therefore, by Riemann-Lebesgue Lemma,
it follows that f(#) — 0as¢ — «. In other words, the above Lemma actually proves also
the following: if a function f(f) is of positive type in the sense of Bochner [12] and is
absolutely integrable, then f(f) — 0 as ¢ — «. Note that positivity of the measure is
used though it is not essential. Since we have in mind the spectral measure of a self-
adjoint operator in Hilbert space, this is enough for our applications.

Corollary. Let f(t) be a Fourier transform of a positive Stieltjes measure o(A), and let

£ mo(;l—l_;); e>0.

Then o is absolutely continuous.

Proof.

1
f(t) = O(tl+€)

implies that f(f) is integrable in R! and also clearly f({) — 0 as ¢ — . By the above
Lemma then the result follows.
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Lemma 5. Let f(£) = 0(e"P!*]). Then o is absolutely continuous and has whole R" as its

support.

Proof. Since f(f) =0 (¢7P!*!) for |¢| — o, f e L' and hence, by our previous result,
o 1s absolutely continuous. Using the inversion formula, viz.

o0

g~it1\ -1

o) —o(0) = (2m)1 [ 1) ———at
.\ —1t

we notice that this can be extended to a function of complex variable z = A 4 iu by the

relation

—itz

4 e 1
o(s) — o(0) = 2m) ! f 1) —— .

Theaboveintegral is well defined for z in the open strip—f < u < B and defines a function.
o(z) analytic in the strip whose boundary value for u — 0 is the original Stieltjes
measure o(A). Hence the support of ¢(A) has to be the whole real line.

Lemma 6. Let f(f) =0 for |t| > B. Then o is absolutely continuous and has whole
R as its support.

Proof. Defining o(z) as above, we conclude that o(z) is an entire function whose
boundary value for p — 0 is o(}A) and hence the result.
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