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Das Einschwingen eines zylindrischen Plasmas

in magnetoakustischer Resonanz1)

von K. Appert, B. Hoegger, H. Schneider und E. Weise

Institut für Physik der Universität Freiburg i. Ue.

(14. X. 71)

A bstract. The transient behaviour of an oscillating plasma cylinder is studied near magneto-
acoustic resonance. Appropriate nonlinear magnetohydrodynamic equations are solved as an initial
value problem and the results are compared with experiments. The energy absorbed in the plasma
is found to be strongly dependent on transient effects.

1. Einleitung

Die vorliegende Arbeit ist eine Weiterführung der Untersuchungen von Cantieni
et al. [1], Faessler et al. [2] und Hoegger et al. [3]. Diese und andere Autoren [4] studieren
die magnetoakustische Resonanz eines zylindrischen Plasmas unter der Annahme,
dass sich die angeregte Schwingung im stationären Zustand befinde. In einem Grossteil
der experimentellen Anordnungen spielen jedoch Einschwingeffekte eine wesentliche
Rolle. Stationäre Theorien sagen dann vor allem zu grosse Energieabsorption voraus.
In der vorliegenden Arbeit werden diese transienten Effekte experimentell und
theoretisch untersucht.

Ein zylindrisches Glasrohr enthält ein Argonplasma in einem stabilisierenden
konstanten Magnetfeld in Achsenrichtung. Das Rohr ist von einer leitenden Berandung
umgeben, die als einwindige Spule Teil eines R-C-L-Serieschwingkreises ist. Die
Frequenz des ersten radialen magnetoakustischen Modus der Plasmasäule wird durch
Verändern des Gasdruckes im Bereich der Eigenfrequenz des Schwingkreises variiert.
Es interessiert die Reaktion des Plasmas auf eine Entladung im Schwingkreis. Die
Theorie, die das Problem linear und nicht linear behandelt, ist zum Teil analytischer,
zum Teil numerischer Natur. Das theoretische Verhalten von Magnetfeld und Dichte
wird mit dem experimentellen verglichen. Die gefundene gute Uebereinstimmung
erlaubt theoretische Aussagen über den Wirkungsgrad einer gepulsten Entladung für
die Plasmaheizung.

2. Theorie

2.1. Grundgleichungen

Das zu untersuchende Argonplasma hat folgende charakteristische Parameter:
Dichte der schweren Teilchen n~1015 — IO16 cm-3, Plasmaradius R„ ~ 3-4 cm,

') Diese Arbeit wurde durch die finanzielle Unterstützung des Schweizerischen Nationalfonds
ermöglicht.
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Temperatur T ~ 1,4 - 2,0 eV und stabilisierendes axiales Magnetfeld BQ ~ 4r-6 kGauss.
Die Frequenz der magnetoakustischen Resonanz hat dann die Grössenordnung von
einem Megahertz. Der angegebene Temperatur- und Dichtebereich entspricht nach der
Saha-Eggert-Gleichung [5] einem Ionisationsgrad nejn von etwa 0,6 bis 1,6. Exakt
würde das zu untersuchende Plasma also durch die Gleichungen des vierkomponentigen
Gases e, A, A+, A++ beschrieben. Es soll nun aber auf heuristische Art gezeigt werden,
dass sich die Gleichungen mit kleinem Fehler auf die Bewegungsgleichungen einer
leitenden einkomponentigen Flüssigkeit [6] reduzieren lassen. Es seien p nM und v die
Massendichte bzw. die Massengeschwindigkeit der schweren Teilchen. Dann gilt die
Kontinuitätsgleichung

-^4-divpV 0. (1)
ot

Ebenso gilt bei Annahme von Quasineutralität und unter Vernachlässigung von
viskosen Kräften die folgende einfache Bewegungsgleichung für v :

dv 1

P^7 + p(v-êrad)v -jx B-gradp (2)
dt c

wo j die Stromdichte, B das Magnetfeld und^> den Plasmadruck bezeichnen. Im
magnetoakustischen Bereich ist der Verschiebungsstrom gegenüber j vernachlässigbar.
Die Maxwellschen Gleichungen schreiben sich daher

(3)rotB
4tt
—j.

c

rotE
1 dB

~~~c~dt

divB 0.

(4)

(5)

E ist das elektrische Feld. Das Gleichungssystem (1) bis (5) muss noch durch das
Ohmsche Gesetz und eine Gleichung für p ergänzt werden. Das Ohmsche Gesetz

j a-JE +-VXB) (6)

kann in linearer Approximation aus den Gleichungen für das Vierkomponentensystem
hergeleitet werden. Es folgt, dass im Falle der magnetoakustischen Resonanz wesentlich
nur die Wechselwirkung der Elektronen mit den Ionen für die elektrische Leitung
verantwortlich ist, und dass sich die Leitfähigkeit a des vierkomponentigen Systems
von derjenigen des einfachen Zweikomponentenplasmas nur dadurch unterscheidet,
dass an die Stelle der Stossfrequenz veX die Stossfrequenz ve veX + ve2 tritt. Hier
bedeuten veX und vel die Stossfrequenzen der Elektronen mit _4+ bzw. _4++.

Mit dem idealen Gasgesetz

p (n„ + nx+n2 + ne)T (7)

ist der Druck durch die Temperatur [in erg] und die Teilchendichten von A, A+, A++
und e gegeben. Die Temperatur, die auch wesentlich in a eingeht, muss nun mit dem
Energieerhaltungssatz für ein Volumelement der Flüssigkeit berechnet werden. Hier
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spielt es nun eine grosse Rolle, dass man es mit einem System zu tun hat, in dem Ionisation

und Rekombination vorkommen. Eine Temperaturerhöhung zieht immer Ionisation

nach sich. Mit der Berücksichtigung von Ionisation und Rekombination ergeben
sich also kleinere Temperaturänderungen als ohne. Die totale Ionisationsenergie pro
Volumelement ist anschaulich

neEi neEx+ n2 (E-, — Ex) (8)

wenn E, 15,76 eV und E2 27,62 eV die ersten zwei Ionisationspotentiale von Argon
bezeichnen. Der Energieerhaltungssatz [7] lässt sich dann unter Berücksichtigung der
Ionisation wie folgt schrieben

-U/w2 + \p + — B2 + neEt\+ div (ipv2+%p)v+ E x B + neE,v
An

0. (9)

Hier sind Diffusion, thermische Kräfte, Wärmeleitung und Viskosität vernachlässigt
worden. Abschätzungen [8] zeigen, dass im diskutierten Parameterbereich ausser
durch Diffusionseffekte im Vierkomponentenplasma keine Fehler entstehen. (9) lässt
sich mit Hilfe von (1), (2), (3), (4) und (6) in die Bewegungsgleichung iürp umformen:

3 dp dne E,
2 Yf + t div^v + —gf- + divneEtv + P divv y : (j ; j). (10)

Hier bedeutet % a~l.
Mit den Beziehungen zwischen Temperatur [in eV] und Dichten (siehe Anhang)

i —=1,92 T-
n

1,98,

n-,
— 3(7-1,4)*,
n

n nn + nx+n2
lässt sich (10) weiter umformen in die gesuchte Bewegungsgleichung für T:

'dT

(11)

(12)

(13)

di diE,
in(l+i)+inT— + n—±

dl dl

-n(l+i)TdiY\ + x:(y,l)

dt
+v-gradT

(14)

Die Gleichungen (1) bis (6), (8) und (11) bis (14) "beschreiben das Verhalten des Plasmas
vollständig. Sie sollen nun für das vorliegende zylindersymmetrische Problem (djdcp
d/dz 0) spezialisiert werden. Dabei werden j und E mit Hilfe von (3) und (6) eliminiert.
(5) ist mit Br 0 automatisch erfüllt. Unter den weiteren Voraussetzungen, dass
erstens zur Zeit. 0 kein Strom in Achsenrichtung fliesst, und dass zweitens die das
Plasma umgebende Senderspule einen rein azimutalen Strom führt, genügen die
Bewegungsgleichungen der Grössen p, v vr, B Bz und T zur Beschreibung der
Phänomene :

dp 1 d

dt r dr
(15)
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dv dv 1 BdB ldp
dt dr Att p dr p dr

(16)

dB c2 1 d 1 dB\ 1 d

dt Att r dr \ x dr j r dr
(17)

o2 xJsbY îa
dT JT Wn[dr) {l+l)T~rd/V
dt dr di diE,

2 ' 2 dT dT

(18)

X± ist im Anhang zu finden. Die Gleichungen (7), (8) und (11) bis (13) können unverändert

übernommen werden. Abschätzungen zeigen, dass die Druckkraft in (16) bei
den vorliegenden Temperaturen und Dichten gegenüber der magnetischen Kraft
vernachlässigt werden kann. Das System (15) bis (18) ist dann ausser dem Tonisa-
tionsnenner' in (18) identisch mit dem in [9]. Die Vernachlässigung der Druckkraft
in (16) hat zur Folge, dass die hydrodynamische Randbedingung mit der
elektrodynamischen zusammenfällt [1, 2, 3, 9] :

B(r=Rp,t)=Bn + Bex(t). (19)

R„ bezeichnet den Plasmaradius. B0 ist das stabilisierende statische Magnetfeld.
Bex(t) ist das Magnetfeld, das von der das Plasma umgebenden einwindigen Spule des
Senderkreises erzeugt wird :

Att 1(f)
Bex(t)= r (20)

c l

Hier ist. die Länge der einwindigen Spule. 1(f) bezeichnet den Strom im Senderkreis.
Er ist durch die Differentialgleichung eines Serieschwingkreises bestimmt :

dl 1 W 2tt 1 r'dB
— -—Q 1 —rdr, (21)
dt LCY L c LJ dt

v '
o

dQ
— I. 22
dt

Q(f) ist die elektrostatische Ladung auf dem Kondensator der Kapazität C. L ist der
totale Selbstinduktionskoeffizient des Kreises, wenn die Fläche der anregenden Spule
um die Plasmafläche (Radius R„) verkleinert wird. W ist der ohmsche Widerstand
im Kreis.

Das Gleichungssystem (8), (11) bis (13), (15) bis (22) hat eine eindeutige Lösung,
falls man noch die Randbedingungen angibt :

(23)

p(r,t 0)=p0 T(r,t 0) Tn

v(r,t 0)=0 I(t 0) =0
B(r,t 0)=Bn Q(t o) =<?o
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2.2. Lösungsmethoden

Es ist evident, dass das vorstehende Gleichungssystem nur näherungsweise
gelöst werden kann. Ein möglicher Lösungsweg ist der von [2], [9] benutzte. Er besteht
in einer Störungsrechnung mit dem Ansatz B B0 + B(1) + Bœ + der Voraussetzung

_3(1)/ß0<l und der Annahme ß("+1)/ß<B) ~ ß(1)/ß0. Diese Störungsrechnung
erlaubt analytische Lösungen des Problems, da bei der sukzessiven Bestimmung der
unbekannten Funktionen nur lineare Differentialgleichungen auftreten. Einen andern
Weg zur Lösung bietet die numerische Integration mit endlichen Differenzen. Bei
keinem der beiden Lösungswege kann zum voraus gesagt werden, ob er zum Ziel
führt : Es lässt sich weder beweisen, dass die Störungsreihen konvergieren, noch dass
die Lösung der Differenzengleichungen bei kleiner werdenden Differenzen gegen die
Lösung der Differentialgleichungen strebt. Der Vorteil der Störungsrechnung gegenüber
dem Differenzenverfahren ist der, dass dank der Analytizität der Lösungen der Einfluss
nicht linearer Terme in den Differentialgleichungen explizit studiert werden kann.
Das Differenzenverfahren seinerseits ist der Störungsrechnung in seiner mathematischen

Einfachheit überlegen.
In dieser Arbeit soll als erstes ein vereinfachtes physikalisches Problem in der

linearen Näherung der Störungsrechnung behandelt werden. Die Vereinfachung
besteht darin, dass die Temperatur als konstant angenommen wird, und dass der
anregende Schwingkreis nicht vom Plasma beeinflusst wird. Das dann verbleibende
Gleichungssystem (25), (26) ist abgesehen vom Einfluss der Neutralteilchen identisch
mit dem in [1], wo auch seine stationäre Lösung angegeben wird. Die nicht stationäre
Behandlung dieses einfachen Problèmes rechtfertigt sich durch den Einblick, der in
die Vorgänge des Einschwingens gewonnen werden kann.

Als zweites wird das gleiche lineare System numerisch mit endlichen Differenzen
gelöst. Ein Vergleich mit der analytischen Lösung fällt überraschend gut aus.

Im dritten Teil der Arbeit wird nochmals das vereinfachte physikalische Problem
behandelt jedoch mit einbezug der Nichtlinearitäten. Die numerische Lösung kann
nach dem Einschwingen mit der stationären Lösung [2], die mit Störungsrechnung
bis zur zweiten Ordnung erhalten wurde, verglichen werden. Die Übereinstimmung
ist bei nicht zu hohen Feldern (B — B0< 0,2 B0) gut. Bei höherer Anregung genügt
die quadratische Näherung der Störungsrechnung nicht mehr.

Im vierten und letzten Teil wird sodann das vollständige physikalische Problem
numerisch behandelt. Hier kann die Lösung nur noch mit Hilfe von integralen
Erhaltungssätzen getestet werden, da eine analytische Lösung nicht vorhanden ist. Die
Erfüllung der Erhaltungssätze und der Erfolg der numerischen Lösung in den vorher
besprochenen Problemen lassen aber vermuten, dass auch hier das Verfahren der
endlichen Differenzen nahe an die Lösung der Differentialgleichung führt. Der Vergleich
mit dem Experiment bestätigt diese Vermutung.

2.3. Analytische Lösung des physikalisch vereinfachten linearen Systems

Hier wird die Temperatur als konstant angenommen. Das hat zur Folge, dass die
Gleichungen (8), (11) bis (13) und (18) unnötig werden. Weiterhin sollen die
Selbstinduktivität L und der Widerstand W des Senderkreises so gross sein, dass das Plasma
den Kreis nicht zu verstimmen vermag. Mit andern Worten heisst das: W und L sollen
so gross sein, dass der letzte Term in (21), der den Einfluss des Plasmas auf den Kreis
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beschreibt, vernachlässigbar wird. (20) wird dann bei kleiner Dämpfung S/co < 1

ersetzt durch

-^- Çe-Stsincot (24)
Bo

£, S und œ sind bestimmt durch die Kreisdaten C, L,W und Q.
Die Gleichungen (15), (16) und (17) werden nun mit dem in 2.2 besprochenen

Störungsansatz linearisiert. Dabei ergibt sich, dass nur noch die Bewegungsgleichungen
für v (16) und B (17) gekoppelt sind:

(25)
dv(n 1 BndB^

dt Att p0 dr

dBa) c2 1 d 9ß(I)
rvw

r drdt A±ATrrdr' dr
(26)

Ohne zusätzliche Annahmen muss der Plasmaradius Rp als zeitabhängig verstanden
und in einer Störungsreihe angesetzt werden. Die Randbedingung (19) schreibt sich
dann zusammen mit (24) in linearer Näherung :

Bm(r Rpm,t)"—-—"—^ Ç e~St sinuit. (27)
Bo

In der Lösung von (25)-(27) erhält man vll)(r Rp0),f) # 0, was bedeutet, dass der
Plasmaradius Rp um den konstanten Radius Rp0) oszilliert. Zum gleichen Schluss
gelangt man [10], wenn das Gleichungssystem (15) bis (17) in Lagrange-Koordinaten
formuliert und linearisiert wird. Dieses lineare Lagrange-System hat exakt die gleiche
Form wie (25) und (26). In den späteren nicht linearen Lösungen sollte also Rp weiterhin
als zeitabhängig genommen werden, das heisst, es sollte die Lösung in Lagrange-
Koordinaten gesucht werden. Darauf wird aus verschiedenen Gründen verzichtet.
Erstens ist die Behandlung in Eulerschen Koordinaten durchsichtiger, zweitens
berücksichtigt die erwähnte nicht lineare Theorie [2], die als ein wesentlicher Test für
die numerische Lösung benutzt wird, den Randeffekt nicht, und drittens lässt sich der
Fehler, der durch die Vernachlässigung des Randeffektes entsteht, in der numerischen
Lösung mit Erhaltungssätzen abschätzen. Er ist nicht grösser als die experimentellen
Unsicherheiten in den Ausgangsparametern. In allem weitern soll also Rp konstant
sein und den mittleren Plasmaradius während der Schwingung bezeichnen.

Im Hinblick auf die spätere numerische Behandlung des Gleichungssystemes
(25) bis (27) ist es angezeigt, alle Variabein und Funktionen analog zu [9] dimensionslos
darzustellen. Es sei

r CA Bm t/(,)
r' =—, t' —t, B' —-, v'=-—

Rp Rp Bn cA

Rp s, Rp
-r—CD, 0
cA CA

o, _-_£ü,, S' -^S, (28)
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wo CA Bnjy/Anpn die Alfven-Geschwindigkeit bezeichnet. Der Index 0 bezeichnet
immer eine Grösse zur Zeit 0. Damit schreiben sich die Gleichungen (25) bis (27) unter
Weglassung des Striches (')

dv

Jt

dB

dt r dr dr

dB
~dr

1 d dB 19
¦-—rv
r dr

B(r=l,t)=Çe~Stsinwt

(29)

(30)

(31)

wo a c2XxoI(^7TPp^a) den Leitfähigkeitsparameter bedeutet. Es wird nun die Lösung
des Gleichungssystemes (29)-(31) mit Laplacetransformationen gesucht.

Es sei

00

g(r,q) f e'« B(r,t) dt (32)

h(r,q)=je-9tv(r,f)dt. (33)

Das transformierte Gleichungssystem schreibt sich unter Berücksichtigung der
Anfangsbedingungen B (r,t 0) v(r,t 0) 0:

qh —
dg

dr

1 d dg 19
qg a r rh

r dr dr r dr

.M-f 1

q — i(<u + ih) q + .(o. — ih)

Elimination von h(r,q) aus (34) und (35) ergibt

/ i a d\
[k2 + rd-rr*r-q)=°

wo

(34)

(35)

(36)

(37)

k* -

1 + aq
(38)

bedeutet. (37) ist die Besselsche Gleichung nullter Ordnung. Die Neumannsche Funktion

wird aus physikalischen Gründen wegen ihrer Divergenz im Ursprung als Lösung
verworfen, und es gilt

g(r,q)=C(q)Jn(kr). (39)
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Die Funktion C(q) ist mit der Randbedingung (36) bestimmbar. Deshalb folgt aus (39) :

iUo(kr)\ 1 1

g(r.q)
2 /„(*) q-Q q-Q*

(40)

wo Q —ia> — S und (*) das Konjugiert-Komplexe bezeichnet. Es bleibt nun die
Aufgabe g(r,q) in den (r,.)-Raum zurückzutransformieren :

i 7m
B{r't)=2r7i J e9'g{r'q)dq- (41)

y—i oo

Für die Integration ist das reelle y so zu wählen, dass alle Singularitäten von g(r,q)
links vom Integrationsweg liegen. Zur Auswertung kann der Residuensatz verwendet
werden :

B(r,t) 2 R{e«g(r,q)} (42)

wo qt die Pole der Funktion g(r,q) und r\,_9i{- • • •} ihr Residuum an dieser Stelle
bezeichnet. g(r,q) hat folgende Pole:

a) q Q und q Q*,

h) Nullstellen vonj0(k) : yn. Aus k y„ folgt mit (38)

q -—±yn *Yl l=Pt (43)

Hier hat man die zwei Fälle ay„ > 2 und ayn < 2 zu unterscheiden. Sei für
n < m ay„ < 2, dann ist

(44)

(45)

Pt -K 4- ica„ (p„)*, n < m

wo

s
aY2n

*

* n < m.

0>n Yn 1-
«2y2

c) n> m

P$ -h±0>n

WO

aY2n

n> m

" 2

C»n Yn
*2y2

y n>m.

(46)

(47)
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Es gibt zwei Häufungspunkte von Polen :

lim^>~ —oo

limp+n=--.
»-»oo a

541

(48)

Die Anwendung des Residuensatzes zur Berechnung von (41) ist also nicht ohne
weiteres erlaubt. Seine formale Anwendung führt aber trotzdem zu einer gleich-
massig konvergenten Reihe, von der gezeigt werden kann, dass sie die gesuchte Lösung
von (29)-(31) ist, und dass sie die Anfangsbedingungen erfüllt.

Es sollen nun die einzelnen Residuen berechnet werden.

a) Mit der Definition

Jn(z)=s(z)e"r" (49)

wo s(z) und cp(z) beide reell sind, ergibt sich

R {e«g(r,q)} + R {^g(r,?)} | ^^ sin[o». - cp(k0r) + cp(k0)]e^' (50)
q=-Q q-Q* S(k0)

wo kn durch (38) gegeben ist, wenn man q Q setzt. Hier wurde vorausgesetzt, dass Q
nicht mit einer 'Eigenfrequenz' pjj zusammenfällt.

b) Zur Berechnung des Residuums an einer Stelle q=pt braucht man die Entwicklung

vonJQ(k) in Termen von (q—p$) :

Jo(k)
dj0(k) dk

(q-Pi) +
dk dq

Aus (38) erhält man nach einigen Umformungen

MiAAdk

dq 2q \ q<

und damit aus (51)

Mk) =-/.(*) |+ (i -jr^d Pt) +

und somit

R,{^.)} iUo(Ynr) 2pt3

2VnJl(Yn)Y2-p:2 Pt-Q p:-q*
e"n'.

(51)

(52)

(53)

(54)

(54) gilt für beliebiges ». Die analoge Formel gilt auch für p„. Es soll nun für n<m
spezialisiert werden. Dort gilt

R {eqtg(r,q)} \ R {e*'g(r.q)}\
i-oi L9=p" J

(55)
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Die Summe der Residuen bei p% und p~ ist demnach durch zweimal den Realteil von
r\.q.p+{eq,g(r,q)} gegeben. Ihren Wert erhält man unter Verwendung von (44), (45)
und (54) mit einiger Algebra :

J0(ynr) 2tu e-*»'
£ —— : x [(<x„ €„ - ß„ U cos o)„ t + («„ £„ + ßn €„) sin w„.]. (56)

YnJl(y„)cOn Cxl + Pi

Hier sind folgende Abkürzungen benutzt :

«n=(8n-8)2 + œ2-a>2

ßn 2a>n(8-8n)

e„ 28„ co.

L co2-82.

(57)

c) Im Fall von n> m müssen die Beiträge von p* und pn getrennt berechnet
werden. Mit (46) und (47) ergibt sich für p± aus (54) :

+ j Jo{y"r)
— A± eC-6*±u>*>< (58)

YnJ\(Vn) <»n

mit der Abkürzung

± (">n + 8n)

(a,nT8n±8)2 + w2
(59)

Mit den Resultaten (50), (56) und (58) lässt sich das gesuchte Magnetfeld
anschreiben :

B(r,f) €S-^sin[cot - cp(k0r) + cp(k0)]e-5'
s(k0)

™ Jn(ynr) 2oi e'5"'
+ > r—- ; [(«„ «„ - ß„ U cosa.-. 4- (a„ £„ + ßn e„) sina.„. ]

n?lYnJl(y„) Cx)nCtl + ß2

oo In(v. r) CÜ

+ ç y jo\r» _ .A+ e_(S_+a,_)t _ A_ g(-ä,+o..).] (60)

Die unendliche Summe konvergiert gleichmässig mit l/n5/2. Mit Hilfe von (29) könnte
nun noch v(r,t) berechnet werden und gezeigt werden, dass die Differentialgleichung
(30) erfüllt ist. Wegen des grossen algebraischen Aufwandes wird hier darauf verzichtet.
Mit dem gleichen Argument wird hier auch darauf verzichtet, die Erfüllung der
Anfangsbedingung zu zeigen. Dass die Randbedingung (31) erfüllt ist, ist offensichtlich.

Der erste Term in (60) stellt die erzwungene Schwingung dar, alle andern sind
Eigenschwingungen des Systems. Die erzwungene Schwingung allein schon ist Lösung
der Differentialgleichungen (29) und (30), und sie befriedigt die Randbedingung (31).
Mit 8 0 ist sie identisch mit Cantienis [1] stationärer Lösung. Wenn 8 <8X ist, sind
nach einer gewissen Zeit alle Eigenschwingungen gegenüber der erzwungenen
vernachlässigbar, und es kann von einem eingeschwungenen System gesprochen werden
(Fig. 1). Offensichtlich bestimmt wesentlich der Leitfähigkeitsparameter a c2x±ol
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(AttRpCa) das Einschwingverhalten, da er linear in die S„ eingeht. Zur Illustration sind
in Figur 2 die Achsenmagnetfelder B(r 0,f) bei stationärer Anregung (8 0) in der
Nähe der 1. Resonanz (co yx) für verschiedene a angegeben. Dabei sind die £ so

gewählt, dass im eingeschwungenen Zustand die Amplituden gleich hoch sind.

B(o,i)

\
V 0 0,3

UJ t,

^y\----,
.=0,2-,
.=1

5 / \'°/ \y~ tft

\ / " " **

J
'

Figur 1

Annäherung des Feldes auf der Achse B(0,t) (-
Schwingung B und t sind dimensionslos gemäss Gleichung (28).

an die Enveloppe der reinen erzwungenen

0.05

0.5

Figur 2

Abhängigkeit des Einschwingverhaltens vom Leitfähigkeitsparameter a für das Magnetfeld
B (0, t) auf der Achse im Resonanzfall w y, x 2,4.

Es soll nun noch kurz das Problem der 'komplexen' Resonanz besprochen
werden. Unter 'komplexer' Resonanz wird der bei der Auswertung der Residuen
ausgeschlossene Fall Q pf verstanden. Hier geschieht also die Anregung mit einer
Eigenfrequenz w co, und der zugehörigen Dämpfung 8 8,. In der Formel (60)

divergieren der erste Term (k0 -> y,) und in der Summe der Term mit n l. Um die
Modifikation von (60) für den Fall Q pf zu bekommen, ist es einfacher, direkt den
Pol zweiter Ordnung bei Q pf auszuwerten als in (60) den Limes auszurechnen. Auf
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der Achse (r 0) werden Terme der Art .sine«, .exp (—S,.) gefunden. Das Verhältnis von
Achsenfeld zu Randfeld nimmt also mit der Zeit linear zu. Das ist das typische Verhalten
eines einschwingenden Systèmes, das in einer Resonanz angeregt wird, für welche
die stationäre Theorie eine unendliche Resonanzamplitude vorhersagt. Im Falle der

B(0,.> UJ=& •" "fi""
15 Q =0,01 ^'h' i \

.-' ^""^f\
5 """*""/

"*"**V\ / \5 / \ l 1*0 1
1

_^ \ / 1 î t

5 """"^

^^^^ \

15

~-*-^^

Figur 3
Säkulare Annäherung des Feldes auf der Achse B(0,t) an eine 'unendliche' Resonanzamplitude.

magnetoakustischen Resonanz findet sich diese Erscheinung zum Beispiel dann, wenn
bei grossen Temperaturen (x -> 0,a -> 0) stationär (8 0) angeregt wird (Fig. 3).

2.4. Numerische Lösung des physikalisch vereinfachten linearen Systems

In diesem Abschnitt soll das Problem von Abschnitt 2.3 numerisch mit endlichen
Differenzen [11] behandelt werden. Dies dient erstens dazu, die Transformation der
Differentialgleichungen in Differenzengleichungen zu zeigen, und zweitens dazu,
durch einen Vergleich mit der analytischen Lösung einen Begriff von der Genauigkeit
der numerischen Methode zu vermitteln.

Den anzugebenden Differenzengleichungen sei folgende Diskretisierung der
Variabeinebene 0<r<l,0<.zu Grunde gelegt :

r : 0 r,

t:0 t,0'

¦ -.Ji,

..,tj„

r =1 wo r,

wo t,
'i-l
tj-l

-h (61)

Im weitern soll Ai} A(rt,tf) bedeuten, wo A für irgendeine Funktion steht.
Raumdifferentialquotienten werden in folgender Art durch Differenzenquotienten ersetzt:

dA

d2A

dr2

2h
-+0(h2)

f^-i+ii ~ 2AtJ + A,_XJ

h2
+ 0(h2).

(62)

Hier bedeutet 0(h2), dass Terme, die mit h2 und höheren Potenzen von h gehen, vernachlässigt

worden sind. Mit dem gleichen Fehler lassen sich auch Produkte von Differentialquotienten

und ähnliche Grössen mit den entsprechenden Differenzenquotienten
approximieren. Zum Beispiel ist :

A,
Ai+u — At_

2Ä + 0(h2). (63)
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Sei

9_4

m=D[A] (64)

eine symbolische Schreibweise für Gleichungen der Art (15)-(18) oder (29) und (30).
Diese Gleichungen sollen wie folgt approximiert werden :

"+l~ U 0 DlJ+x [A] +(1-9) D,j [A] + 0(h2) + 0(g), wo 0 < 0 < 1. (65)
g

Hier steht DtJ[A] für den durch Differenzen nach (62) und (63) approximierten Ausdruck
D[A].

Das am einfachsten zu lösende Differenzensystem erhält man offensichtlich mit
0 0, wo die gesuchten AlJ+x (i=l,...,n) in (65) explizit durch die bekannten Au
(i =l,...,n) gegeben sind. Dieses einfache System hat aber den grossen Nachteil,
nur für durch h2 beschränkte g stabil zu sein. Die beste Approximation ergibt sich mit
0 \ (Crank-Nicolson). Dort ist der Fehler nur von der Grössenordnung 0(h2) + 0(g2).
In diesem System ergeben sich auch bei den nicht linearen Gleichungen (15)-(18) und
grossen g stabile Lösungen. Es hat den Nachteil, dass es die AiJ+x in (65) nur implizit
bestimmt. Systeme mit 0 > -J- zeigen gleiche Stabilitätseigenschaften wie 0 \.
Variationen von 0 können gleicherweise wie Variationen von g und h dazu dienen, die
Verlässlichkeit der numerischen Lösungen von (64) zu überprüfen. Es ist noch zu
bemerken, dass die Zeitableitung 9/4 /9. nicht gleich wie die Raumableitung dA jdr (62)
approximiert werden kann. Das Differenzensystem, das so entstehen würde, ist
instabil.

Nach den vorangehenden Bemerkungen lassen sich nun die Gleichungen (29)
und (30) in Differenzen darstellen :

gO
««+« -|j-tB|+ii+i - Bt-u+i) + <Pu (66)

Bij+i =—-r,(Bt+ij+i — ß.-ij+i) + — (Bi+iJ+x -2BlJ+x + St_lj+1)

gd gO

—T»«+l ~z:(vmj+i -Wj-u+i) +ßtj. (67)
ih 2h

Diese Gleichungen gelten für 1 < i < n — 1. Die Abkürzungen cpu und ßu bezeichnen
Grössen der Zeit t} :

9u - vu -^ft (Bi+XJ - Bt_Xj) (68)
2«

ag(\ - 0) ag(l - 0)

h B» + -^T- {Bm> - Bl-^ + ^TT2 (Bw - 2B'J + B'-^2ih2 h2

g(l - 9) g(l-6)i
—irVtj—är{VM<-Vt-ij)- (69)
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Es fehlen noch die Gleichungen auf der Achse i 0 und am Rand i n. Auf der Achse
ist wegen der Zylindersymmetrie :

uo.-

dB

Yr

0,

o.

o_- 0.

1 dB

r dr
o.
-m

Oj

B\j- Bqj
h2

(70)

Damit ergibt sich aus (29) und (30)

Voj+l =°

Aag0 2g0
Boj+i =—rr-(BXj+x - BQj+x) — vXJ+x + ß0j

h2 h
(71)

wo

Aagil-6) 2g(l-0)
Po. #o. + TZ, \B\}- Bqj) - : v

h2 h i.- (72)

Am Rand ist B mit (31) gegeben:

5_ ^exp(-S-J+1)sinMJ+1). (73)

vnj+i wird mit der bis auf Fehler 0(h2) richtigen linearen Extrapolation 2vn_iJ_,x
vn-ij+i erhalten:

gO
t>nj+i =-—(3B„J+x - AB„_Xj+x + Bn_2J+x) + <pn

2h
(74)

Hier ist

g(l-fl)
2Ä

(r\Bnj-ABtt_XJ + Bn_2j). (75)

Die 2w + 2 linearen Gleichungen (66), (67), (71), (73) und (74) bestimmen die
2w + 2 Unbekannten viJ+x, Bij+X (i 0,...,n). Zur Lösung könnte ein iteratives
Näherungsverfahren, wie es im nächsten Abschnitt zur Lösung der nicht linearen
Gleichungen verwendet wird, benutzt werden. Das durch die Elimination von v in (67)
und (71) mit Hilfe von (66) und (71) entstehende Gleichungssystem für Bij+X (i 0,

...,« — 1) zusammen mit (73) und (74) ist aber von so einfachem Bau, dass ein
Eliminationsverfahren schneller zur Lösung führt als ein Näherungsverfahren. Das Gleichungssystem

hat die Form :
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«0 Wn u

xx Si wx u

u x2 s2 w2 u

u X-, w, u

u X n-3 °n-3 wn-3

U Xn-2 S.n Wn_2 0

U X„. S„_n-l «"n-l

—%Xn Xn Sn

Boj+i \ Vo

BlJ+l \ jvi
B2j+i V2

Bjj+i Vi

Bn-3j+l Vn-3

B„-2j+i Vn-2

Bn-lj+l J \ Vn-l

Vnj+l 1 \Vn

(76)

Die Elemente der quadratischen Matrix sind Ausdrücke in den Parametern
a, g, h und 0, diejenigen der Spaltenmatrix ti enthalten neben diesen Parametern die
Grössen ßu und cptj (68), (69), (72) und (75). Zur Lösung werden schrittweise von oben
nach unten die Elemente links der Diagonalen in der grossen Matrix eliminiert. Das
entstehende System hat die Form :

/'
yo

w[ yx

Oj+i \ jVi
u+i \ ViB.r

-.-3 y„-3 Vn-3n-3j41

Wn_2 0 Vn-2n-2,+1

117 Bn-lj+l I
VnJ+l I

Vn-l I
V'n I

(77)

In der untersten Zeile steht die Lösung für vnJ+x. Sie kann bei n — 1 eingesetzt
werden, um Bn_XJ+x zu berechnen. Dieses Prozedere kann von unten nach oben
fortgesetzt werden, und man erhält die Lösung für alle BtJ+l. Die viJ+x wiederum
können dann mit (66) berechnet werden.

Die beschriebene Lösungsmethode wurde in FORTRAN programmiert und auf
einer UNIVAC-U-III benutzt. Zur Prüfung wurde diese Lösung mit der analytischen
von Abschnitt 2.3 für verschiedene Maschen g, h (61) verglichen. Es hat sich
herausgestellt, dass h 0,1 einen guten Wert für den Raumschritt darstellt: Fehler und
Rechenzeit bleiben in erträglichem Rahmen. Des weitern hat sich gezeigt, dass g
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bei festem h 0,1 und 0 \ so klein sein muss, dass pro Periode 2ttJoj mindestens 25-30
Zeitschritte gemacht werden, andernfalls werden die Fehler zu gross. Zur Illustration
sind in Tabelle 1 für die physikalischen Parameter von Figur 1 die aufeinanderfolgenden
Extrema des Achsenfeldes mit ihren Zeiten angegeben. In Kolonne a) ist die exakte
analytische Lösung angegeben. Die Kolonnen b), c) und d) sind mit der besten Approximation

0 A_ (65) gerechnet worden. Zum Vergleich ist in Kolonne e) eine Rechnung
mit 0 0,8 angegeben, die wesentlich grössere Differenzen gegenüber der exakten
Lösung als c) zeigt. Um für 0 0,8 mit c) vergleichbare Exaktheit zu erhalten, müsste
der Zeitschritt g noch weiter verkleinert werden.

2.5. Numerische Lösung des physikalisch vereinfachten nicht linearen Systems
Es werden hier die gleichen Annahmen wie in 2.3 gemacht, was die Temperatur,

den Druck, den Plasmaradius und die Nicht-Verstimmbarkeit des äusseren Kreises
betrifft. Zu lösen ist also das Gleichungssystem (15)-(17) zusammen mit der
Randbedingung (24). Es soll gleich wie (29) und (30) dimensionslos dargestellt werden.
Zu diesem Zwecke müssen die zu (28) analogen Relationen bekannt sein :

B v p Vi
1 + B' -, v' —, l+p'-A x'=~ (78)

•DO CA Po X-L0

Für r', .', co' und S' gilt weiterhin (28). In den gestrichenen Grössen heisst das
Gleichungssystem (15)-(17), wenn man den Strich wieder weglässt:

dp 1 9J.__,__ -[v(l+p)r] (79)
dt r dr

dv dv 1+BdB
— -v- — (80)
dt dr 1+ p dr '

dB
_

1 9

dt r dr

dB

dr
__ [rv(i + B)]. (81)

r dr

Die Übersetzung in endliche Differenzen geschieht gleich wie im vorhergehenden
Abschnitt nach (62), (63) und (65). Bei r — 0 ist zu beachten, dass p die gleichen
Bedingungen erfüllt wie _3 (70). Am Rand werden p und v mit einer kubischen Extrapolation

AnJ Tj(A) -_4„_4, + 4_4„_3j.-6_4-_2, + 4_4„_u (82)

berechnet. Es sind Programmtests notwendig, um einzusehen, dass eine Extrapolation
von so hohem Grade genommen werden muss. Eine lineare Extrapolation (74) liefert ja
schon die hinreichende Genauigkeit 0(h2) (65). Die zweimalige Extrapolation macht
aber gerade den Rand zum kritischen Gebiet der Rechnung. Tests mit der expliziten
Methode (0 0) haben ergeben, dass die kubische Extrapolation am ehesten vor
Unsinn am Rand schützt.

Mit den Abkürzungen

d%>A=Al+XJ-At_u
2 } (83)

dCffA =Ai+XJ + 1Aij-Ai_XJ
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lauten die Differenzengleichungen :

Po.+i

2g0
4>oj(0)-—-Vu+i

h

2g0
'

1+-T-VU+,

Ptj+i

</>lJ(ff)-^-(d(2)+xv + vtJ+xdff+xp)>

l+§dd+.v
2h

Pnj+i Pj+i(p),

(84)

Voi+i=0,

2h l+pu+x
Ju+i

2Ä u4i+Sr4V
"».+. =^.+i(v)

(85)

B0j+1
4ag0 2g0

Po.W + ——Xoj+i BXJ+X ~ — vu+x
W- h

Aagd 2g6
-rrXoj+i+-r-vXj+x

BiJ+i

^w + ^ru+1(^'"li?fiïi+lf^îjii5 + S,+u+,+B,_I/+,) + iWJi.x)W+iß)

2«g0 g0l + ~z--r-Xtj+i+—dijU.v
h2 2«

M86)

2Â ^i7ii" + «y+i^ii5)
2«g0 g0

1 + -p-x«+«+»'&"

s_.+i =1« aO+isinw.J+1.
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Hier sind folgende Grössen der Zeit td benutzt :

<Ao.(0) Po. : (1 + Po.) »uh

<M*) pu ~ ^/T^1 + p<j) d'fv + vudi?P)

551

«/,_,(0) r,(^(0))

g(i - 9)

(87)

<ptj(Q) »u - '¦

2h
v^/v+^t^dcPE.)

1 ' Pu 1

cpnJ(6) rJ(cp(e))

(88)

4«g(l - 0) 2g(l - 0)
ßoi(#) B0J + xo.(ß,. - Boy) - »ü (1 + Bo.)

ßij(6) BtJ +

h2

ag(\ - 0)

h2
Xij(^d?/ B + Bt+XJ-2BtJ + Bt_XJ)

+ i(d\Yx)(d\yB)

» B + Bt+1J

gß-0)
2h

{dCffv(l + BtJ)+vtJdcyB}.

(89)

Der Widerstandstensor x hängt allgemein von T, p und B ab, wobei die Abhängigkeit

von T weitaus die stärkste ist (~T~*). Die Abhängigkeit von B und p wurde in
linearer Näherung bei konstantem T aus der allgemeinen Formel für x± (Anhang)
berechnet :

XiJ cBBiJ-Cnpu + l. (90)

Die Konstanten cB und cp sind Ausdrücke in p0, B0 und TQ. Es wird hier wegen ihrer
Länge darauf verzichtet, sie anzugeben. In unserem Parameterbereich haben sie die
Grössenordnung 0,3. Die Lösungen von (84) bis (86) sind nicht sensitiv darauf, ob

man für xtj (90) verwendet oder einfach y(/ 1 setzt. Das hängt damit zusammen, dass
B und p mit ungefähr gleicher Amplitude und Phase variieren. Quantitativ ergibt
sich zum Beispiel eine Differenz in den Lösungen von 2% bei Feldamplituden von 0,3
auf der Achse.

Das nicht lineare Gleichungssystem (84)-(86) bestimmt mit 0 ^ 0 implizit die
Unbekannten p, v und B. Zur Lösung muss ein iteratives Verfahren benutzt werden.
Als Alternative bietet sich das die Unbekannten explizit bestimmende System mit
0 0 (Po.+i ^0.(0 °) usw) an> das aber den aus 2-4 bekannten Nachteil eines
beschränkten Zeitschrittes aufweist. Es erhebt sich nun die Frage, ob es ein so rasch
konvergierendes iteratives Verfahren gibt, dass der Vorteil eines grossen Zeitschrittes
mit 0 £ nicht durch viele Iterationen zunichte gemacht wird. Es konnte ein
Verfahren gefunden werden, das die Rechenzeiten mit 0 \ einen Faktor 3 kleiner macht
als diejenigen mit 0 0.
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Das anzugebende iterative Verfahren stehtundfällt damit, dass sehrgute Anfangswerte

für die Unbekannten gegeben werden können. Als Anfangswerte ('nullte'
Approximation) werden gerade die expliziten Ausdrücke (0 0) für die Grössen pij+i,
vlJ+x und ßjJ+1 genommen: ü),j(d 0), cptj(6 0) und ßfJ(6 0). Die erste Approximation

erhält man dann analog zur Gauss-Seidel-Iteration für lineare Gleichungssysteme

[11], indem man das System (84)-(86) von unten nach oben durchgeht und
rechts des Gleichungszeichens die nullten und, wo schon bekannt, die ersten
Approximationen einsetzt. Die erste Approximation für p0J+x zum Beispiel wird also mit der
ersten für vXJ+x berechnet, weil sie schon bekannt ist. Weitere Approximationen erhält
man analog. Nach jeder Approximation A\l~^} werden die Differenzen zur letzten A^f+l
überprüft :

2 (-4..+1 — A'j+X)2

I (A?j+A 2
(91)

Die Summen erstrecken sich über A B,v,p und i =l,...n. Wenn eine vorgeschriebene
Genauigkeit für e erreicht ist, wird der Iterationsprozess abgebrochen und zum nächsten
ZeitschritttJ+x weitergegangen.

Das mathematische System (84)-(86) lässt wegen der Konstanz des Plasmaradius
eine variable totale Teilchenzahl zu. Man vergleiche hierzu die Bemerkungen, die im
Anschluss an Gleichung (26) gemacht worden sind. Solange diese totale Teilchenzahl
kein säkulares Verhalten zeigt und nur mit nicht zu grosser Amplitude um den Wert
von 0 schwingt, darf (84)-(86) als ein gutes Modell für die physikalische Realität
bezeichnet werden. Mit dem später noch oft benutzten Symbol

£ ^h2
S Ai > — [iAl + (i + l)At+x]= A(r)rdr + 0(h2) (92)
i-o *—t 2 ii-0 o

ist die relative Schwankung der Teilchenzahl

2 P(r,tj)rdr x 2 S PlJ. (93)
J (-0

Es zeigt sich, dass sie etwa die gleiche Amplitude hat wie das vorgeschriebene Randfeld
B„j (86).

Zur Prüfung der numerischen Lösung können deren eingeschwungene
Magnetfeldamplituden mit der mit Störungsrechnung behandelten stationären Theorie [2]
verglichen werden. In Figur 4 ist «_ BAchsejBRani, das Verhältnis der
eingeschwungenen Amplituden des Magnetfeldes auf der Achse und am Rand, gegen die
relative Anregung £ BRand/B0 aufgetragen. Es muss unterschieden werden zwischen
den zum statischen Magnetfeld B parallelen (ff) und antiparallelen (j,f) Wellenfeld-
amplituden. Es ist der Resonanzfall co yx für zwei verschiedene Leitfähigkeitsparameter

a gezeigt. Wie es zu erwarten ist, ist die Uebereinstimmung zwischen [2]
und der numerischen Lösung für kleinere Magnetfelder besser als für grössere, da die
quadratische Näherung der Störungsrechnung für höhere Felder ungenügend werden
kann. Die numerisch Lösung ihrerseits erhält die Teilchenzahl nicht mehr. So ist zum
Beispeil ihre eingeschwungene Amplitude im Falle a 0,2 mit £ 0,16 schon mit einem
Fragezeichen zu versehen, da die Dichte bis zur vierten Periode um 8% abnimmt, nach
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den nächsten zwei Perioden plötzlich ansteigt und bewirkt, dass die Gauss-Seidel-
Iteration nicht mehr konvergiert. Bei a 0,2 unterhalb £ 0,13 und bei a 0,34
unterhalb £ 0,18 zeigt sich jedoch kein säkulares Verhalten der Dichte und die
Iteration (91) konvergiert bei e IO-6 im Durchschnitt in 3 bis 4 Schritten. Die
Uebereinstimmung der numerischen Lösung mit [2] ist bei anderen als der Resonanzfrequenz

von ähnlicher Güte. Sie ist bei kleineren Frequenzen besser als bei grösseren.

6l» 2,4
a =0,2

0J=2,4
er =0,34

OJÖS OJ 015 0,2 t
Figur 4

Stationäre Amplitudenüberhöhungen «„ in Resonanz (oj 2,4) in Funktion der relativen Anregung
£ für zwei verschiedene Leitfähigkeitsparameter a nach der linearen stationären Theorie [1]
nach der quadratischen stationären Theorie [2] und nach der numerischen Lösung
ff und f| bezeichnen die dem statischen Feld B0 parallelen bzw. antiparallelen Amplituden.

2.6. Numerische Lösung des vollständigen Systems

Auf dem Weg zur Lösung des vollständigen Systems könnte in einem ersten
Schritt die Voraussetzung der konstanten Temperatur fallengelassen werden und
erst im zweiten Schritt auch jene der Nichtverstimmbarkeit des äusseren Kreises.
Nach dem ersten Schritt bietet sich ein Vergleich mit einer neueren Arbeit von Vaclavik
[9] an, wo unter Vernachlässigung der Ionisation, aber unter Berücksichtigung der
Nichtlinearitäten, die Temperaturerhöhung bei stationärer Anregung mit Störungsrechnung

berechnet wird. Bei diesem Vergleich erhält man aber nicht mehr als ein
Uebereinstimmen der allgemeinen Tendenz, nämlich, dass die Temperaturerhöhung
bei Einbezug der Nichtlinearitäten kleiner wird als mit einer linearen Theorie [3].
Für das schlechte Uebereinstimmen gibt es zwei Gründe. Erstens ist die Störungsreihe,
wenn überhaupt, nur schwach konvergent, und zweitens setzt Vaclavik zu Beginn
seiner stationären Aufheizung eine homogene Temperaturverteilung voraus, wohingegen

bei der numerischen Lösung nach dem Einschwingen schon eine beträchtliche
Temperaturinhomogenität besteht.

Aus diesen Gründen wird darauf verzichtet, das zu lösende System schrittweise zu
vervollständigen. Es werden direkt die Temperatur T(r, t) und der äussere Kreis
miteinbezogen. Die Gleichungen für p, v und B (84)-(86) gelten weiterhin. Nur die Gleichung
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für das Randfeld BnJ+x muss durch die Kopplung (19), (20) an den Kreis ersetzt werden.
Zudem muss in Xu (90) die Temperaturabhängigkeit berücksichtigt werden. Bevor
dies ausgeführt wird, sollen die in (28) und (78) noch fehlenden Transformationen in
dimensionslose Grössen angegeben werden :

T
1 + T'= —,Tn

E'v —(v ii\i2), P
2ttB0RpCa

W' cW,

<?'
Q

2ttB0R2'

Ca
C' —C,

cRn

cCA

Rn
•

SlTUn Tn

B0

8tt2
caRp

et

(94)

Damit lässt sich (19), (20) für das Randfeld wieder unter Weglassung des Striches
schreiben :

B„,-+i =ylj+i- (95)

Der Strom IJ+X ist durch die Differenzengleichungen, die aus (21) und (22) folgen,
bestimmt :

'.+i
1 +

(g6)2 gew\^-ê^-iilB<» ¦)

LC L

Qj+i=^)+g6IJ+l.
Die Grössen der Zeit t} sind :

m r S(l-ff)n g(l-B)Wr 1 -

LC L L i-o

p.j(0)=QJ + g(l-d)IJ.
Der spezifische Widerstand ist

1

« 1-
3

Xu
5 5

(96)

(97)

(98)

(99)

(100)
(1 + Tuy>2

Die Approximation gilt im Bereich —0,2 < TtJ < 0,4 mit einem maximalen Fehler
von 4,5%. Für fast alle auszuführenden Rechnungen ist sie genügend. Die Abhängigkeit

von B und p (90) ist vernachlässigbar.
Es bleibt nun noch die Aufgabe, die Temperaturgleichung (18) in eine Differenzengleichung

zu transformieren. In der dimensionslosen Temperatur schreiben sich (11)
und (8)

i cx T + c2

iE, cxExT + c2Ex+ c3(T + c4)2 (E2 - Ex)

cx l,92T0, c2 cx-1,98, c3 3Tg,
T-o-1,4

(101)
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Damit wird der Ionisationsnenner in (18) Ux + U2 T, wo

555

Ui -(1 + c, + c-) +cxEx+ 2c3c4(E2 -Ex)\

U2 3cx+2c3(E2-Ex).

Mit (101), (102) und der weiteren Abkürzung

wx l +C2, W2 1 + cx + c2

(102)

(103)

und unter Berücksichtigung der Symmetrie von T bezüglich der Achse lässt sich (18)
in Differenzengleichungen transformieren :

Toj+x r0J(6) - -r-Vij+i

rw TU(0)-1^,^,77

wx + w2 T0J+X + cx TlJJrX

Ul+U2T0J+X

T,êlT^11- W" > B)2-g-(wx+ w2 TiJ+x + cx TfJ+x)d% v

> (104)

ß 2h2 l+PiJ+x 2h

t/, + U2 TtJ+x

Tnj+^Tj+dT)

toj(0) o. ¦

riJ(e) TiJ-

2g(l - 0) wx + w2 T0j + cx T,

h

g(l - 0)

0j

2h

'J UX+U2T0J

vtJd\7fT +

^L±-^{dCUB)2-g±z3.
ß2h2 l+pij'J 2h

+ w2TlJ + ciTl)d\fv

Ux + U2 TtJ

,(0) J>(0)).

(105)

Zwischen den Gleichungen (104) und den Gleichungen für p, v und B (84)-(86) besteht
noch ein wesentlicher Unterschied. In den Gleichungen (84)-(86) kommt die Grösse,
die links des Gleichheitszeichens steht, rechts nicht vor. Gerade das ist aber eine
Bedingung für gute Konvergenz im benutzten iterativen Lösungsverfahren. Im
Unterschied zu (84)-(86) kommt in (104) die zu bestimmende Grösse in der sie
bestimmenden Gleichung quadratisch vor. Symbolisch lässt sich die TtJ+x bestimmende
Gleichung (104) schreiben:

Tl+x+2KxTlJ+x+K2 0. (106)

Hier sind Kx und K2 Ausdrücke in den andern Unbekannten v, p, B, Ti+Xj+X und
Ti-lj+l-
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Zur Lösung im iterativen Verfahren wird die linearisierte Form von (106)
verwendet :

r'jii=-2idW (107)

bezeichnet die Approximation (91).
Das Gleichungssystem (84)-(86), (96), (97), (100) und (107) beschreibt nun

zusammen mit den Anfangsbedingungen (23) das eingangs dieser Arbeit gestellte
physikalische Problem vollständig. Zur Lösung wird das in 2.5 besprochene iterative
Verfahren verwendet. Obschon Gleichung (107) die Bedingung, dass TiJ+x nur links
des Gleichheitszeichens vorkommen sollte, nicht erfüllt, konvergiert das Verfahren
für nicht zu grosse Zeitschritte gut.

g ist hier anders als beim linearen Problem nicht nur durch die Periodenlänge,
sondern auch absolut beschränkt, g soll bei einer Genauigkeit e IO-6 (91) und h 0,1
einerseits so klein sein, dass etwa 30-35 Zeitschritte pro Periode 2w/a> gemacht werden,
und andererseits soll es nicht grösser als 0,08 sein. Wird die eine der beiden Schranken
überschritten, so stellt sich kein weiterer Gewinn an Rechenzeit ein, weil die Anzahl
der Iterationen pro Zeitschritt zunimmt. Bei den angegebenen Werten vong, h und e

sind bei Achsenfeldern B von 0,5 in Resonanz (tu x yx) etwa sechs Iterationen nötig,
bei Feldern von 0,25 etwa vier und bei 0,1 noch drei.

Die Glaubwürdigkeit der numerischen Lösung kann mit integralen Erhaltungssätzen

überprüft werden. Es wurde die Teilchen- und die Energieerhaltung benutzt.
Der Ausdruck für die relative Schwankung der Teilchenzahl findet sich in (93). Die zur
Zeit t 0 als thermische im Plasma und als elektrostatische auf dem Kondensator
vorhandene Energie tritt während der Entladung auch als magnetische, als kinetische
und als Ionisationsenergie auf. Zudem geht die ohmsche Wärme des Kreises dem
Gesamtsystem verloren. In den ungestrichenen Quantitäten schreibt sich diese zu
erhaltende Gesamtenergie :

| i t t-i o -I ^

e(f)= — Q2+-LP+ \ WI2dt+ f dr \-pv2 + -n(l + i)T + — B2 + inE,.\
2C 2 J * 2 2 877

0 Plasma \ >

(108)

Es wird hier darauf verzichtet (108) in endlichen Differenzen anzugeben, da der
Ausdruck unübersichtlich wird. Die Transformation ist einfach durchzuführen. Die
Energieschwankung ist dann durch (e(t) — e(0))je(0) gegeben.

Im weitern interessiert die totale ohmsche Wärme, die das Plasma bis zur Zeit
absorbiert hat. Sie wird direkt berechnet:

epi(t)= j drjdtxj2. (109)
Plasma 0

Auf die Transformation in endliche Differenzen wird ihrer Einfachheit wegen ebenfalls
verzichtet. Es sei nur bemerkt, dass/ mit Hilfe von (3) durch B ausgedrückt wird.

Bei dem im nächsten Kapitel folgenden Vergleich zwischen Theorie und Experiment

werden die Teilchen- und die Energieschwankung angegeben. Gleichung (109)
wird nach der Überprüfung der Theorie durch das Experiment zu theoretischen
Aussagen über die Energieabsorption verwendet.
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3. Vergleich zwischen Theorie und Experiment
3.1. Apparatur und Messungen

Die verwendete Apparatur ist im Detail in [3] beschrieben. Die Anregung bei
B0 5400 Gauss und T0 1,5 eV erfolgte mit zwei verschiedenen Kreisen. Sie haben
bei gleicher Eigenfrequenz a» 2,1-106 sec-1 verschiedene Kapazitäten bzw.
Induktivitäten. Kreis 1 (C 1,5 /l_F, L 1,5- IO"7 H, W 36 mß) kann bezüglich der
Frequenz als vom Plasma nicht beeinflussbar angesehen werden. Kreis 2 (C 7,5 /xF,
L 3,0 10~8 H, W 8,7 mß) wird vom Plasma verstimmt. L wurde aus C und der
Kenntnis der Frequenz ohne Plasma ('Vakuumsignal') errechnet. W ergibt sich aus
der Dämpfung des Vakuumsignals :

w
*~Tl (HO)

Kreis 1 wurde mit einer elektrostatischen Energie von 4 Joule zur linearen Anregung

des Plasmas benutzt. Die Anregung darf als linear bezeichnet werden, weil das
maximale Magnetfeld auf der Achse in Resonanz den Wert 0,04 (relative zu BQ) nicht
überschritten hat. Kreis 2 dagegen wurde mit 44 Joule geladen. Das auftretende
maximale Achsenfeld von 0,3 hat zur Folge, dass nicht lineare Effekte berücksichtigt
werden müssen.

Es wurden simultan am Rande und auf der Achse des Plasmazylinders
Magnetfeldmessungen mit Miniatursonden durchgeführt. Von den gefundenen Signalen der Art
von Figur 1 wurden die Zeiten .* (Rand) bzw. t£ (Achse) der aufeinanderfolgenden
Extrema und ihre Höhe B£ bzw. B£ für k 1,.. .,6 ausgewertet. Der Zeitnullpunkt
wurde in den beginnenden Anstieg des Randsignals gelegt. Die Messreihen bestanden
aus 16-18 Messungen bei verschiedenen Gasdrucken im Resonanzbereich.

Im weitern wurde die Erhöhung der Elektronendichte in Abhängigkeit vom
Radius mit einem Laserinterferometer mit bewegtem Spiegel gemessen. Die Apparatur
ist ebenfalls die gleiche wie in [3]. Hier konnte aber eine Zeitauflösung von 0,4 /usee
erreicht werden. Der apparative Aufbau erlaubte eine Dichtemessung bis zum Radius
2,5 cm. Der in die Rechnung eingehende Plasmaradius wurde aus der Lage der
magnetoakustischen Resonanz zu Rp 3,1 cm bestimmt.

In den folgenden drei Abschnitten werden die in dieser Arbeit entwickelten
theoretischen Modelle an Hand der erwähnten Messungen auf ihre Brauchbarkeit
geprüft.

3.2. Randsignale

Die Grössen .£, B£ der Randsignale geben Aufschluss über den Senderkreis, da das

Randfeld dem Strom im Kreis direkt proportional ist (20). Die Signale müssen
unbesehen der Anregungsstärke mit der vollständigen Theorie 2.6 verglichen werden,
da nur dort der Kreis als nicht unabhängig vom Plasma behandelt wird.

Im Falle des bezüglich der Frequenz nicht verstimmbaren Kreises 1 genügt es,
die Dämpfung S (24) zu vergleichen, die theoretisch trotz dem Einschwingen im Plasma-
keine Zeitabhängigkeit zeigt. In Figur 5 ist das Resonanzverhalten von 8 gezeigt.
Die theoretischen Werte der vom Plasma herrührenden Dämpfung liegen etwa 30%
tiefer als die experimentellen. Diese Diskrepanz ist vor allem durch die nicht lineare
Funktionsweise der zur Zündung der Kondensatoren benutzten Funkenstrecken bei
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Figur 5

Dämpfung S im Kreis 1 gemäss der Theorie 2.6 (-
des Gasdruckes p.

und dem Experiment (O O O) in Funktion

kleinen Energien bedingt. Ihr Widerstand ist vom Strom abhängig. Ein Vergleich mit
früheren S-Messungen bei höheren Anregungsenergien [3] zeigt, dass zwei Drittel der
Differenz zwischen Theorie und Experiment durch die Funkenstrecken bedingt ist.

Im Falle des Kreises 2 müssen sowohl die Zeiten .* der Extrema (Fig. 6) wie auch
deren Höhe B* (Fig. 7) verglichen werden. Die Verstimmbarkeit des Kreises 2 zeigt

w.

oo

o „ o

k 6

]" ° " " k-5

o o __. k 4

ooo g k =3

-gJgg«tPo o o k=2

-° n nn ^0l»n no° n ° k-1

_1 L_

50 100 200 500 p(mTorr)

Figur 6

Zeiten tÇ der ersten sechs Extrema k des Randfeldes bei Anregung mit Kreis 2 in Funktion des
Gasdruckes. Theorie und Experiment (O O O).
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sich am schönsten im Resonanzcharakter der Zeitkurven (Fig. 6), die im unverstimmten
Fall äquidistante horizontale Geraden sind. Die Diskrepanzen in Figur 6 und 7 rühren
von den Funkenstrecken und der Zeitabhängigkeit des Plasmaradius Rp her.

Da sich die grössten Abweichungen sowohl beim Kreis 1 wie beim Kreis 2 am Ende
des Signals (hohe k) zeigen, wo praktisch schon die gesamte Energie absorbiert worden
ist, wiegen sie nicht schwer: Sie sind immer kleiner als 10% der Maximalamplitude
(k 1). Die im Kreis absorbierte Energie wird somit von der Theorie mit einem Fehler,
der kleiner als 20% ist, wiedergegeben.

k-1
k-2

k.3
k«5 k-4

k-6

50050 100 200 50 100 200 500 PC"Torr)

Figur 7

Höhe Bf der ersten sechs Extrema k des Randfeldes bei Anregung mit Kreis 2 in Funktion des
Gasdruckes. Theorie und Experiment (o O O).

3.3. Phasendifferenz und Amplitudenüberhöhung

In Figur 8 werden Phasendifferenz Atk und Amplitudenüberhöhung uk verglichen.

Atk ti-tr
Bt
B«

(111)

Sie geben Aufschluss über den zeitlichen Verlauf des Feldes bzw. des heizenden Stromes
im Plasma. Das Experiment mit dem Kreis 1 kann dank seiner kleinen Anregungsenergie

mit der linearen analytischen Lösung 2.3 verglichen werden. Der Einfluss
des Kreises wird ausgeklammert, indem man die experimentellen Dämpfungen 8

(Fig. 5) für die Rechnung benutzt. Das Experiment mit Kreis 2 dagegen kann wegen
der hohen Anregung und der Beeinflussbarkeit des Kreises nur mit der vollständigen
Theorie 2.6 beschrieben werden.

Bei den Rechnungen mit der Theorie 2.6 hat das iterative Lösungsverfahren
nach der Gauss-Seidel-Methode bei einer Genauigkeit von e IO-6 (91) im Durchschnitt

vier bis fünf Schritte benötigt. Die Schwankungen von Dichte (93) und Energie
(108) haben säkulare Anteile gezeigt, die nicht grösser waren als 1%, mit einer
Ausnahme: Bei hohem Füllgasdruck, p 630 mTorr, fehlen am Schluss 6% der Gesamtenergie.

Beim gleichen Druck zeigt sich in der ersten Halbperiode auch die grösste
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KREIS 1

KREIS 2

k 2 k 3

oaf

p (mTorr) 100 200 400 100 200 400 100 200 400

Figur 8

Amplitudenüberhöhung uk und Phasendifferenz __.t zwischen Achse und Rand für die ersten
sechs Extrema k der Magnetfeldschwingung nach der Theorie und dem Experiment O O O

Amplitude der Energieschwankung (30%). Diese Maximalamplitude nimmt mit
fallendem Druck ab. In Resonanz tritt sie während der zweiten Halbperiode auf
(18%), bei p 30 mTorr ist sie nurmehr 4%. Die Dichteschwankung hat ihre grösste
Amplitude immer in der ersten Halbperiode. Sie nimmt von 19% bei 30 mTorr mit
steigendem Druck ab und ist bei 630 mTorr noch 8% hoch.

In den in Figur 8 gezeigten Messwerten des Kreises 2 war die erste Halbperiode
des Magnetfeldes parallel zum statischen. In einer zweiten Messreihe mit dem Kreis 2
wurde dann die umgekehrte Polarität gewählt. Ein Vergleich der ersten zwei
Halbperioden der beiden Messreihen (Fig. 9) zeigt den Einfluss der Nichtlinearitäten.

Die Diskrepanz zwischen Theorie und Experiment in Figur 8 und 9 ist wieder den
Funkenstrecken und dem veränderlichen Plasmaradius zuzuschreiben. Da die
Abweichungen die Grenze von 25% nicht übersteigen, darf das Resultat als befriedigend
bezeichnet werden.
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Figur 9
Einfluss der Nichtlinearitäten auf die Amplitudenüberhöhung uk der ersten zwei Extrema der
Magnetfeldschwingung bei Anregung mit Kreis 2. 1. Halbperiode parallel Theorie, O

Experiment), 1. Halbperiode antiparallel Theorie, • Experiment).
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3.4. Erhöhung der Elektronendichte

Als drittes wird die totale Dichteerhöhung Ane in Abhängigkeit vom Radius
verglichen. Da im vorhegenden Temperaturbereich mehr als 80% der im Plasma
absorbierten Energie als Ionisationsenergie erscheint, was sich aus (108) und den Angaben

im Anhang leicht zeigen lässt, gibt die Dichtemessung guten Aufschluss über die

An«

0.5

T

0.4

0.3 - /
0.2

t i
0.1 "T

0.0

1 1 1 i

0.2 0.6 0.8

Figur 10
Die durch eine gepulste Entladung bewirkte Erhöhung der Elektronendichte An,, in relativen
Einheiten bezüglich der Ausgangsdichte in Abhängigkeit vom Radius.

Energieabsorption. Es wurde der Resonanzfall beim Kreis 2 mit p 140 mTorr und
Ço/2C 44J gewählt. Ane ist auf die Ausgangsdichte we0 4,1-1015 cm-3 normiert,
r auf den Plasmaradius Rp 3,1 cm. Aus Figur 10 ist ersichtlich, dass integral über die
Plasmafläche Theorie und Experiment weniger als 20% voneinander abweichen. Das
ist wesentlich besser, als was aus den maximalen Fehlern beim Magnetfeld geschlossen
werden könnte (mindestens 50%).

Es zeigt sich also, dass das benutzte physikalische Modell das Experiment als

ganzes innerhalb Grenzen von etwa 20% beschreibt. Die theoretischen Unsicherheiten
sind somit nicht grösser als die experimentellen.

4. Energieabsorption

Die gute Übereinstimmung zwischen Theorie und Experiment erlaubt es nun,
rein theoretische Aussagen über die Energieabsorption im Plasma bei einer gepulsten
Anregung im Bereich der magnetoakustischen Resonanz zu machen. Der Wirkungsgrad
X ist das Verhältnis der total im Plasma absorbierten Energie epl(t oo) (109) zur
elektrostatischen zur Zeit t 0:

X--
egi(°°)

91
2C

(112)
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X ist wesentlich vom ohmschen Widerstand W des Kreises abhängig. Die theoretischen
Resultate zeigen, dass die Abhängigkeit von W angenähert durch die einleuchtende

Gleichung

W
X x * (113)

W+W„

beschrieben wird. Wp ist durch die Parameter des Plasmas, die Art der Anregung und
durch das Einschwingverhalten bestimmt. Bei stationärer Anregung geht Wp in den
in [3] definierten Plasmawiderstand über. Im Falle von Kreis 1 ist das mit (112) und
(113) definierte Wp einen Faktor 2.5 kleiner als der stationäre Plasmawiderstand.

Aus den Rechnungen mit verschiedenen Kreisen ergibt sich, dass X bei gepulster
Anregung nicht von deren Stärke abhängt und nur schwach von den Kreisdaten L
und C: Kreis 2 gibt zum Beispiel 49% seiner Energie aus Plasma in Resonanz ab.
Ein noch stärker verstimmbarer Kreis mit gleichem Widerstand und doppelter
Kapazität verliert in etwas verschobener Resonanz immer noch 43%. Für die Plasmaheizung

wird der kleine Verlust an Wirkungsgrad durch die doppelte Kapazität mehr
als wettgemacht.

Wie stark die Energieabsorption vom Einschwingen abhängt, soll am Beispiel
des Kreises 2 gezeigt werden. Er verbraucht während der ersten Periode selbst 45%
seiner Energie, während das Plasma in der gleichen Zeit nur 19% aufnimmt. Der Rest
wird dann wesentlich anders verteilt. 6% bleiben im Kreis und 30% gehen ins Plasma.
Bei gleichen physikalischen Bedingungen im Plasma und stationärer Anregung absorbiert

das Plasma in der zweiten Periode dreimal mehr Energie als in der ersten.
Die theoretische Analyse der Energieabsorption bestätigt also die triviale

Forderung nach möglichst kleinem ohmschen Widerstand für einen das Plasma heizenden
Kreis. Weiter zeigt sie, dass die Verstimmbarkeit des Kreises keinen wesentlichen
Einfluss auf den Wirkungsgrad hat, so dass die Kapazität möglichst gross bzw. die
Induktivität möglichst klein gewählt werden soll, immer natürlich unter Beibehaltung
der Resonanzfrequenz des Plasmas. Und zuletzt zeigt die Analyse, dass der Wirkungsgrad

einer solchen Kreisentladung für die Plasmaheizung nur unter Berücksichtigung
der EinschwingVorgänge berechnet werden kann.

Die in dieser Arbeit beschriebene Theorie ist anwendbar, solange Anregung und
Plasmatemperatur so klein sind, dass Druck- und viskose Kräfte gegenüber den
magnetischen vernachlässigbar sind. Im speziellen soll kein Schock auftreten.
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Behandlung des Problems und für die Überlassung des Rechenprogramm.es zur
Berechnung der nicht linearen stationären Lösung [2]. Herrn Dr. K. Fässler danken
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Anhang
Temperatur, Ionisationsgrad und spezifischer Widerstand

In lokalem thermodynamischem Gleichgewicht beschreibt die Saha-Eggert-
Gleichung [5] den Zusammenhang zwischen Temperatur und Elektronen- bzw.
Ionendichte. Um sie benutzen zu können, müssen die Ionenzustandssummen bekannt
sein, welche für freie Ionen und Atome divergieren. In Plasmen haben sie auf Grund
der Ionisationspotentialerniedrigung AE, die von Mikrofeldern herrührt, endliche,
von AE abhängige Werte. Im Parameterbereich der vorliegenden Arbeit ist AE sehr
klein. Werte verschiedener Theorien schwanken zwischen 0,02 eV und 0,2 eV für die
ersten zwei Ionisationspotentiale. Diese Unsicherheit verlangt einen Vergleich zwischen
der Saha-Eggert-Gleichung mit AE 0,1 eV, einer Saha ähnlichen Gleichung von
Cantieni [1], die für Argon unterhalb etwa 1,5 eV gilt und dem Experiment (Fig. 11).
Alle Dichten sind auf n 5 • 1015 cm-3 normiert. In der vorliegenden Arbeit wurde eine
Kombination der zwei Theorien gewählt, die den experimentellen Zusammenhang
wiedergibt (Fig. 12). Sie vernachlässigt die schwache Abhängigkeit vom Ausgangsdruck.

Die Kurven in Figur 12 wurden im Bereich 1,3 eV < T < 1,9 eV durch einfache
Ausdrücke approximiert :

— =1,927-1,98
n

^=3(77-l,4)2.
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Figur 11

Abhängigkeit der Elektronendichte ne von der Temperatur. Saha-Eggert-Gleichung
Theorie nach [1] und Experiment (O O O).
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Figur 12

In dieser Arbeit benutzte Abhängigkeit der Teilchendichten von der Temperatur.

Der spezifische Widerstand ist durch die Stossfrequenz der Elektronen 1/tc ve

veX + ve2 bestimmt. Im isotropen Fall (x < 1, x Qere, Qe eBjmec) ist er ungefähr

X 2e2i
(A.2)

Im anisotropen Fall (x > 1) ist er von x abhängig. Die x abhängigen Korrekturfunktionen

[7] für die Stösse e — A 4 und e — A ++ werden in guter Näherung additiv benutzt :

x±- e'n„

A(x)

("el/lM Ave2f2(x))

a[ x2 + a0
(A.3)

x* + 8xx2 + 80

Die Konstanten «,', a0, S, und S0 sind für k 1, 2 in [7] zu finden.
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