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Das Einschwingen eines zylindrischen Plasmas
in magnetoakustischer Resonanz')

von K. Appert, B. Hoegger, H. Schneider und E. Weise
Institut fiir Physik der Universitat Freiburg i. Ue.

(14. X. 71)

Abstract. The transient behaviour of an oscillating plasma cylinder is studied near magneto-
acoustic resonance. Appropriate nonlinear magnetohydrodynamic equations are solved as an initial
value problem and the results are compared with experiments. The energy absorbed in the plasma
is found to be strongly dependent on transient efiects.

1. Einleitung

Die vorliegende Arbeit ist eine Weiterfithrung der Untersuchungen von Cantieni
etal. [1], Faessler et al. [2] und Hoegger et al. [3]. Diese und andere Autoren [4] studieren
die magnetoakustische Resonanz eines zylindrischen Plasmas unter der Annahme,
dass sich die angeregte Schwingung im stationiiren Zustand befinde. In einem Grossteil
der experimentellen Anordnungen spielen jedoch Einschwingeffekte eine wesentliche
Rolle. Stationadre Theorien sagen dann vor allem zu grosse Energieabsorption voraus.
In der vorliegenden Arbeit werden diese transienten Effekte experimentell und
theoretisch untersucht.

Ein zylindrisches Glasrohr enthilt ein Argonplasma in einem stabilisierenden
konstanten Magnetfeld in Achsenrichtung. Das Rohr ist von einer leitenden Berandung
umgeben, die als einwindige Spule Teil eines R-C-L-Serieschwingkreises ist. Die
Frequenz des ersten radialen magnetoakustischen Modus der Plasmasdule wird durch
Verindern des Gasdruckes im Bereich der Eigenfrequenz des Schwingkreises variiert.
Es interessiert die Reaktion des Plasmas auf eine Entladung im Schwingkreis. Die
Theorie, die das Problem linear und nicht linear behandelt, ist zum Teil analytischer,
zum Teil numerischer Natur. Das theoretische Verhalten von Magnetfeld und Dichte
wird mit dem experimentellen verglichen. Die gefundene gute Uebereinstimmung
erlaubt theoretische Aussagen tiber den Wirkungsgrad einer gepulsten Entladung fiir
die Plasmaheizung.

2. Theorie
2.1. Grundgleichungen

Das zu untersuchende Argonplasma hat folgende charakteristische Parameter:
Dichte der schweren Teilchen # ~ 10! —10'¢ ¢m™, Plasmaradius R, ~ 3-4 cm,

)  Diese Arbeit wurde durch die finanzielle Unterstiitzung des Schweizerischen Nationalfonds
ermoglicht.
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Temperatur T ~ 1,4 — 2,0 eV und stabilisierendes axiales Magnetfeld B, ~ 4-6 kGauss.
Die Frequenz der magnetoakustischen Resonanz hat dann die Grossenordnung von
einem Megahertz. Der angegebene Temperatur- und Dichtebereich entspricht nach der
Saha-Eggert-Gleichung [5] einem Ionisationsgrad #,/# von etwa 0,6 bis 1,6. Exakt
wiirde das zu untersuchende Plasma also durch die Gleichungen des vierkomponentigen
Gasese, A, A", A** beschrieben. Es soll nun aber auf heuristische Art gezeigt werden,
dass sich die Gleichungen mit kleinem Fehler auf die Bewegungsgleichungen einer
leitenden einkomponentigen Fliissigkeit [6] reduzieren lassen. Es seien p = nM und v die
Massendichte bzw. die Massengeschwindigkeit der schweren Teilchen. Dann gilt die
Kontinuitédtsgleichung

% + di 0 (1)
— IVpV =0U.
ot i

Ebenso gilt bei Annahme von Quasineutralitit und unter Vernachlissigung von
viskosen Kriften die folgende einfache Bewegungsgleichung fiir v:
ov 1.
p5+p(v-grad) =-jx B—grad p (2)
¢
wo j die Stromdichte, B das Magnetfeld und p den Plasmadruck bezeichnen. Im mag-

netoakustischen Bereich ist der Verschiebungsstrom gegeniiber j vernachldssigbar.
Die Maxwellschen Gleichungen schreiben sich daher

4
rotB ——j, e
C
CE 10B .
0 e
o ¢ ot 4)
divB = 0. (5)

E ist das elektrische Feld. Das Gleichungssystem (1) bis (5) muss noch durch das
Ohmsche Gesetz und eine Gleichung fiir p ergdnzt werden. Das Ohmsche Gesetz

'=3-(E+%va) (6)

kann in linearer Approximation aus den Gleichungen fiir das Vierkomponentensystem
hergeleitet werden. Es folgt, dass im Falle der magnetoakustischen Resonanz wesentlich
nur die Wechselwirkung der Elektronen mit den Ionen fiir die elektrische Leitung
verantwortlich ist, und dass sich die Leitfihigkeit & des vierkomponentigen Systems
von derjenigen des einfachen Zweikomponentenplasmas nur dadurch unterscheidet,
dass an die Stelle der Stossfrequenz v,, die Stossfrequenz v, =v,, + v, tritt. Hier
bedeuten v,, und v,, die Stossfrequenzen der Elektronen mit A+ bzw, 4**.
Mit dem idealen Gasgesetz

p=Mm,+n +n,+n,)T (7)

ist der Druck durch die Temperatur [in erg] und die Teilchendichten von 4, 4%, 4**
und e gegeben. Die Temperatur, die auch wesentlich in & eingeht, muss nun mit dem
Energieerhaltungssatz fiir ein Volumelement der Fliissigkeit berechnet werden. Hier
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spielt es nun eine grosse Rolle, dass man es mit einem System zu tun hat, in dem Ionisa-
tion und Rekombination vorkommen. Eine Temperaturerh6hung zieht immer Ionisa-
tion nach sich. Mit der Beriicksichtigung von Ionisation und Rekombination ergeben
sich also kleinere Temperaturinderungen als ohne. Die totale Ionisationsenergie pro
Volumelement ist anschaulich

n By = n.Ey+ny (E;— Ey) (8)

wenn £, = 15,76 eV und E, = 27,62 eV die ersten zwei Ionisationspotentiale von Argon
bezeichnen. Der Energieerhaltungssatz [7] lisst sich dann unter Beriicksichtigung der
Ionisation wie folgt schrieben

0 1 ¢ .
—|$pv? +3p +—B% +n,E, |+ div (3p2+3p)v+—E X B+n E,v|=0. (9)
ot 87 4

Hier sind Diffusion, thermische Krifte, Wirmeleitung und Viskositdt vernachlissigt
worden. Abschidtzungen [8] zeigen, dass im diskutierten Parameterbereich ausser
durch Diffusionseffekte im Vierkomponentenplasma keine Fehler entstehen. (9) ldsst
sich mit Hilfe von (1), (2), (3), (4) und (6) in die Bewegungsgleichung fiir » umformen:

on E,

= +diva E; v+ pdivv =¥:(;])- (10)

30p .
§§+%d1vpv+

Hier bedeutet ¥ = oL, _
Mit den Beziehungen zwischen Temperatur [in eV] und Dichten (sieche Anhang)

i=2e_192T—198, (11)
n
n
= 8T — 1438, (12)
" |
n=nn+nl+nz (13)

lasst sich (10) weiter umformen in die gesuchte Bewegungsgleichung fiir 7':

di aiE,||0T
3n(l + 1) +%nT:i—T-+n o7 E-{—V-gradT

=—n(l +4) Tdivv+%:(;i) (14)

Die Gleichungen (1) bis (6), (8) und (11) bis (14) beschreiben das Verhalten des Plasmas
vollstandig. Sie sollen nun fiir das vorliegende zylindersymmetrische Problem (9/d¢ =
0/0z = 0) spezialisiert werden. Dabei werden j und E mit Hilfe von (3) und (6) eliminiert.
(5) ist mit B, =0 automatisch erfiillt. Unter den weiteren Voraussetzungen, dass
erstens zur Zeit ¢ = 0 kein Strom in Achsenrichtung fliesst, und dass zweitens die das
Plasma umgebende Senderspule einen rein azimutalen Strom fithrt, geniigen die
Bewegungsgleichungen der Gréssen p, v=1v,, B= B, und T zur Beschreibung der
Phinomene:

=== (rpo) 15)
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ov dov 1BdB 1adp
v

e e (16)
ot or dmp or por
0B 210 6B\ 10
e e —|= = — (#vB 17
ot 4wy or (”Xl ar) r o rvB) a7)
¢ x,[9B - 129

— Al _a T— —
T T @nltn (ar) A+9To5m
T ' & > : : (18)
ot or 3(144) 42T di +dzE,

TNt I

X, ist im Anhang zu finden. Die Gleichungen (7), (8) und (11) bis (13) kénnen unver-
dndert {ibernommen werden. Abschitzungen zeigen, dass die Druckkraft in (16) bei
den vorliegenden Temperaturen und Dichten gegeniiber der magnetischen Kraft
vernachlissigt werden kann. Das System (15) bis (18) ist dann ausser dem ‘Ionisa-
tionsnenner’ in (18) identisch mit dem in [9]. Die Vernachlassigung der Druckkraft
in (16) hat zur Folge, dass die hydrodynamische Randbedingung mit der elektro-
dynamischen zusammenfillt [1, 2, 3, 9]:

B(r = R,,t) = By + B,.(f). | (19)

R, bezeichnet den Plasmaradius. B, ist das stabilisierende statische Magnetfeld.
B,,(t) ist das Magnetfeld, das von der das Plasma umgebenden einwindigen Spule des
Senderkreises erzeugt wird:

Bufy =220 (20)

Hier ist / die Lange der einwindigen Spule. I (¢) bezeichnet den Strom im Senderkreis.
Er ist durch die Differentialgleichung eines Serieschwingkreises bestimmt:

—=——Q0——=I——= —-Trdr, (21)

0 1 o | 22)

Q() ist die elektrostatische Ladung auf dem Kondensator der Kapazitiat C. L ist der
totale Selbstinduktionskoeffizient des Kreises, wenn die Fliche der anregenden Spule

um die Plasmafliche (Radius R,) verkleinert wird. W ist der ohmsche Widerstand
im Kreis.

Das Gleichungssystem (8), (11) bis (13), (15) bis (22) hat eine eindeutige Lésung,
falls man noch die Randbedingungen angibt :

p(r,t=0) = p, Trt=0)=T,
v(r,t=0)=0 It=0) =0 (23)
B(r,t=0) = B, Q(t=0) =0,
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2.2. Losungsmethoden

Es ist evident, dass das vorstehende Gleichungssystem nur niherungsweise
gelost werden kann. Ein méglicher Lésungsweg ist der von [2], [9] benutzte. Er besteht
in einer Storungsrechnung mit dem Ansatz B = B, + BV + B® 4, der Vorausset-
zung BY/B, <1 und der Annahme B™*V/B™ ~ BM/B,. Diese Storungsrechnung
erlaubt analytische Lsungen des Problems, da bei der sukzessiven Bestimmung der
unbekannten Funktionen nur lineare Differentialgleichungen auftreten. Einen andern
Weg zur Losung bietet die numerische Integration mit endlichen Differenzen. Bei
keinem der beiden Losungswege kann zum voraus gesagt werden, ob er zum Ziel
fithrt: Es ldsst sich weder beweisen, dass die Stérungsreihen konvergieren, noch dass
die Losung der Differenzengleichungen bei kleiner werdenden Differenzen gegen die
Losung der Differentialgleichungen strebt. Der Vorteil der Stérungsrechnung gegeniiber
dem Differenzenverfahren ist der, dass dank der Analytizitit der Ldsungen der Einfluss
nicht linearer Terme in den Differentialgleichungen explizit studiert werden kann.
Das Differenzenverfahren seinerseits ist der Stérungsrechnung in seiner mathemati-
schen Einfachheit iiberlegen.

In dieser Arbeit soll als erstes ein vereinfachtes physikalisches Problem in der
linearen Niherung der Stérungsrechnung behandelt werden. Die Vereinfachung
besteht darin, dass die Temperatur als konstant angenommen wird, und dass der
anregende Schwingkreis nicht vom Plasma beeinflusst wird. Das dann verbleibende
Gleichungssystem (25), (26) ist abgesehen vom Einfluss der Neutralteilchen identisch
mit dem in [1], wo auch seine stationire Lésung angegeben wird. Die nicht stationdre
Behandlung dieses einfachen Problemes rechtfertigt sich durch den Einblick, der in
die Vorgiange des Einschwingens gewonnen werden kann.

Als zweites wird das gleiche lineare System numerisch mit endlichen Differenzen
gelost. Ein Vergleich mit der analytischen Losung fillt iiberraschend gut aus.

Im dritten Teil der Arbeit wird nochmals das vereinfachte physikalische Problem
behandelt jedoch mit einbezug der Nichtlinearititen. Die numerische Lésung kann
nach dem Einschwingen mit der stationdren Losung [2], die mit Stérungsrechnung
bis zur zweiten Ordnung erhalten wurde, verglichen werden. Die Ubereinstimmung
ist bei nicht zu hohen Feldern (B — By < 0,2 By) gut. Bei hoherer Anregung geniigt
die quadratische Naherung der Stérungsrechnung nicht mehr.

Im vierten und letzten Teil wird sodann das vollstindige physikalische Problem
numerisch behandelt. Hier kann die Lésung nur noch mit Hilfe von integralen Erhalt-
ungssitzen getestet werden, da eine analytische Losung nicht vorhanden ist. Die
Erfiillung der Erhaltungssitze und der Erfolg der numerischen Losung in den vorher
besprochenen Problemen lassen aber vermuten, dass auch hier das Verfahren der
endlichen Differenzen nahe an die Lésung der Differentialgleichung fithrt. Der Vergleich
mit dem Experiment bestitigt diese Vermutung.

2.3. Analytische Lisung des physikalisch vereinfachten linearen Systems

Hier wird die Temperatur als konstant angenommen. Das hat zur Folge, dass die
Gleichungen (8), (11) bis (13) und (18) unnétig werden. Weiterhin sollen die Selbst-
induktivitdt L und der Widerstand W des Senderkreises so gross sein, dass das Plasma
den Kreis nicht zu verstimmen vermag. Mit andern Worten heisst das: W und L sollen
so gross sein, dass der letzte Term in (21), der den Einfluss des Plasmas auf den Kreis
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beschreibt, vernachlissigbar wird. (20) wird dann bei kleiner Dimpfung 8/w <1
ersetzt durch
B..(!)
B,

= ¢e ¥ sinwt (24)

£, 8 und w sind bestimmt durch die Kreisdaten C, L, W und Q.

Die Gleichungen (15), (16) und (17) werden nun mit dem in 2.2 besprochenen
Storungsansatz linearisiert. Dabei ergibt sich, dass nur noch die Bewegungsgleichungen
fiir v (16) und B (17) gekoppelt sind:

ov® 1 Bo oBW

L .. 25
oBW ¢210 oBY B, 0 - 5
— S (Y. : S .

ot X1 47 v dr oOr v or v (%)

Ohne zusdtzliche Annahmen muss der Plasmaradius R, als zeitabhidngig verstanden
und in einer Stérungsreihe angesetzt werden. Die Randbedingung (19) schreibt sich
dann zusammen mit (24) in linearer Ndaherung:

B®(r = R©, 1)
By

= £e ¥ sinwt. (27)

In der Losung von (25)—(27) erhilt man vP(r = R©®,#) # 0, was bedeutet, dass der
Plasmaradius R, um den konstanten Radius R{ oszilliert. Zum gleichen Schluss
gelangt man [10], wenn das Gleichungssystem (15) bis (17) in Lagrange-Koordinaten
formuliert und linearisiert wird. Dieses lineare Lagrange-System hat exakt die gleiche
Form wie (25) und (26). In den spdteren nicht linearen Losungen sollte also R, weiterhin
als zeitabhingig genommen werden, das heisst, es sollte die Losung in Lagrange-
Koordinaten gesucht werden. Darauf wird aus verschiedenen Griinden verzichtet.
Erstens ist die Behandlung in Eulerschen Koordinaten durchsichtiger, zweitens
beriicksichtigt die erwihnte nicht lineare Theorie [2], die als ein wesentlicher Test fiir
die numerische Losung benutzt wird, den Randeffekt nicht, und drittens liasst sich der
Fehler, der durch die Vernachlissigung des Randeffektes entsteht, in der numerischen
Losung mit Erhaltungssatzen abschitzen. Er ist nicht grosser als die experimentellen
Unsicherheiten in den Ausgangsparametern. In allem weitern soll also R, konstant
sein und den mittleren Plasmaradius wihrend der Schwingung bezeichnen.

Im Hinblick auf die spitere numerische Behandlung des Gleichungssystemes

(25) bis (27) ist es angezeigt, alle Variabeln und Funktionen analog zu [9] dimensionslos
darzustellen. Es sei

7 CA B(l) v(!)
V'=—, t=—t B=—  t=—ox
R, R, B, Ca
R R
w="w, &=2=28, (28)
Ca A
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wo C, = By/V4mp, die Alfven-Geschwindigkeit bezeichnet. Der Index O bezeichnet
immer eine Grosse zur Zeit 0. Damit schreiben sich die Gleichungen (25) bis (27) unter
Weglassung des Striches ()

ov 0B '

r_._Z (29)
ot or

oB 19 0B 19 %
% i e v 30
B(r=1,1) = ée % sinwt (31)

wo a = ¢y, o/(4mR,C,) den Leitfahigkeitsparameter bedeutet. Es wird nun die Lésung
des Gleichungssystemes (29)-(31) mit Laplacetransformationen gesucht.

Es sei

glr,q) = foe"”" B(r,t) dt (32)
0

hr,g) = [ e v (33)

0

Das transformierte Gleichungssystem schreibt sich unter Beriicksichtigung der Anfangs-
bedingungen B(r,{ =0) = v(r,t =0) =0:

a 3 .
gh——2 (39
or
10 dg 10
== (== e Y e o v c— h 35
= e o rar | .
¢ 1 1
g(l,g) =— . A —| (36)
20| g —i(w+10) ¢+i(w—1d)
Elimination von (7, q) aus (34) und (35) ergibt
10
(k2 +- —ri)g(r,q) =0 (37)
r or or
WO
2
pro_ 1 (38)
1+ aq

bedeutet. (37) ist die Besselsche Gleichung nullter Ordnung. Die Neumannsche Funk-
tion wird aus physikalischen Griinden wegen ihrer Divergenz im Ursprung als Losung
verworfen, und es gilt

g(r,q) =C(q)Jo(kr). (39)
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Die Funktion C(g) ist mit der Randbedingung (36) bestimmbar. Deshalb folgt aus (39):

i Jolk) 1 1
T2 Jok)|g—02 ¢—0*

wo £ =—iw—06 und (*) das Konjugiert-Komplexe bezeichnet. Es bleibt nun die
Aufgabe g(7,¢) in den (7,f)-Raum zuriickzutransformieren:

g(.9) (40)

1 ytioo
B(r,?) ——— f et g(r,q) dgq. (41)
y—ioo

Fiir die Integration ist das reelle y so zu wdhlen, dass alle Singularitidten von g(r,q)
links vom Integrationsweg liegen. Zur Auswertung kann der Residuensatz verwendet
werden:

B(r,?)

; R {e®g(r.q)} (42)

wo g; die Pole der Funktion g(r,q) und R,_, {----} ihr Residuum an dieser Stelle
bezeichnet. g(r,q) hat folgende Pole:

a) ¢=4£2und g = 2%,
b) Nullstellen von Jy(k): y,. Aus & =y, folgt mit (38)

ay: a?y?2
g=~ iy, [—LE—1= 5t (43)

Hier hat man die zwei Fille ay, > 2 und ay, <2 zu unterscheiden. Sei fiir
n<m ay, <2, dann ist

brn=—08,+iw,=(pn)*, n<m (44)
A
ay? ]
8y = —
2
= angm. (45)
Sy =% 1_“ Yn
n n 4 ]
c) n>m
pr=—Ob,tw, n>m (46)
wo
ay? ]
5, = Yn
2
— n>m (47)
w z y"—l
n="Yn 4
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Es gibt zwei Haufungspunkte von Polen:

limp, =—

_ 1 (48)
limp} = ——
n-=o a

Die Anwendung des Residuensatzes zur Berechnung von (41) ist also nicht ohne
weiteres erlaubt. Seine formale Anwendung fiihrt aber trotzdem zu einer gleich-
maissig konvergenten Reihe, von der gezeigt werden kann, dass sie die gesuchte Lésung
von (29)—(31) ist, und dass sie die Anfangsbedingungen erfiillt.

Es sollen nun die einzelnen Residuen berechnet werden.

a) Mit der Definition
Jo(2) = s(2)e!?® (49)
wo s(z) und ¢(z) beide reell sind, ergibt sich

Riewgtral + R el = 50
0

sin[wt — glko?) + @lko)le (50)
wo k, durch (38) gegeben ist, wenn man g = £2 setzt. Hier wurde vorausgesetzt, dass £2
nicht mit einer ‘Eigenfrequenz’ % zusammenfillt.

b) Zur Berechnung des Residuums an einer Stelle g = p, braucht man die Entwick-
lung von [4(%) in Termen von (¢ — p,):

Taty - | 2o gﬂ @)+ o o)
Aus (38) erhilt man nach einigen Umformungen

wh_ & (1 _ fz_) (52)

dg 29\ ¢
und damit aus (51)

Vol

Jot =~Titr) 2= (l—ﬁz)@—pm 53)

und somit
t i€ Jobar) 268 [ 1 LT
& S V:JT(%.) : i2 [P* Q p*—Q*]BD" ' (54)

(64) gilt fiir beliebiges #. Die analoge Formel gilt auch fiir ;. Es soll nun fiir n <m
spezialisiert werden. Dort gilt

R fegr.)} = [ R fevgtr, q)}] " (55)
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Die Summe der Residuen bei p; und $; ist demnach durch zweimal den Realteil von
Ri=pi {¢%2(7,9)} gegeben. Ihren Wert erhilt man unter Verwendung von (44), (45)
und (564) mit einiger Algebra:

]O(Yn ) 2‘" € ~ant
'yn.]l(')’n) w, o 2+B2

Hier sind folgende Abkiirzungen benutzt:

X [(otn €2 — Bn Cn) COS wpt + (01, £ + By €,) SIN @, £]. (56)

tn= (80— 8+’ — o]
Bn = 20),‘(8 - 81:)
€, = 26, w,

c) Im Fall von #>m miissen die Beitrige von p; und p, getrennt berechnet
werden. Mit (46) und (47) ergibt sich fiir £ aus (54):

]O(Yn) A+ (=Bptwy)e

FE (58)
YnJ1(yn) @,
mit der Abkiirzung
- (wn F 8,)?
e (59)

(W F O£ 8)2 + w?

Mit den Resultaten (50), (56) und (58) lasst sich das gesuchte Magnetfeld an-
schreiben:

B(r,f) = fs(ko”)

s(ko
< ]O(Vn) 2w e =il

o et L

sin[w! — p(ky7) + (ko) Je™

€0 — Bn Ln) cOsw,t + (ay &, + Bu€y) sinw, £]

< ]O(YH ) w
| ,\+ —(Optwp)t __ An (—Ontwplt i 60
§n é-#l 'Yn.]l( ) [ ’ ] ( )

Die unendliche Summe koﬁvergiert gleichmissig mit 1/n%/2, Mit Hilfe von (29) kénnte
nun noch v(r,?) berechnet werden und gezeigt werden, dass die Differentialgleichung
(30) erfiillt ist. Wegen des grossen algebraischen Aufwandes wird hier darauf verzichtet.
Mit dem gleichen Argument wird hier auch darauf verzichtet, die Erfiillung der An-
fangsbedingung zu zeigen. Dass die Randbedingung (31) erfiillt ist, ist offensichtlich.

Der erste Term in (60) stellt die erzwungene Schwingung dar, alle andern sind
Eigenschwingungen des Systems. Die erzwungene Schwingung allein schon ist Lésung
der Differentialgleichungen (29) und (30), und sie befriedigt die Randbedingung (31).
Mit & = 0 ist sie identisch mit Cantienis [1] stationdrer Lésung. Wenn 8 < §, ist, sind
nach einer gewissen Zeit alle Eigenschwingungen gegeniiber der erzwungenen vernach-
lassigbar, und es kann von einem eingeschwungenen System gesprochen werden
(Fig. 1). Offensichtlich bestimmt wesentlich der Leitfihigkeitsparameter a = c?y o/
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(4mR,C,) das Einschwingverhalten, da er linear in die §, eingeht. Zur Illustration sind
in Figur 2 die Achsenmagnetfelder B(r = 0,{) bei stationirer Anregung (6 = 0) in der
Néhe der 1. Resonanz (w =1y,) fiir verschiedene a angegeben. Dabei sind die ¢ so
gewihlt, dass im eingeschwungenen Zustand die Amplituden gleich hoch sind.

By
2t \‘ a=03
=%
6 026
| /\
/\ /\ NS
v v \/ \/ NL--B
-1r
-2t
Figur 1
Annaherung des Feldes auf der Achse B(0,¢) ( ) an die Enveloppe der reinen erzwungenen
Schwingung (————- ). B und £ sind dimensionslos gemiss Gleichung (28).
B(ON1
a=0,05
-1
1
a=0,1
. : ; |
1
a=0,5
- 5 10 15 t
Figur 2

Abhingigkeit des Einschwingverhaltens vom Leitfahigkeitsparameter a fiir das Magnetfeld
B(0,?) auf der Achse im Resonanzfall w =y, ~ 2,4.

Es soll nun noch kurz das Problem der ‘komplexen’ Resonanz besprochen
werden. Unter ‘komplexer’ Resonanz wird der bei der Auswertung der Residuen
ausgeschlossene Fall £ = p¥ verstanden. Hier geschieht also die Anregung mit einer
Eigenfrequenz w = w; und der zugehorigen Dimpfung 8 =§,. In der Formel (60)
divergieren der erste Term (k, — y,) und in der Summe der Term mit #» = /. Um die
Modifikation von (60) fiir den Fall 2 = p{ zu bekommen, ist es einfacher, direkt den
Pol zweiter Ordnung bei £2 = p§ auszuwerten als in (60) den Limes auszurechnen. Auf
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der Achse (» = 0) werden Terme der Art ¢sin w,texp (—8,¢) gefunden. Das Verhiltnis von
Achsenfeld zu Randfeld nimmt also mit der Zeit linear zu. Das ist das typische Verhalten

eines einschwingenden Systemes, das in einer Resonanz angeregt wird, fiir welche
die stationdre Theorie eine unendliche Resonanzamplitude vorhersagt. Im Falle der

BWOH
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/
< °
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Figur 3
Sakulare Annaherung des Feldes auf der Achse B(0,?) an eine ‘unendliche’ Resonanzamplitude.

magnetoakustischen Resonanz findet sich diese Erscheinung zum Beispiel dann, wenn
bei grossen Temperaturen (y — 0,a — 0) stationir (6 = 0) angeregt wird (Fig. 3).

2.4. Numerische Losung des physikalisch vereinfachten linearen Systems

In diesem Abschnitt soll das Problem von Abschnitt 2.3 numerisch mit endlichen
Differenzen [11] behandelt werden. Dies dient erstens dazu, die Transformation der
Differentialgleichungen in Differenzengleichungen zu zeigen, und zweitens dazu,
durch einen Vergleich mit der analytischen Losung einen Begriff von der Genauigkeit
der numerischen Methode zu vermitteln.

Den anzugebenden Differenzengleichungen sei folgende Diskretisierung der
Variabelnebene 0 < 7 < 1, 0 < ¢ zu Grunde gelegt :

7’10=7’0,...,7‘i,...,7’n=1, wo ?i—fi_l=k (61)
0=1tg,...,t,... wot;,—t;,_,=g.

Im weitern soll A;; = A(7;,¢;) bedeuten, wo A fiir irgendeine Funktion steht. Raum-
differentialquotienten werden in folgender Art durch Differenzenquotienten ersetzt:

(_a;) =Ai+u2—;bAi_“+ -
T ‘ (62)
az_A) =Ai+lj_2Aij+Ai_lj+0(h2).

or2 | y; W2 J

Hier bedeutet 0(%2), dass Terme, die mit 42 und hoheren Potenzen von % gehen, vernach-
lassigt worden sind. Mit dem gleichen Fehler lassen sich auch Produkte von Differential-
quotienten und &dhnliche Gréssen mit den entsprechenden Differenzenquotienten
approximieren. Zum Beispiel ist:

94\ Ay —Aiig\2
A » =Ay 5 + 0(h2). (63)
ij
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Sei

aa;f — Dl4] | (64)

eine symbolische Schreibweise fiir Gleichungen der Art (15)—(18) oder (29) und (30).
Diese Gleichungen sollen wie folgt approximiert werden:

A — Ay
g

Hiersteht D, ;[A] fiir den durch Differenzen nach (62) und (63) approximierten Ausdruck
D[A].

Das am einfachsten zu 16sende Differenzensystem erhilt man offensichtlich mit
6 =0, wo die gesuchten 4;;,, (=1,...,n) in (65) explizit durch die bekannten A4,;
(t=1,...,n) gegeben sind. Dieses einfache System hat aber den grossen Nachteil,
nur fiir durch 42 beschrinkte g stabil zu sein. Die beste Approximation ergibt sich mit
# = % (Crank—Nicolson). Dort ist der Fehler nur von der Gréssenordnung 0(42) + 0(g?2).
In diesem System ergeben sich auch bei den nicht linearen Gleichungen (15)—(18) und
grossen g stabile Losungen. Es hat den Nachteil, dass es die 4;;,, in (65) nur implizit
bestimmt. Systeme mit 6> 4 zeigen gleiche Stabilititseigenschaften wie 6=1.
Variationen von @ kénnen gleicherweise wie Variationen von g und 4 dazu dienen, die
Verldsslichkeit der numerischen Losungen von (64) zu iiberpriifen. Es ist noch zu
bemerken, dass die Zeitableitung @4 /¢ nicht gleich wie die Raumableitung dA /o7 (62)
approximiert werden kann. Das Differenzensystem, das so entstehen wiirde, ist
instabil.

Nach den vorangehenden Bemerkungen lassen sich nun die Gleichungen (29)
und (30) in Differenzen darstellen:

—0D,,,,[A]1+ (1 —0) D, [A]+0(?) +0(g), woO<BO<1. (65)

g0
Vijt1 = ‘E(BHU-H — Bi_y341) + @4y (66)
agl agl
Bijn =ﬁ(31+11+1 — Bi_1j41) +ﬁ(Bi+lj+l —2B;;41 + Bis1jn)
g0 g0
—7]';'01,-“ —'2_h(vt+lj+l - Ui—11+1) + Bij' (67)

Diese Gleichungen gelten fiir 1 <7 <#» — 1. Die Abkiirzungen ¢;; und B;; bezeichnen
Grossen der Zeit ¢;:

g(l—0) — .
Pry=Yyy— (Bis1;— Bi-yy) (68)
2h
ag(1-6) ag(1—6)
Bij=Bi;+ o (Bir1;— Bi-1y) +‘7"‘" (Bir1;— 2B+ Bi_y))
gl—0  gl—6)
R Vij— “on (1415 —0i-1y)- (69)
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Es fehlen noch die Gleichungen auf der Achse 7 = 0 und am Rand ¢ = ». Auf der Achse
1st wegen der Zylindersymmetrie:

v ov ) A
¥ 0i ? Jo; h

oB 5 10B 0’B 5 By, — By
or |o; ’ r or 01— or? 01- h? )

Damit ergibt sich aus (29) und (30)

Vgj41 =0
4agl 2g0
Bojst =——(Byjs1 — Bojsr) ——— V1j1 + Boy (71)
h? h
WO
dag(l — ) 2¢(1 —0)
Bos = By, + “—"hz— (By;— Byy) — _h— U1 (72)

Am Rand ist B mit (31) gegeben:

B, ;i1 = £ exp(—0t;,)sin(wt;,,). (73)

Up;+1 Wird mit der bis auf Fehler 0(%#?) richtigen linearen Extrapolation 2v, _4;,; —
Up—1j+1 €Thalten:

g0
vnj+1 = _ﬁ (3an+l - 4Bﬂ—lj+1 -t Bn-2j+l) + Pnj- (74)
Hier ist
g1 —90)
Pnj = Unj — o7 (3an - 4Bﬂ—1j + Bn—~2.i)' (75)

Die 2n + 2 linearen Gleichungen (66), (67), (71), (73) und (74) bestimmen die
2n + 2 Unbekannten v;;,,, B;;,, (1=0,...,n). Zur Lésung konnte ein iteratives
Niaherungsverfahren, wie es im néichsten Abschnitt zur Losung der nicht linearen
Gleichungen verwendet wird, benutzt werden. Das durch die Elimination von v in (67)
und (71) mit Hilfe von (66) und (71) entstehende Gleichungssystem fiir B;;,, (# =0,
..., n — 1) zusammen mit (73) und (74) ist aber von so einfachem Bau, dass ein Elimina-
tionsverfahren schneller zur Lésung fiihrt als ein Naherungsverfahren. Das Gleichungs-
system hat die Form:
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So Wo U Boj Mo
X S Wy u By T
U Xy S, Wy, U 0 By 7,
U X S3 wy; U B 3

U Xp_3 Sp-3 W,_3 U B, 3541 Mn-3

U Xy Sp—y Wpay O B, 341 MNn-2

0 U  Xp—g Sp-1 Wy Bu_1j+1 Mn-1

—;}x,, Xn Sn Unjti Mn

(76)

Die Elemente der quadratischen Matrix sind Ausdriicke in den Parametern
a, g h und 6, diejenigen der Spaltenmatrix n enthalten neben diesen Parametern die
Grossen B;; und ¢, ; (68), (69), (72) und (75). Zur Lésung werden schrittweise von oben
nach unten die Elemente links der Diagonalen in der grossen Matrix eliminiert. Das
entstehende System hat die Form:

1wy y, By U
1wy, 0 B M

1 w,3 y,4 . B, 3541 N Nn-3 77
0 1 w,, 0 B, 241 Nn—2
1w, B, 1541 -
1 Unjt1 Nn

In der untersten Zeile steht die Losung fiir v,;,,. Sie kann bei » — 1 eingesetzt
werden, um B, ;;,,; zu berechnen. Dieses Prozedere kann von unten nach oben
fortgesetzt werden, und man erhilt die Losung fiir alle B,;,,. Die v;;,, wiederum
kénnen dann mit (66) berechnet werden.

Die beschriebene Losungsmethode wurde in FORTRAN programmiert und auf
einer UNIVAC-U-III benutzt. Zur Priifung wurde diese Lésung mit der analytischen
von Abschnitt 2.3 fiir verschiedene Maschen g, 4 (61) verglichen. Es hat sich heraus-
gestellt, dass #=0,1 einen guten Wert fiir den Raumschritt darstellt: Fehler und
Rechenzeit bleiben in ertriglichem Rahmen. Des weitern hat sich gezeigt, dass g
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bei festem /2 = 0,1 und 8 = } so klein sein muss, dass pro Periode 27/w mindestens 25-30
Zeitschritte gemacht werden, andernfalls werden die Fehler zu gross. Zur Illustration
sind in Tabelle 1 fiir die physikalischen Parameter von Figur 1 die aufeinanderfolgenden
Extrema des Achsenfeldes mit ihren Zeiten angegeben. In Kolonne a) ist die exakte
analytische Losung angegeben. Die Kolonnen b), ¢) und d) sind mit der besten Approxi-
mation 6 = } (65) gerechnet worden. Zum Vergleich ist in Kolonne ¢) eine Rechnung
mit §=0,8 angegeben, die wesentlich grissere Differenzen gegeniiber der exakten
Lésung als c) zeigt. Um fiir 8 = 0,8 mit c) vergleichbare Exaktheit zu erhalten, miisste
der Zeitschritt g noch weiter verkleinert werden.

2.5. Numerische Losung des physikalisch vereinfachten nicht lineaven Systems

Es werden hier die gleichen Annahmen wie in 2.3 gemacht, was die Temperatur,
den Druck, den Plasmaradius und die Nicht-Verstimmbarkeit des dusseren Kreises
betrifft. Zu 16sen ist also das Gleichungssystem (15)—(17) zusammen mit der Rand-
bedingung (24). Es soll gleich wie (29) und (30) dimensionslos dargestellt werden.
Zu diesem Zwecke miissen die zu (28) analogen Relationen bekannt sein:

B ¥ P XL
1+B'=—, vV=—"o, 1+p =— = 78
B, Ca P Po * X10 7

Fiir 7, ¢/, 0" und &' gilt weiterhin (28). In den gestrichenen Grossen heisst das Glei-
chungssystem (15)—(17), wenn man den Strich wieder weglasst:

0 10

— === ol +p)) (79
ot r 0

ov ov 1+ BoB

27 (80)
ot or 1l+p or

B | dB 120 14 B). 81)
ot _arar x_67 7 0 7[?1}( +

Die Ubersetzung in endliche Differenzen geschieht gleich wie im vorhergehenden
Abschnitt nach (62), (63) und (65). Beir = 0 ist zu beachten, dass p die gleichen Bedin-
gungen erfiillt wie B(70). Am Rand werden p und v mit einer kubischen Extrapolation

Ay=TA)=—A4, 4y+44, 3;—64, 5;+ 44,y (82)

berechnet. Es sind Programmtests notwendig, um einzusehen, dass eine Extrapolation
von so hohem Grade genommen werden muss. Eine lineare Extrapolation (74) liefert ja
schon die hinreichende Genauigkeit 0(42) (65). Die zweimalige Extrapolation macht
aber gerade den Rand zum kritischen Gebiet der Rechnung. Tests mit der expliziten
Methode (6 =0) haben ergeben, dass die kubische Extrapolation am ehesten vor
Unsinn am Rand schiitzt.

Mit den Abkiirzungen

(1 —
dt’j)A = Ai+1j - Ai—lj

2 (83)
AP A4 = A+ lTAij_ Ay
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lauten die Differenzengleichungen:

P. A.

2g0 )
o (0) ——v1 54,
| h
Poj+1 = 240
L 'h_vlj+1
g
b (0) = 5 @Da v + iy AP ) [ (84
Pij+1 =
g0
1 N d(Z)
2h, ij+l
Pnj+1 = Fj+l(P)r )
Voj41 =0, )
‘Pu( ) _5‘3, i]?ﬂ i(.:«)l—l B
2h 1+
_ Pij+1
Vgt = 20 > (85)
1+ 2hd(l+1 v
Upj+1 = I'j+1(v) )
B..., =
0j+1 4ag3 2g3 W
Bo;(e) + “h—2X01+1 1j+1 “TU”H
4agl 2g8
L 2 Xoirt + ==V
Bu+1 =
agﬂ 1 i o
/Bu(g) h Xij+1 o du+1 B+ B4 + Bi_1ja1 |+ 3@ x) (@54 B)
2ag0 g8 . (86)
L p) N e F 2hdu+1 v
g6
o (d(j—H V4 V4 d:(ﬂl B)
B 2ag0 g0
Lt —Xuen + %df?il v
Bﬂj*}-l =§e—atj+l Sinwtj+l. -
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2¢(1 — 6)
$o5(0) = po; — 7 (1 + poj) v1;

g(l—8) e (87)
$i5(60) = ps; — o {1 +py) dPv + 0,47 p}
Pai(0) = I ;(5(6)) J

g(l1—6) 1+B
) =~ 52 w4 Ty o
(pnj(a) = Fj(‘P(B))

4ag(1 — 6) 2¢(1 —0) ]

Bo;(0) = By; + _hz——XOj(Blj — By)) ————v;;(1 + Byy)

ag(l — 6 1
Bi(0) = By, + _g-(-;;-—)-{xij(é?d?f) B+ By — 2B, + Bi-li) 2 (89)

g(1—0)

+%(d§}’x)(d$}’3)} =

{d®v(1 + By)) +v;;d{}’ B}.

/

Der Widerstandstensor ¥ hingt allgemein von 7, p und B ab, wobei die Abhanglg-
keit von T weitaus die stirkste ist (~7~ ). Die Abhingigkeit von B und p wurde in
linearer Niherung bei konstantem T aus der allgemeinen Formel fiir x, (Anhang)
berechnet :

Xij=C¢sBy;—copi;+ 1. (90)

Die Konstanten cg und ¢, sind Ausdriicke in pg, By und T. Es wird hier wegen ihrer
Linge darauf verz1chtet sie anzugeben. In unserem Parameterbereich haben sie die
Grossenordnung 0,3. Die Lésungen von (84) bis (86) sind nicht sensitiv darauf, ob
man fiir x;; (90) verwendet oder einfach y,; = 1 setzt. Das hingt damit zusammen, dass
B und p mit ungefihr gleicher Amplitude und Phase variieren. Quantitativ ergibt
sich zum Beispiel eine Differenz in den Lésungen von 2%, bei Feldamplituden von 0,3
auf der Achse.

Das nicht lineare Gleichungssystem (84)—(86) bestimmt mit 6 # 0 implizit die
Unbekannten p, v und B. Zur Ldsung muss ein iteratives Verfahren benutzt werden.
Als Alternative bietet sich das die Unbekannten explizit bestimmende System mit
0 =0 (pgjs1 =to;(0 =0) usw.) an, das aber den aus 2.4 bekannten Nachteil eines
beschriankten Zeitschrittes aufweist. Es erhebt sich nun die Frage, ob es ein so rasch
konvergierendes iteratives Verfahren gibt, dass der Vorteil eines grossen Zeitschrittes
mit 6 = nicht durch viele Iterationen zunichte gemacht wird. Es konnte ein Ver-
fahren gefunden werden, das die Rechenzeiten mit 6 = % einen Faktor 3 kleiner macht
als diejenigen mit 6 = 0.
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Das anzugebende iterative Verfahren steht und fillt damit, dass sehr gute Anfangs-
werte fiir die Unbekannten gegeben werden konnen. Als Anfangswerte (‘nullte’
Approximation) werden gerade die expliziten Ausdriicke (6 = 0) fiir die Gréssen p; 41,
;741 und By;,, genommen: (60 =0), ¢;;(8 =0) und B;;(8 = 0). Die erste Approxi-
mation erhilt man dann analog zur Gauss-Seidel-Iteration fiir lineare Gleichungs-
systeme [11], indem man das System (84)-(86) von unten nach oben durchgeht und
rechts des Gleichungszeichens die nullten und, wo schon bekannt, die ersten Approxi-
mationen einsetzt. Die erste Approximation fiir py;,, zum Beispiel wird also mit der
ersten fiir v;;, | berechnet, weil sie schon bekannt ist. Weitere Approximationen erhilt
man analog. Nach jeder Approximation 4%;,} werden die Differenzen zur letzten 4]
iiberpriift :

AW - AD 2
¢ = Z ( ij+1 - i1+1) . (91)
2 (A54)?

Die Summen erstrecken sich iiber 4 = B, v, pund = 1,...n. Wenn eine vorgeschriebene
Genauigkeit fiir e erreicht ist, wird der Iterationsprozess abgebrochen und zum néchsten
Zeitschritt ¢;,, weitergegangen.

Das mathematische System (84)—(86) lisst wegen der Konstanz des Plasmaradius
eine variable totale Teilchenzahl zu. Man vergleiche hierzu die Bemerkungen, die im
Anschluss an Gleichung (26) gemacht worden sind. Solange diese totale Teilchenzahl
kein sikulares Verhalten zeigt und nur mit nicht zu grosser Amplitude um den Wert
von ¢ = 0 schwingt, darf (84)—(86) als ein gutes Modell fiir die physikalische Realitit
bezeichnet werden. Mit dem spiter noch oft benutzten Symbol

n n—-1 75 1
S 4= ;?[iAt+(z’+1)AH,]=ofA(r)mw(m) (92)

ist die relative Schwankung der Teilchenzahl
1 n
2 f pirt)rdr 22 S py; (93)
0 =

Es zeigt sich, dass sie etwa die gleiche Amplitude hat wie das vorgeschriebene Randfeld
B nj (86)

Zur Priifung der numerischen Lésung kénnen deren eingeschwungene Magnet-
feldamplituden mit der mit Stérungsrechnung behandelten stationiren Theorie [2]
verglichen werden. In Figur 4 ist = B, u/Brana> das Verhiltnis der einge-
schwungenen Amplituden des Magnetfeldes auf der Achse und am Rand, gegen die
relative Anregung & = Bg,../ B, aufgetragen. Es muss unterschieden werden zwischen
den zum statischen Magnetfeld B parallelen (1) und antiparallelen (|1) Wellenfeld-
amplituden. Es ist der Resonanzfall w =1y, fiir zwei verschiedene Leitfihigkeits-
parameter a gezeigt. Wie es zu erwarten ist, ist die Uebereinstimmung zwischen [2]
und der numerischen Losung fiir kleinere Magnetfelder besser als fiir grossere, da die
quadratische Niherung der Stérungsrechnung fiir hohere Felder ungeniigend werden
kann. Die numerisch Losung ihrerseits erhilt die Teilchenzahl nicht mehr. So ist zum
Beispeil ihre eingeschwungene Amplitude im Falle 2 = 0,2 mit £ = 0,16 schon mit einem
Fragezeichen zu versehen, da die Dichte bis zur vierten Periode um 89, abnimmt, nach
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den nichsten zwei Perioden plotzlich ansteigt und bewirkt, dass die Gauss-Seidel-
Iteration nicht mehr konvergiert. Bei @ =0,2 unterhalb £ =0,13 und bei a = 0,34
unterhalb ¢ =0,18 zeigt sich jedoch kein sikulares Verhalten der Dichte und die
Iteration (91) konvergiert bei e =10"° im Durchschnitt in 3 bis 4 Schritten. Die
Uebereinstimmung der numerischen Lésung mit [2] ist bei anderen als der Resonanz-
frequenz von dhnlicher Giite. Sie ist bei kleineren Frequenzen besser als bei grosseren.

0 005 o1 015 02 [
Figur 4
Stationare Amplitudeniiberh6hungen #,, in Resonanz (w = 2,4) in Funktion der relativen Anregung
§ fiir zwei verschiedene Leitfihigkeitsparameter a nach der linearen stationiren Theorie[1] (-———— ),
nach der quadratischen stationiren Theorie[2] (—-—-—-) und nach der numerischen Losung ( ).

44 und 4| bezeichnen die dem statischen Feld B, parallelen bzw. antiparallelen Amplituden.

2.6. Numerische Losung des vollstindigen Systems

Auf dem Weg zur Losung des vollstindigen Systems kénnte in einem ersten
Schritt die Voraussetzung der konstanten Temperatur fallengelassen werden und
erst im zweiten Schritt auch jene der Nichtverstimmbarkeit des dusseren Kreises.
Nach dem ersten Schritt bietet sich ein Vergleich mit einer neueren Arbeit von Vaclavik
[9] an, wo unter Vernachlissigung der Ionisation, aber unter Beriicksichtigung der
Nichtlinearitdten, die Temperaturerh6hung bei stationirer Anregung mit Stérungs-
rechnung berechnet wird. Bei diesem Vergleich erhdlt man aber nicht mehr als ein
Uebereinstimmen der allgemeinen Tendenz, nimlich, dass die Temperaturerh6hung
bei Einbezug der Nichtlinearitidten kleiner wird als mit einer linearen Theorie [3].
Fiir das schlechte Uebereinstimmen gibt es zwei Griinde. Erstens ist die Stérungsreihe,
wenn iiberhaupt, nur schwach konvergent, und zweitens setzt Vaclavik zu Beginn
seiner stationiren Aufheizung eine homogene Temperaturverteilung voraus, wohin-
gegen bei der numerischen Losung nach dem Einschwingen schon eine betrichtliche
Temperaturinhomogenitit besteht.

Aus diesen Griinden wird darauf verzichtet, das zu 16sende System schrittweise zu
vervollstindigen. Es werden direkt die Temperatur 7'(»,f) und der dussere Kreis mitein-
bezogen. Die Gleichungen fiir p, v und B (84)—(86) gelten weiterhin. Nur die Gleichung
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fiir das Randfeld B,;,; muss durch die Kopplung (19), (20) an den Kreis ersetzt werden.
Zudem muss in yx;; (90) die Temperaturabhingigkeit beriicksichtigt werden. Bevor
dies ausgefiihrt wird, sollen die in (28) und (78) noch fehlenden Transformationen in
dimensionslose Grdssen angegeben werden:

14+ T ! B} E"( ,1,2) I d W' =cW \
= T = = 'L, » » = ——_——J = C ’
TO ¥ TO P Z#BORPCA
Q CA CCA 877'”10 TO

P , C==Ac, L'==%I, 8= : . (94
V=3B R (R, R, B=—h s
y = 87?2 CaRy .

cl

7

Damit lasst sich (19), (20) fiir das Randfeld wieder unter Weglassung des Striches
schreiben:

an+1 = ')’Ij+1- : (95)

Der Strom I,,, ist durch die Differenzengleichungen, die aus (21) und (22) folgen,
bestimmt :

1 ge 1 n
i L, €02 g6W (”"(6) e 1.5 B"“) 9
LG L
Q1 = my(0) +g61,,,. » (97)

Die Grossen der Zeit ¢; sind:

gl—0)  g1-6wW 1 n
S A )
#i(0) =0;+g(1—0)1;. (99)
Der spezifische Widerstand ist
1 NETELL LY 100)
XUNWN 3 ut3ly (

Die Approximation gilt im Bereich —0,2 < T;; < 0,4 mit einem maximalen Fehler
von 4,5%,. Fiir fast alle auszufithrenden Rechnungen ist sie geniigend. Die Abhéngig-
keit von B und p (90) ist vernachlissigbar.

Esbleibt nun noch die Aufgabe, die Temperaturgleichung (18) in eine Differenzen-
gleichung zu transformieren. In der dimensionslosen Temperatur schreiben sich (11)
und (8)

t1=c¢T +c, |
iEi=¢, BT+ By +65(T +cg)* (E, — Ey)
To—14
¢, = 1,927, ¢, =¢; — 1,98, ¢y =3T3, C4 = ——mr—- (101)

T,
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Damit wird der Ionisationsnenner in (18) U, + U, T, wo
U, =§(1 +op+ ) + 0 Ey + 2c5¢4(E; — Ey)
9 (102)
U, =3c; +2¢;,(E, — E)).
Mit (101), (102) und der weiteren Abkiirzung
w,=14c¢,, wy,=14¢+¢, (103)

und unter Beriicksichtigung der Symmetrie von T" beziiglich der Achse lasst sich (18)
in Differenzengleichungen transformieren:

Ev ey + @y Toju1 + €1 Thjna
B U1 +U; Ty,

To;+1 = "'01(9) -

gt
Tijir =711;00) o Vi1 A0 T +

> (104)

g0

a g0  Xijn
i . (A B)? — o (@) +wy Tyjpy + 61 Thyy) A, v

B2h*1+ pyyp

Ul + UZ TU+1

Tnj+l = Fj+l(T) ‘ /
20(1 — 6 T..+c, T2, )
h U +U, T,
g(1 - 0)
7;(0) =Ty T on Vij dg.li) Lt
> (105)

dg(l—e) Xij (d(l)B)z_g(lwg)

: w, +w, Ty + ¢y T%)dPv

U +U, Ty ,
705(8) = I ;(7(6)). x )

Zwischen den Gleichungen (104) und den Gleichungen fiir p, v und B (84)—(86) besteht
noch ein wesentlicher Unterschied. In den Gleichungen (84)—(86) kommt die Grosse,
die links des Gleichheitszeichens steht, rechts nicht vor. Gerade das ist aber eine
Bedingung fiir gute Konvergenz im benutzten iterativen Losungsverfahren. Im
Unterschied zu (84)—(86) kommt in (104) die zu bestimmende Grésse in der sie bestim-
menden Gleichung quadratisch vor. Symbolisch lisst sich die T;;,, bestimmende

Gleichung (104) schreiben:

Hier sind K, und K, Ausdriicke in den andern Unbekannten v, p, B, T;,,;,, und
Ti yjar
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Zur Loésung im iterativen Verfahren wird die linearisierte Form von (106) ver-
wendet :

) K,

y P S— 107
J+1 2K1 + Tg:_ll) ( )

! bezeichnet die /. Approximation (91).

Das Gleichungssystem (84)—(86), (96), (97), (100) und (107) beschreibt nun
zusammen mit den Anfangsbedingungen (23) das eingangs dieser Arbeit gestellte
physikalische Problem vollstindig. Zur Losung wird das in 2.5 besprochene iterative
Verfahren verwendet. Obschon Gleichung (107) die Bedingung, dass T;,, nur links
des Gleichheitszeichens vorkommen sollte, nicht erfiillt, konvergiert das Verfahren
fiir nicht zu grosse Zeitschritte gut.

g ist hier anders als beim linearen Problem nicht nur durch die Periodenlinge,
sondern auch absolut beschrinkt. g soll bei einer Genauigkeit ¢ = 1076 (91) und 2=0,1
einerseits so klein sein, dass etwa 30-35 Zeitschritte pro Periode 27/w gemacht werden,
und andererseits soll es nicht grosser als 0,08 sein. Wird die eine der beiden Schranken
iiberschritten, so stellt sich kein weiterer Gewinn an Rechenzeit ein, weil die Anzahl
der Iterationen pro Zeitschritt zunimmt. Bei den angegebenen Werten von g, % und e
sind bei Achsenfeldern B von 0,5 in Resonanz (w ~ v,) etwa sechs Iterationen nétig,
bei Feldern von 0,25 etwa vier und bei 0,1 noch drei. ,

Die Glaubwiirdigkeit der numerischen Lésung kann mit integralen Erhaltungs-
sdtzen iiberpriift werden. Es wurde die Teilchen- und die Energieerhaltung benutzt.
Der Ausdruck fiir die relative Schwankung der Teilchenzahl findet sich in (93). Die zur
Zeit t =0 als thermische im Plasma und als elektrostatische auf dem Kondensator
vorhandene Energie tritt wihrend der Entladung auch als magnetische, als kinetische
und als Ionisationsenergie auf. Zudem geht die ohmsche Wirme des Kreises dem
Gesamtsystem verloren. In den ungestrichenen Quantitidten schreibt sich diese zu
erhaltende Gesamtenergie:

() IQZ+1LIZ+fWIZdt+ f d ! 24—3 (1+')T+1B2+'ﬂE
€ = — _— — pU -Nn 1 —— 7 .
2¢ 2 0 Plasma ' 2P 2 87 i

(108)

Es wird hier darauf verzichtet (108) in endlichen Differenzen anzugeben, da der Aus-
druck uniibersichtlich wird. Die Transformation ist einfach durchzufiihren. Die
Energieschwankung ist dann durch (e(f) — €(0))/e(0) gegeben.

Im weitern interessiert die totale ohmsche Warme, die das Plasma bis zur Zeit
t absorbiert hat. Sie wird direkt berechnet :

ep,(f) = J dr fdtsz. (109)

Plasma 0

Auf die Transformation in endliche Differenzen wird ihrer Einfachheit wegen ebenfalls
verzichtet. Es sei nur bemerkt, dass 7 mit Hilfe von (3) durch B ausgedriickt wird.

Bei dem im nichsten Kapitel folgenden Vergleich zwischen Theorie und Experi-
ment werden die Teilchen- und die Energieschwankung angegeben. Gleichung (109)
wird nach der Uberpriifung der Theorie durch das Experiment zu theoretischen Aus-
sagen liber die Energieabsorption verwendet.
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3. Vergleich zwischen Theorie und Experiment
3.1. Apparatur und M essungen

Die verwendete Apparatur ist im Detail in [3] beschrieben. Die Anregung bei
By = 5400 Gauss und 7', = 1,5 eV erfolgte mit zwei verschiedenen Kreisen. Sie haben
bei gleicher Eigenfrequenz w = 2,1-10° sec™! verschiedene Kapazititen bzw. Induk-
tivititen. Kreis 1 (C =1,5 uF, L =1,5-10"7 H, W = 36 m{2) kann beziiglich der Fre-
quenz als vom Plasma nicht beeinflussbar angesehen werden. Kreis 2 (C =7,56 uF,
L=3,0-10"% H, W = 8,7 mf2) wird vom Plasma verstimmt. L wurde aus C und der
Kenntnis der Frequenz ohne Plasma (‘Vakuumsignal’) errechnet. W ergibt sich aus
der Dampfung des Vakuumsignals:

5 w
Y (110)

Kreis 1 wurde mit einer elektrostatischen Energie von 4 Joule zur linearen Anre-
gung des Plasmas benutzt. Die Anregung darf als linear bezeichnet werden, weil das
maximale Magnetfeld auf der Achse in Resonanz den Wert 0,04 (relative zu B) nicht
tiberschritten hat. Kreis 2 dagegen wurde mit 44 Joule geladen. Das auftretende
maximale Achsenfeld von 0,3 hat zur Folge, dass nicht lineare Effekte beriicksichtigt
werden miissen. v

Es wurden simultan am Rande und auf der Achse des Plasmazylinders Magnet-
feldmessungen mit Miniatursonden durchgefiihrt. Von den gefundenen Signalen der Art
von Figur 1 wurden die Zeiten #® (Rand) bzw. { (Achse) der aufeinanderfolgenden
Extrema und ihre Héhe B bzw. B fiir k= 1,...,6 ausgewertet. Der Zeitnullpunkt
wurde in den beginnenden Anstieg des Randsignals gelegt. Die Messreihen bestanden
aus 16-18 Messungen bei verschiedenen Gasdrucken im Resonanzbereich.

Im weitern wurde die Erhéhung der Elektronendichte in Abhidngigkeit vom
Radius mit einem Laserinterferometer mit bewegtem Spiegel gemessen. Die Apparatur
ist ebenfalls die gleiche wie in [3]. Hier konnte aber eine Zeitauflosung von 0,4 usec
erreicht werden. Der apparative Aufbau erlaubte eine Dichtemessung bis zum Radius
2,5 cm. Der in die Rechnung eingehende Plasmaradius wurde aus der Lage der mag-
netoakustischen Resonanz zu R, = 3,1 cm bestimmt.

In den folgenden drei Abschnitten werden die in dieser Arbeit entwickelten
theoretischen Modelle an Hand der erwidhnten Messungen auf ihre Brauchbarkeit
gepriift.

3.2. Randsignale

Die Gréssen R, BR der Randsignale geben Aufschluss iiber den Senderkreis, da das
Randfeld dem Strom im Kreis direkt proportional ist (20). Die Signale miissen un-
besehen der Anregungsstirke mit der vollstindigen Theorie 2.6 verglichen werden,
da nur dort der Kreis als nicht unabhingig vom Plasma behandelt wird.

Im Falle des beziiglich der Frequenz nicht verstimmbaren Kreises 1 geniigt es,
die Dimpfung 8 (24) zu vergleichen, die theoretisch trotz dem Einschwingen im Plasma.-
keine Zeitabhingigkeit zeigt. In Figur 5 ist das Resonanzverhalten von & gezeigt.
Die theoretischen Werte der vom Plasma herrithrenden Diampfung liegen etwa 309,
tiefer als die experimentellen. Diese Diskrepanz ist vor allem durch die nicht lineare
Funktionsweise der zur Ziindung der Kondensatoren benutzten Funkenstrecken bei
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Dampfung § im Kreis 1 geméass der Theorie 2.6 (

des Gasdruckes p.

) und dem Experiment (O O O) in Funktion

kleinen Energien bedingt. Ihr Widerstand ist vom Strom abhingig. Ein Vergleich mit
fritheren 6-Messungen bei héheren Anregungsenergien [3] zeigt, dass zwei Drittel der
Differenz zwischen Theorie und Experiment durch die Funkenstrecken bedingt ist.
Im Falle des Kreises 2 miissen sowohl die Zeiten ¢} der Extrema (Fig. 6) wie auch
deren Hohe BR (Fig. 7) verglichen werden. Die Verstimmbarkeit des Kreises 2 zeigt
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Zeiten tf der ersten sechs Extrema % des Randfeldes bei Anregung mit Kreis 2 in Funktion des

Gasdruckes. Theorie (

) und Experiment (O © Q).
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sich am schonsten im Resonanzcharakter der Zeitkurven (Fig. 6), die im unverstimmten
Fall d4quidistante horizontale Geraden sind. Die Diskrepanzen in Figur 6 und 7 rithren
von den Funkenstrecken und der Zeitabhingigkeit des Plasmaradius R, her.

Da sich die gréssten Abweichungen sowohl beim Kreis 1 wie beim Kreis2'amEnde
des Signals (hohe &) zeigen, wo praktisch schon die gesamte Energie absorbiert worden
ist, wiegen sie nicht schwer: Sie sind immer kleiner als 109, der Maximalamplitude
(k =1). Die im Kreis absorbierte Energie wird somit von der Theorie mit einem Fehler,
der kleiner als 209, ist, wiedergegeben.

03+

01

003

001 A \ ;
20 50 100 200 500

Figur 7
Hohe B der ersten sechs Extrema % des Randfeldes bei Anregung mit Kreis 2 in Funktion des
Gasdruckes. Theorie ( ) und Experiment (O C 0).

3.3. Phasendifferenz und Amplitudeniiberhéhung

In Figur 8 werden Phasendifferenz 4¢, und Amplitudeniiberhdhung #, verglichen.

B4 (111)
Uy = —
k BE

Sie geben Aufschluss iiber den zeitlichen Verlauf des Feldes bzw. des heizenden Stromes
im Plasma. Das Experiment mit dem Kreis 1 kann dank seiner kleinen Anregungs-
energie mit der linearen analytischen Losung 2.3 verglichen werden. Der Einfluss
des Kreises wird ausgeklammert, indem man die experimentellen Dimpfungen &
(Fig. 5) fiir die Rechnung benutzt. Das Experiment mit Kreis 2 dagegen kann wegen
der hohen Anregung und der Beeinflussbarkeit des Kreises nur mit der vollstindigen
Theorie 2.6 beschrieben werden.

Bei den Rechnungen mit der Theorie 2.6 hat das iterative Ldsungsverfahren
nach der Gauss-Seidel-Methode bei einer Genauigkeit von ¢ =107% (91) im Durch-
schnitt vier bis fiinf Schritte bendétigt. Die Schwankungen von Dichte (93) und Energie
(108) haben sikulare Anteile gezeigt, die nicht grésser waren als 19, mit einer Aus-
nahme: Bei hohem Fiillgasdruck, p = 630 mTorr, fehlen am Schluss 6%, der Gesamt-
energie. Beim gleichen Druck zeigt sich in der ersten Halbperiode auch die grosste
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Figur 8
Amplitudeniiberhhung u, und Phasendifferenz 4¢, zwischen Achse und Rand fiir die ersten
sechs Extrema % der Magnetfeldschwingung nach der Theorie ( ) und dem Experiment (0 O O).

Amplitude der Energieschwankung (30%,). Diese Maximalamplitude nimmt mit
fallendem Druck ab. In Resonanz tritt sie wihrend der zweiten Halbperiode auf
(18%,), bei p =30 mTorr ist sie nurmehr 49,. Die Dichteschwankung hat ihre grosste
Amplitude immer in der ersten Halbperiode. Sie nimmt von 199, bei 30 mTorr mit
steigendem Druck ab und ist bei 630 mTorr noch 8%, hoch.

In den in Figur 8 gezeigten Messwerten des Kreises 2 war die erste Halbperiode
des Magnetfeldes parallel zum statischen. In einer zweiten Messreihe mit dem Kreis 2
wurde dann die umgekehrte Polaritdt gewihlt. Ein Vergleich der ersten zwei Halb-
perioden der beiden Messreihen (Fig. 9) zeigt den Einfluss der Nichtlinearititen.

Die Diskrepanz zwischen Theorie und Experiment in Figur 8 und 9 ist wieder den
Funkenstrecken und dem verinderlichen Plasmaradius zuzuschreiben. Da die
Abweichungen die Grenze von 259, nicht {ibersteigen, darf das Resultat als befriedigend
bezeichnet werden.
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Figur 9
Einfluss der Nichtlinearitdten auf die Amplitudeniiberh6hung u, der ersten zwei Extrema der
Magnetfeldschwingung bei Anregung mit Kreis 2. 1. Halbperiode parallel ( Theorie, O
Experiment), 1. Halbperiode antiparallel (————- Theorie, @ Experiment).
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3.4. Erhohung der Elektronendichte

Als drittes wird die totale Dichteerh6hung 4#, in Abhingigkeit vom Radius
verglichen. Da im vorliegenden Temperaturbereich mehr als 809, der im Plasma
absorbierten Energie als Ionisationsenergie erscheint, was sich aus (108) und den Anga-
ben im Anhang leicht zeigen lisst, gibt die Dichtemessung guten Aufschluss tiber die

Ane

05

04

03

0.2

01

0.0

Figur 10
Die durch eine gepulste Entladung bewirkte Erhéhung der Elektronendichte 4z, in relativen
Einheiten beziiglich der Ausgangsdichte in Abh#éngigkeit vom Radius.

Energieabsorption. Es wurde der Resonanzfall beim Kreis 2 mit = 140 mTorr und
Q3/2C = 44] gewiahlt. dn, ist auf die Ausgangsdichte #,o = 4,1-10'% cm™3 normiert,
v auf den Plasmaradius R, = 3,1 cm. Aus Figur 10 ist ersichtlich, dass integral iiber die
Plasmafliche Theorie und Experiment weniger als 209, voneinander abweichen. Das
ist wesentlich besser, als was aus den maximalen Fehlern beim Magnetfeld geschlossen
werden konnte (mindestens 509%,).

Es zeigt sich also, dass das benutzte physikalische Modell das Experiment als
ganzes innerhalb Grenzen von etwa 209, beschreibt. Die theoretischen Unsicherheiten
sind somit nicht grosser als die experimentellen.

4. Energieabsorption

Die gute Ubereinstimmung zwischen Theorie und Experiment erlaubt es nun,
rein theoretische Aussagen iiber die Energiedbsorption im Plasma bei einer gepulsten
Anregung im Bereich der magnetoakustischen Resonanz zu machen. Der Wirkungsgrad
X ist das Verhiltnis der total im Plasma absorbierten Energie €,(f = ) (109) zur
elektrostatischen zur Zeit t = 0:

X’—"— €p;(00)
0
2C

(112)
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X ist wesentlich vom ohmschen Widerstand W des Kreises abhiingig. Die theoretischen
Resultate zeigen, dass die Abhingigkeit von W angenihert durch die einleuchtende
Gleichung

W,

X =
W+ W,

(113)

beschrieben wird. W, ist durch die Parameter des Plasmas, die Art der Anregung und
durch das Einschwingverhalten bestimmt. Bei stationirer Anregung geht W, in den
in [3] definierten Plasmawiderstand iiber. Im Falle von Kreis 1 ist das mit (112) und
(113) definierte W, einen Faktor 2.5 kleiner als der stationire Plasmawiderstand.

Aus den Rechnungen mit verschiedenen Kreisen ergibt sich, dass X bei gepulster
Anregung nicht von deren Stirke abhingt und nur schwach von den Kreisdaten L
und C: Kreis 2 gibt zum Beispiel 499, seiner Energie aus Plasma in Resonanz ab.
Ein noch starker verstimmbarer Kreis mit gleichem Widerstand und doppelter
Kapazitit verliert in etwas verschobener Resonanz immer noch 439%,. Fiir die Plasma-
heizung wird der kleine Verlust an Wirkungsgrad durch die doppelte Kapazitit mehr
als wettgemacht.

Wie stark die Energieabsorption vom Einschwingen abhingt, soll am Beispiel
des Kreises 2 gezeigt werden. Er verbraucht wihrend der ersten Periode selbst 45%,
seiner Energie, wihrend das Plasma in der gleichen Zeit nur 199, aufnimmt. Der Rest
wird dann wesentlich anders verteilt. 6%, bleiben im Kreis und 309, gehen ins Plasma.
Bei gleichen physikalischen Bedingungen im Plasma und stationirer Anregung absor-
biert das Plasma in der zweiten Periode dreimal mehr Energie als in der ersten.

Die theoretische Analyse der Energieabsorption bestitigt also die triviale For-
derung nach méglichst kleinem ohmschen Widerstand fiir einen das Plasma heizenden
Kreis. Weiter zeigt sie, dass die Verstimmbarkeit des Kreises keinen wesentlichen
Einfluss auf den Wirkungsgrad hat, so dass die Kapazitit moglichst gross bzw. die
Induktivitit méglichst klein gewihlt werden soll, immer natiirlich unter Beibehaltung
der Resonanzfrequenz des Plasmas. Und zuletzt zeigt die Analyse, dass der Wirkungs-
grad einer solchen Kreisentladung fiir die Plasmaheizung nur unter Beriicksichtigung
der Einschwingvorginge berechnet werden kann.

Die in dieser Arbeit beschriebene Theorie ist anwendbar, solange Anregung und
Plasmatemperatur so klein sind, dass Druck- und viskose Krifte gegeniiber den
magnetischen vernachlissigbar sind. Im speziellen soll kein Schock auftreten.

Wir danken Herrn Prof. Dr. O. Huber fiir seine Unterstiitzung und fiir sein
Interesse an dieser Arbeit. Herrn Dr. W. Lindt gilt unser Dank fiir seinen Hinweis
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jene Methoden einfithrenden wertvollen Ratschlige und Literaturangaben. Grosser
Dank gebiihrt auch Herrn Dr. J. Vaclavik vor allem fiir seine Hilfe bei der analytischen
Behandlung des Problems und fiir die Uberlassung des Rechenprogrammes zur
Berechnung der nicht linearen stationiren Losung [2]. Herrn Dr. K. Fassler danken
wir fiir seine weitgehende Hilfe beim Experiment und seiner Auswertung. Dank
gebiihrt auch Herrn Prof. Dr. E. S. Weibel fiir seine kritischen Bemerkungen zur
Theorie. Den Herren M. Gasser und V. Ionesco danken wir fiir die Zeit, die sie zum
Rechnen unserer Programme am Computer aufgewendet haben.
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Anhang

Temperatur, Ionisationsgrad und spezifischer Widerstand

In lokalem thermodynamischem Gleichgewicht beschreibt die Saha-Eggert-
Gleichung [5] den Zusammenhang zwischen Temperatur und Elektronen- bzw.
Ionendichte. Um sie benutzen zu konnen, miissen die Ionenzustandssummen bekannt
sein, welche fiir freie Ionen und Atome divergieren. In Plasmen haben sie auf Grund
der Ionisationspotentialerniedrigung AE, die von Mikrofeldern herriihrt, endliche,
von AE abhingige Werte. Im Parameterbereich der vorliegenden Arbeit ist AF sehr
klein. Werte verschiedener Theorien schwanken zwischen 0,02 eV und 0,2 eV fiir die
ersten zwei Ionisationspotentiale. Diese Unsicherheit verlangt einen Vergleich zwischen
der Saha-Eggert-Gleichung mit 4F =0,1 eV, einer Saha dhnlichen Gleichung von
Cantieni [1], die fiir Argon unterhalb etwa 1,5 eV gilt und dem Experiment (Fig. 11).
Alle Dichten sind auf » = 5-10'5 cm™ normiert. Inder vorliegenden Arbeit wurde eine
Kombination der zwei Theorien gewihlt, die den experimentellen Zusammenhang
wiedergibt (Fig. 12). Sie vernachlissigt die schwache Abhingigkeit vom Ausgangs-
druck.

Die Kurven in Figur 12 wurden im Bereich 1,3 eV < T < 1,9 eV durch einfache
Ausdriicke approximiert :

=1,927 —1,98

(A.1)
2=3(T — 1,4)2.
n

= 1 I ] 1
1.0 1.2 14 1.6 1.8 T(ev)

Figur 11
Abhangigkeit der Elektronendichte #, von der Temperatur. Saha—Eggert-Gleichung (
Theorie nach [1] (————— ) und Experiment (0 © O).
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Figur 12
In dieser Arbeit benutzte Abhingigkeit der Teilchendichten von der Temperatur.

Der spezifische Widerstand ist durch die Stossfrequenz der Elektronen 1/7, = v, =
Ve + Vez bestimmt. Im isotropen Fall (x <1, x = 2,7, £, = eB[m,c) ist er ungefihr

Mo Ve :
(A.2)

~ .
X~ 902 n,

Im anisotropen Fall (x 2 1) ist er von x abhingig. Die x abhingigen Korrekturfunk-
tionen [7] fiir die Stossee — A* und ¢ — A** werden in guter Ndherung additiv benutzt:

Me

XL = = (Velfl (x) o VerZ(x))
A.3
: a] %2 + af (A.3)
S =1- X+ 8,42+ 8,

Die Konstanten «;, oy, 8; und 8 sind fiir 2 =1, 2 in [7] zu finden.
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