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Thermal Radiation in Finite Cavities

by H. P. Baltes and F. K. Kneubiihl

Solid State Physics Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland

(8. IX. 71)

Abstract. The mode density D(») of the electromagnetic resonances of a lossless closed cavity
plays a dominant role in the theory of far-infrared radiation standards, the Einstein coefficients
of spontaneous and stimulated emission, and radiation corrections as e.g. the Lamb-shift. Refine-
ments of the Planck-Weyl asymptotic density Dy(») for cavities of finite size are studied by com-
putational methods involving the first 108 eigenvalues. Averaging over the modes for a large
bandwidth Aw», second order corrections of the type D/Dg =1 — C v=2 VV-2/3 with IV = volume
of the cavity are obtained for a variety of cavity geometries including the parallelepiped, the
circular cylinder, the sphere, the hemisphere, and cylindrical as well as spherical sectors (wedges
and cones). The relation of the constant C to the edge lengths and curvatures of the cavity is
investigated.

The second order corrections resulting for the Wien displacement law and for the Lamb-shift
are determined. The implications for the Stefan-Boltzmann radiation law as well as for the
thermodynamical properties of the radiation field are studied. A rigorous connection between the
asymptotic spectral and fofal radiation formulae is established in terms of Abelian and Tauberian
theorems.

For narrow bandwitdh Ay, fluctuations of the mode density are much stronger than the
second order average correction. The relative mean fluctuation is found to be proportional to
r1{Ap)-1.

A new proof for the wellknown vanishing of the average first order or surface correction
term is given in terms of the scalar E- and H-type wave potentials. Surface terms appear only if
the E- and H-type densities Dg and Dy are determined separately. The surface corrections of
Dg and Dy are equal, but have opposite signs. The corresponding first order refinement of the
temporal autocorrelation functions of the black-body radiation field is studied.

«Es ist wohl nicht {iberfliissig, hier zu bemerken,
dass es bis jetzt noch nicht gelungen ist, eine
exakte Definition eines ,vollkommen schwar-
zen' Korpers, welche sich auf beliebig lange
Wellen anwenden ldsst, aufzufinden.»

Max Planck 1898 [136]

1. Introduction

A. Thermal radiation standards in the far infraved

Far-infrared and submillimeter black-body cavity radiation standards are indis-
pensable as reference sources for

—  the measurement of the spectral emissivity of solid materials [1]-[6];
—  plasma diagnostics [7]-[9];
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—  the calibration of spectral photometers used in astrophysical and space research
10]-[18];

—  absolute radiometry used in meteorology [19]-[26].

The cavity black-bodies used in these fields can be characterized by the relations

d 1

. 1
A~ — and A(Z.) N (1.1)

¥ 50
where 4 represents the wavelength, A(1/4) the spectral resolution, and & the linear
dimension of the cavity. 1/d corresponds to the approximate separation of levels be-
tween two adjacent cavity modes. The above relations indicate that the far-infrared
cavity black-bodies can be approximated neither by microwave thermal noise stan-
dards nor by optical cavity black-bodies:

The macrowave thermal noise standards fulfil the conditions

i~d and A(”§)<iz' (1.2)
; [

If ideal impedance matching is taken for granted, the emission is described by the
Nygquist formula

I(wo) =k T Aw (1.3)

with the bandwidth Awo if the emitted single mode of the frequency »o. Narrow-band
thermal cavity sources have been realized that yield a noise power very close to the
ideal Nyquist noise [27]-[32].

Optical cavity black-bodies, on the other hand, obey the relations

1 1
i<d and A (I) >, (1.4)
which are the prerequisites [33] of Planck’s radiation formula
hv
u(y, T) dv = T Do(v) dv (1.5)

with the asymptotic spectral density

Dy(v) dy = 55 Va2dy, (1.6)

of the electromagnetic modes in a lossless closed cavity of volume V. Formula (1.5)
with the mode density (1.6) is strictly valid only in the limits ¥ — co or V — oo.
According to the assumptions (1.4), optical cavity black-bodies can be calculated and
constructed with the aid of geometrical optics. Many theoretical studies of this kind
have been performed since Wien and Lummer first computed the emissivity of a
cavity standard with a small exit hole [34]. Mainly spherical, cylindrical, and cone-
shaped cavities have been studied [35]-[51]. While these theories have reached a
satisfactory state, the problems of non-Lambertian [54], [55] and non-isothermal
56]-{60] cavity walls have rarely been taken into account. Only a few experimental
determinations of the emissivity of optical cavity black-bodies exist [61]-[64]. In the
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optical [65]-[71] as well as in the near infrared [72]-[75] spectral regions, cavity
standards have been constructed with more than 999, spectral emissivity over a wide
spectral band. Satisfactory standards are commercially available [76], [77].

So far, no attempt has been made to apply the technique of thermal noise stan-
dards to far-infrared black-bodies. On the other hand, optical cavity black-bodies have
been tentatively used for this purpose [78]-[82]. As their design is based on geometrical
optics, serious problems arise because of the finite ratio A/d, the size effects of the
aperture, and the resonance effects due to baffles or other obstacles in the cavity.
Only for sources working very close to the ambient temperatures these problems can
possibly be solved by the construction of extremely large cavity black-bodies [83]. -
However, the diameter of a high temperature standard is restricted to a few centi-
meters [65]-[75] by the requirement of uniform heating. As far as we know, no attempt
has been made to verify Planck’s radiation formula with the aid of optical cavity
sources for wavelengths longer than the 52 pm considered by Rubens and coworkers
[84], (85].

Diffraction losses in radiometry due to the finite radius R of circular apertures
have been studied only recently by means of scalar diffraction theory valid for 4 € R,
1.e. for optical and near-infrared radiation [86]. For far-infrared and submillimeter
radiation, the scalar plane wave theory [87] as well as the Kirchoff and ‘improved’
Kirchoff approximations are not sufficient [88]. The rigorous electromagnetic diffrac-
tion theory for finite apertures is very difficult.In the case of a cicrular aperture in a
perfectly conducting screen, the exact transmission coefficient for plane waves at
normal incidence is known for 2z R = 10 A [89], [90], i.e. for microwaves only. The
only rigorous treatment of an extended light source known to the authors is the theory
of the strip lamp of infinite length due to Facq [91]. The complete electromagnetic
wave theory of a thermal cavity source typical for submillimeter waves with d ~ 50 4
is a hopeless task. For this reason, a one-dimensional model for the unclosed cavity
source was developed [92], which displays all the typical features of a laboratory-size
far-infrared black-body with a finite aperture. A detailed discussion is presented in a
previous paper [93].

B. The mode density of the electromagnetic radiation

We now restrict our considerations to the case of the closed black-body cavity
with perfectly reflecting walls. The asymptotic mode density Do(v) of the electro-
magnetic resonances in the lossless cavity (1.6) plays a dominant role in radiation
physics:

(i) It is well known that Do(v) is a constituent of Planck’s radiation formula. As
a consequence, we find it involved in Wien's displacement law

h VYmax
w g 1.7
— 2.822 (1.7)

where vmas 1s defined by

d » Do(»)

dv (hv) " ’
ex s
PA\RT

(1.8)
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as well as in the Stefan-Boltzmann formula

(e e}

* 1w Do(v) 72 V(k T)4
BT, V) = [ et = T 49

0

and in the thermodynamic properties of the photon gas [94]. The mode density appears
in the mean square fluctuation of the radiation energy

(’ Au )2 gkl{/kT

~ Do(y) Av (1.10)

u

195]-[98]. Finally, we find Do(») in the complex cokerence tensor of the black radiation
tield [99]-[104],

Sii(r, t) = 2 J A(K) (K28i; — K. K;) eiter-Ke) @3 K | (1.11)

where K = wave vector, K = 2w v/c, and

| he Do(K) 1

The complex coherence tensor &;(r, ) describes the correlations between the electric
field vectors at the points r; and rs = r1 + r and times 4 and 2 = £ + ¢ in a cavity
filled with black-body radiation. The coherence tensor #;; is defined in an analogous
manner. :

(1) According to the principles of detailed balance, the radiation equilibrium
between any pair of energy levels of a material system is maintained by means of a
balance between the rates of spontaneous emissions and induced emission and induced
absorption. At thermal equilibrium we have [105]

A = B hv Doly) V-1 (1.13)

where A and B are the Einstein coefficients of spontaneous and stimulated emission,
respectively. By virtue of (1.13), Do(») influences the laser action as well as the fluo-
rescence life-time.

(iii) In Welton’s theory, the Lamb-shift [106] of the H-atom is represented by

Py

Z4 Ryothct
AE = - D -1 -3 1.14
32 =5 f o(v) V-1y3dw, (1.14)
with
Z2 c2 Mo c2 ;
R g 1.18
& hvgnd’ ve 2mh ( )

and thus depends on Dy(v) as well.
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Past [33], [107] and present [108] studies of the black-body radiation are based on
the assumptions (1.4), which are equivalent to the requirement V' — co or the free-
space limit. For finite cavities, size and shape dependent modifications of the mode
density Do(v) are required. In particular, the thermal radiation in a closed cavity of
finite volume is not necessarily unpolarized, homogeneous, and isotropic. Larger
deviations from the free-space limit may occur for narrow-band phenomena, i.e. the
single mode laser. Corrections of the spontaneous emission rate have already been
predicted for two simple non-free-space situations, viz. in the vicinity of a perfectly
reflecting mirror and in a Fabry-Perot resonator [109]. Experimental evidence for
boundary-wall effects has been found in the measurement of the fluorescence life-
time [110].

For these and other reasons the electromagnetic mode density in a finite lossless
cavity seems worthwhile studying. In the following sections, the precise mathematical
formulation of the problem as well as a survey of the state of the art are given.
Surface-area dependent corrections are the subject of section 4, whereas second and
higher order corrections are considered in the sections 5 to 8. The according refine-
ments of the above formulae are studied in the sequel.

2. Electromagnetic Modes in an Ideal Cavity Resonator

A. The electromagnetic boundary value problem

An ‘ideal’ resonator is represented by an empty closed cavity with perfectly
reflecting walls. The free electromagnetic oscillations E, H, obey the vector Helm-
holtz equation

(W+J@{§}=0 (2.1)

and the divergence conditions

V-E=0, V-H=0 (2.2)

”

throughout the interior region of the cavity, and the boundary conditions
nxE=0, n-H=0 (2.3)

on the enclosing walls [111]-[114]. Let the interior region G be a bounded, open,
connected set with the boundary F in the Euclidean space R? with the volume V" and
the surface area S. Assuming the existence of a continuous third derivative on F,
Miiller and Niemeyer [115] have demonstrated 1961 that the above problem possesses
an infinite number of eigenfrequencies v, = K ¢/2 7t. The », are real, have no finite
accumulation point, and show finite degeneracy. The case » = 0 is excluded, and we
are entitled to write 0 << 1 = v =3 =.... The corresponding eigenfunctions E,
and H, form complete orthonormal sets. They are continuous in G =G u F and
have continuous derivatives in G. The rigorous Hilbert space operator theory of the
problem is presented in Ref. [116]. The field vectors can be written in terms of two
scalar potentials [117]-[119]. For simple cavity geometries with smooth or piecewise

11
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smooth boundary surfaces the normal modes are known [113]-[115]. Examples are
the parallelepiped, the circular cylinder, and the sphere. For complicated geometries,
computational procedures exist at least for the numerical determination of the lowest
modes [120], [121]. _

For our investigations of the surface terms in Section 4 we need the related

scalar boundary value problems as well: The oscillations # obey the scalar wave
equation in G,

(V2 4 K2) u = 0 (2.4)
and satisfy on F the Dirichiet condition
u—0 (2.5)

or the Neumann condition

5;% :0, (2.6)

with G < R», n = 2 or 3. The rigorous proof of the existence of the complete system
of eigenfunctions #, with the corresponding eigenvalues K, for this and similar
‘regular’ elliptic boundary value problems was given as late as 1953 by Géarding [122].

B. The degeneracy of the eigenvalues and the fluctuation of the mode density

We denote the number of modes with frequencies v, not exceeding » by N(»).
Precisely,

Nm=a26n+gj%;, (2.7)

vy < v Yy =

where G, = G(vx) 1s the finite weigth or degeneracy of the resonance »,. Subsequently
the eigenvalue density D(v) may be defined by

szniN@y (2.8)

Strictly speaking, D(») is not a smooth function, but a sum of distributions d(v — »a),
and N(») is a step function, the spectrum being discrete. For three simple cavity
shapes, a small portion of the weight distribution obtained by a computer programm
1s shown in Figure 1. The reduced frequency

Q—2vws? (2.9)

c

1s introduced in order to compare the different geometries, i.e. the sphere, the cube,
and the circular cylinder with the diameter-to-lenght ratio 2 n—1/2. The weight is
plotted as a function of £2 near 2 = 100 with the sampling intervall A(£2) = 1.
This is the natural eigenvalue distance of the cube (see Section 5).
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Figure 1
The weights of the cavity vesonances are presented for the spheve. the cube, and the cylinder with
radius/length = 77-1/2, near Q2 = 104, 2 = 2 V1/3/] is the reduced wavenumber with V' = volume
of the resonator. For the cube, the squared reduced eigenvalues {22 are integers, and the degene-
racies G = G, are well defined. For the sphere and the cylinder, G = G(£22 + 1/2) defined as the
number of eigenvalues between 02 and 022 -+ 1 is used.

Large fluctuations appear in the weight spectrum which evidently depend on the
degeneracy of the eigenvalues due to the symmetry of the cavity. For the spherical
cavity, each mode of ‘angular quantum number’ / gives rise to a 2. (2 I 4 1)-fold
degeneracy. For the cube-shaped resonator, most modes have the weight 12 plus
‘accidental’ degeneracy (see 5, B. 2). The degeneracy is only 2 for most of the normal
modes inside the circular cylinder. Our computations demonstrate that a fluctuating
part of the density D(») with an amplitude proportional to » survives even in the case
of large frequencies (see 5 and 6).

C. Averaging procedures

In order to eliminate the fluctuations and to obtain a smooth density, the follow-
ing procedures can be used: '
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(1) Repeated integration [123]. Instead of the D(»), the N(») or even the integral
over N(v) are calculated. The smoothed desity is recovered by differentiation. This
method is used for the parallelepipeds (see Section 5 and Fig. 3 to 6).

(ii) Square smoothing [93]. D(») is replaced by

D(v; Av) = Z Ga f(va, v; Av) (2.10)
where
(Av)t for |wn—v| <%‘
fn,v; Av) =1 2 Av)t for | v — | = -421 . (2.11)
0 for |va—v|> %ﬂ

Then the averaged density D(v) is recovered by the relation
v+ Av]2
D(v; Av) = f D(3) d . | (2.12)
v )2

Thus, D(») is by definition the function giving the same smoothed density D(v; Av)
as the distribution D(v). The procedure is used for the cylindrical cavities in Section 6
(see Fig. 7 and 9).

(1) Lorentzian smoothing. This method is similar to (ii), but f is replaced by the
well-known Lorentz shape function with the width Av, see Ref. [124], [125].

(iv) Log Gausstan smoothing is defined in appendix A II. See Ref. [126].

(v) Integral transforms. Parameter depending summations of the form

F(t) = 3 Guflvn, 1), (2.13)

are carried through without reference to the density at all. Typically,
fva, t) = e~ @l (2.14)
used in appendix A.1, or

Vn

f(’Vn, lf) = _(gvn,‘t — 1) ;

(2.15)
applied in Ref. [127] are considered, which correspond to the Laplace- and Lambert-
transforms respectively. (2.15) leads directly to the total radiation energy of the
cavity discussed in Section 10.

The averaging procedures (i) and (ii) are most simple if the density is evaluated
by computer counting of the eigenvalues. The appropriate averaging procedure, if
any, depends on the physical problem to be solved. In the procedure (ii) and (iii),
Ay plays the role of the bandwidth or spectral resolution. For spectroscopic applications,
the slit function of the monochromator combined with the oscillator mean energy
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ought to be used. If narrow band phenomena are studied, the average density is more
or less meaningless. The procedures (ii) and (iii) may be applied using relatively small
Av. The fluctuations can be described by the relative mean deviation [93],

= D(v; Av) — D :
S(v; Av) = | B A5y = Do | - (2.16)
| D(v)
as a function of the spectral resolution Av. The quantity (2.16) is calculated in Sec-
tions 5 and 6 in connection with the square smoothing.

3. Asymptotic Expansions of the Electromagnetic Mode Density -
State of the Art

A. The Turn of the Century

The first counting of points in the K-space seems to be due to Pockels [128] and
dates back to 1891. About 1905, Jeans [129] and Rayleigh [130] introduced the
concept of the mode density into the theory of black-body cavity radiation. For a
parallelepiped cavity, Jeans obtained

W) e Nl =5 (1)3 , (3.1)
3 c,

valid for sufficiently large values of V(»/c)3. This result was verified for other simple
cavity geometries in a Leiden dissertation by Miss Reudler. About 1911 Weyl [131],
[132] proved that (3.1) is asymptotically exact for V(»/c)? — oo irrespective of the
shape of the cavity. He applied the theory of integral equations Hilbert [133] had
- developed a few years before. A modern account of these methods is found in Ref.
[134]. A few historic details can be read in Kac’s lecture ‘Can one hear the shape
of a drum’ [135]. For longer wavelengths and finite cavity volumes, (3.1) is only a
crude approximation. Correction terms are required which may depend on the shape
of the resonator. A priori, one may expect (3.1) to be the first term of an asymptotic
expansion:

N(¥) ~ No(¥) + Ni(») + Na(v) + - - . . (3.2)

N1 may be thought to be proportional to the surface area S and to the second power
of the frequency, N to a linear dimension and to the first power of the frequency.
The first note on the related long-wave black-body problem is found in Planck’s
edition of Kirchoff’s papers [136] which appeared in 18981).

The first error estimate of (3.1) was presented 1913 in Weyl’s third paper [137]
on cavity radiation. It reads

logN\"2 _ [2aw.\®> [(3m2N\2 _  logN
ma(NI/?’) g( c )*( vV ) N1 9]

IA

a

1) «Die Schwierigkeit liegt darin, dass im allgemeinen Falle die auf einen Koérper auffallenden
Wellen nicht unabhingig sind vom Korper selbst. Letzteres wird zwar gewohnlich still-
schweigend als zutreffend angenommen, es ist aber nur dann richtig, wenn die Wellenlingen
verschwindend klein sind gegen die Kriimmungsradien aller Kérperoberflichens.
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for the error of the N-th eigenvalue. Here, a and a’ are positive constants. Actually,
Weyl found a factor 2 2 instead of 3 #2 in the asymptotic value of (2 7 vx/c)? because
he considered the elastic oscillation problem.Therefore he was counting longitudinal
modes as well. From (3.3) we easily conclude

N(») — No(») ~ 0( (5 logw)1/2) . (3.4)

We shall see that this estimate is true, although Weyl’s proof does not necessarily
apply to the electromagnetic problem.

B. The Carleman methods

The methods of Weyl and Courant were not sufficiently powerful to give more
information than found in (3.1) and (3.4). In 1934, Carleman [138], [139] introduced
Tauberian procedures reminiscent of analytic number theory into the study of
asymptotic distributions. The essential steps are:

(1) A set {T:} of operators is studied instead of the differential operator T with
Tu=K2u,

(i) The Green kernels fi(#, y) for {T:} are constructed.

(iii) The dependence of fi(#, y) upon ¢ and particularly the asymptotic behaviour
are investigated.

(iv) An appropriate Tauberian theorem yields the asymptotic behaviour of the
eigenfunctions and the eigenvalues.

For illustration, the indication of an elegant proof of Weyl’s theorem (3.1) by a
Carleman procedure based on the Tauberian theorem due to Hardy, Littlewood, and
Karamata [140], is given in the appendix A.1.

About ten years ago, the Carleman methods were applied to the electromagnetic
boundary value problem. Miiller and Niemeyer [115] proved

N(v) — No(v) ~ o(»?) . (3.5)
In a subsequent paper, Niemeyer [141] obtained the refined result
N(v) — No(v) ~ 0(»2 logv) (3.6)

as well as some asymptotic relations for the electric field vector. Further refinements
of the error estimate are obtained if the fluctuating part of the eigenvalue distribution
is smoothed by one of the averaging procedures defined in 2.C.

C. Average ervor estimates

Using Lorentzian smoothing, Balian and Bloch [125] have shown recently that
there is no first order average correction term proportional to the surface area S of
the cavity:

N1 = const»2S =0. (3.7)

This vanishing of the surface term is peculiar to the electromagnetic vector problem.
In Section 4 we present a detailed study of the surface term, including a less general,
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but constructive proof of (3.7). For resonators with smooth boundary surfaces,
Balian and Bloch obtain the average result

Na=b (_"’) , (3.8)
¢

in the limit of a narrow bandwidth, i.e. (4»/2)? <€ 2. The constant b is related to the
main curvature radii R; and R; at each point of the boundary surface S by the formula

1
b f (R + R;!) dS . (3.9)
)

The methods used by these authors fail for cavities with sharp edges and corners. In
Sections 5 to 8 we study N for a number of resonator geometries with non-smooth
surfaces. Furthermore, we think that the sign as well as the modulus of the constant &
determined by Balian and Bloch are incorrect. This is discussed in Section 7.

The only result actually available for a piecewise smooth cavity surface was derived
recently by Case and Chiu [127], The authors consider the cube shaped resonator with
the edge length L and determine the total radiation energy by direct summation
using the Poisson summation formula. The result is the expansion

E(T) ~ Eo(T) + E+(T) + Eso(T) + - -

v (RT) (% T)2 1

7
_ B _ kT 3.10
15 (%c)3 4 ke L+ 2 s

— 0.097 k¢ L-1 4 @(e—**TLike) |

valid for sufficiently large L 7. As expected, the infinite-space term Eo corresponds
to the Stefan-Boltzmann formula. The above result agrees with (3.7) in so far as the
surface term E; = constL2? 73 vanishes. However, the first non-vanishing correction
Es has the opposite sign of the term N given in the relations (3.8) and (3.9).

D. The scalar problem

Here we should like to mention the much more advanced results of the scalar prob-
lems (2.4/5) and (2.4/6). As references, we suggest to the reader the review by Clark
[142], the papers of Pleijel [143] and Brownell [126] as well as the most recent investiga-
tions by Balian and Bloch [124], Hilf [144], Stewartson and Waechter [145]. In
physics, the scalar Dirichlet mode density is applied to the elastic vibrations of a
membrane (‘drum’) and to the Fermi gas model of the nuclei [146], [147].

For one dimension, the relations NZ . (v) ~ consty and NJ,,(v) = 0 hold.

For two dimensions, Brownell [126] found

oIT v \2 1 P 1 ~
Nsmkzr(lp) ~NTTOY— :F =y V e _I_ B + @(Vﬁn 108'1’) 3 (311)
¢ 2 c 6
for a smooth boundary curve of length y. The area of the two-dimensional domain 1s

denoted by 6. 7 obeys 0 <<% = 1. The symbol ¢ indicated that the expansion is valid
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in the log Gaussian average (see Appendix 2.B). For a square shaped domain with the
edge length L the expansion reads :

\ 2

Naie) ~alr (L) F 2L (L) + 4+ 0 212)

where 7 is an arbitrary positive real number. In both expansions, the minus sign
applies to the Dirichlet, the plus sign to the Neumann problem. The third term in the
above formulae combines metric and topological features of the domain: Brownell
determined 1/6 for a smooth boundary and proved that 1/48 must be added for each
rectangular corner of the square. Thus 1/6 + 4/48 = 1/4 is obtained. The most
advanced results known so far were recently derived for the circle [145]. They include
stx terms of an expansion of the type (2.13/14).
For three dimensions, Brownell found

4 r\3__ 1 v\ 2
NHI AR vV __) T S (_)
scalar( ) 3 7T ( q: 4 T c

c /
1 " i Y ~
+T (R" + R;) dS = + O(vt—"logv) , (3.13)
7
s
for a smooth boundary surface with the area S. For the cube shaped domain he obtained

cube 4 v\3 3 /'V (
Nsmlm’( ) N-:?)—n L# ("C_) :F _2—-77: 12 ( C) + s ”) :F = + (ﬁ( ) . (314)

We observe that surface terms appear in the above expansions. They are absent in the
corresponding relation for the electromagnetic vector problem. This illustrates that
the electromagnetic problem cannot be reduced to the scalar problems by a naive
procedure. This connection is investigated in Sections 4 and 5. The term (3/2) L(v/c) in
(3.14) cannot be derived from the curvature term in (3.13) by approaching infinitesimal
radii of curvature: An erroneous coefficient 1 is obtained instead of 3/2. According to
Balian and Bloch [124] the existence of sharp edges is ‘pathological’.

4. The Surface Area Dependent Terms of Partial Mode Densities

A. E- and H-type mode densities

According to (3.7) and 3.10) the surface term of the averaged fofal mode density
D(v) vanishes. However, surface terms are obtained if E- and H-type modes (TM and
TE resonances) are counted separately, i.e. if the partial densities Dg(v) and Du(v)
are studied. Physical consequences are (i) a first order anisotropy correction of the
radiation field, and (ii) the surface terms of the temporal autocorrelation functions of
the field components studied in Section 11.

The separation into E- and H-type modes stems from the fact that the solutions
of the electromagnetic wave equation (2.1) can be represented in terms of two scalar
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wave potentials in a region that is homogeneous, isotropic, and free from electric and
magnetic polarizations. The z-components of the Hertzian vector,

UE IHE,z: UH :HH,z, , (4])

show this property [117]-[119]. Let us assume a boundary geometry that allows a
separation of the wave equation in terms of orthogonal curvilinear coordinates
(%1, %2, x3) with hg = 1 and hi/he independent of x3 in the usual notation (see e.g.
Ref. [113], p. 7). Consequently, two independent sets of solutions are obtained as
follows:

Er = (hl 03 51, ha 03 02, O% + Kz) Ug ,
(4.2)
HE = & E(hz az, — 61, O) Ug ,
EH :zwy(m hz()z,hlal,()) Upg ,
; (4.3)
Hy = (h1 03 01, h2 03 02, 05 + K2) un ,
where 0, = 0/0xy, 12 = — 1, e u = ¢2, and where w = 2 @ v is the eigenfrequency
of the mode with ¥ = vz or v = vy respectively. The E-type density is defined as
d
Dg(v) = — Ng(v) , (4.4)
dv
with
1 .
Ne(v) = 2 G(ve,n) + ) E G(vE,4) - (4.5)
YE,n<? YE,n =7
The definition of Dy(v) is analogous. The total density is
D() = D(v) + (Du(y) . (4.6)

To our knowledge, the E- and H-type mode densities were never studied seperately.

B. Asymptotic surface terms

Examples of geometries leading to (4.2/3) are the cylinder with E3 = E; and the
sphere with E3 = E,. Let us denote by S, the total area of those parts of the boundary
surface which are orthogonal to the field components Ezand Hs, andby S| =S — S
the remaining surface area. For cylinders, S | includes the ‘shorting plates’. Hence we
find S, = 2a R?2and S; = 2z R L for circular cylinders with radius R and length L.
For a sphere, S| = 4 @ R? is the whole surface area, whereas S, = 0. After some
calculation, we find from the field equations (4.2/3) that the boundary conditions (2.3)
are satisfied if

0
ug =0 on §, —()IuE::O on S, , (4.7)

on
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We have thus decomposed the vector wave problem (2.1-3) into the two scalar
problems (2.4/4.7) and (2.4/4.8) with mixed boundary conditions. These two problems
are complementary: ug has to fulfil the Dirichelt condition on those smooth pieces of
the surface where uy obeys the Neumann condition, and vice versa. In order to obtain
the asymptotic expansions including the surface terms, we construct the image-type
Green functions

Joe(%,y) = fz,o(x, ¥) — fiol®, yu) e fz,o (%,3%,), (4.9)
(% 9) = foo(®, ¥) + Jio(%,3)) — fol® 1) - (4.10)

Here, y; and y, are image points outside S| and S |, respectively. f; o(#, ¥) is defined
in (A.4), Appendix A 1. Evidently, f, z and f;  fulfill the boundary conditions (4.7)
and (4.8), respectively. With the aid of these functions we find that each smooth
piece S’ of the surface contributes to the surface terms of the mode densities Dg and
Dy according to the expansion (3.13), i.e. F (7/2) S’ »/c2. Thus we obtain

1 : v

D) ~5 Dofv) + 5 (S, — )= + 01), (4.11)
1 ; -

Dyy(») ~— Dyf) — :; (5, — Sy C’; 1 oo(1) . (4.12)

Because these results are valid only in the average, the notation @ is introduced. The
contribution of any edges of the boundary surface would be of second order and can be
disregarded.

From (4.11) and (4.12) we conclude

Dy(») — Dy(v) ~a(S, — S) :2 (4.13)
as well as
D(») = Dg(») + Dy(v) ~ Dy(v) + 0(1) . (4.14)

Thus the surface area dependent term in the asymptotic expansion of the complete
mode density D(») vanishes as a consequence of the ‘duality’ (4.7/8) found in the two
basic scalar problems. We should point out that our proof is valid for all the boundary
geometries allowing the separation discussed in 4.A. The expansion (4.14) is consistent
with the result (3.7) proved by Balian and Bloch [125] as well with a conjecture due
to Case and Chiu [127]. Furthermore, we shall find below (sections 5-8) that (4.14)
agrees with all our computer results on finite frequency ranges. We observe that an
erroneous surface term appears in D(v) if the expansion (3.13) valid for the scalar prob-
lem is used for the electromagnetic vector problem in a naive manner. Therefore it is
unlikely that the theory of perfect quantum gases of particles with non-zero mass in
a finite volume developed by Hilf [144] does not apply to the radiation field in small
cavities at low temperatures.

We emphasize that the theorems (4.13) and (4.14) hold for cone shaped cavities
as well, because the single L-type solution [113] due to the sharp point of the cone

contributes less than ¢(1). From the theorem (4.13) we learn that special cavity shapes
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exist where even Dg(v) and DH(v) have vanishing surface terms, i.e. Dg(y) — Dy (v)

~ (1). As examples we mention the circular cylinder with R = L, the square prism
with L = 2 L3, and the spherical sector showing a half-angle near (not exactly) /4.
The notation is explained in Figure 2. ' |

Figure 2
The coefficient C of the first ovder ve- .
lative mode density diffevence [DEg(S2)
— Dy(2)1/D(Q) = C/2with Q=2 V13]]
is plotted as a function of the appropriate
geometric parameter of the cavity for (I)
civeular cylinders, (11) square prisms,
(I11) spherical sectors (cones), (IV) sectors
of cylinders (wedges) with 2 R = L. The
sphere and the hemisphere appear in
(III) for # = 180° and 90°, respectively.
The full circular cylinder does not appear
as a special case of (IV) for @ — 360°
because of the discontinuity of the pro-
blem. The full curves represent C as
result of the asymptotic expansion
(IV.15) with (IV.16-20). The black circles
represent C as obtained from the compu-
tation of the first 106 eigenvalues.

We observe that the image-type Green function technique (4.9/10) is restricted
to the surface term problem. It fails for the second order correction if the boundary
surface has sharp edges or corners. Its further application to smooth boundary sur-
faces, e.g. the sphere, is discussed in Section 7.

C. Computer vesults for finite frequencies

In order to compare formula (4.13) with our computer results, we write in it
terms of Q2 = 2 V13 p/c, and we obtain

(D&(@) — Du(®))

G ~C 0, (4.15)

with

(4.16)
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For the above mentioned geometries, the first-order coefficient C reads for the square
prism with p = L|Ls

C = (z) e =2, (4.17)

circular cylinder with p = 2 R|L

e Lel(t (1))

sectors of circular cylinders with @ < 2 n

=3I - (2) "]

spherical sectors (cones) 0 = m/2

7 2(1 — cosfl) — sinf
e = (4.20)
[-—— (1 — cos@)]
3
sphere
R EAYE
=|—-—) =1 ce 21
C ( T ) 1.2088 (4.21)

The above asymptotic values for C are compared with the corresponding computer
results in Iigure 2.

D. Conclusion

Strictly speaking, we are not entitled to read the expansion (4.15) as an equation
for finite £2. However, the comparison with our computer results for the above geo-
metries shows that this expansion is already a good approximation of the averaged
Dg — Dy for 2 2 5. E.g. in the case of the sphere we find

Coomputer = 1,20 - 0.02, | (4.22)

for 5 <2 <250 in excellent agreement with the asymptotic value (4.21). The details
of the computation procedure are presented in the next sections.

5. Second and Higher Order Corrections for Parallelepiped Cavities

A. The degeneracy of the eigenvalues of the cube

The computation of the mode density is most easily done in the case of a cube
shaped resonator. Let L denote the edge length of the cube. In terms of the parameter
2L  2Lvw

W = —
A c

(5.1)
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the resonances are given by
Q=W*=n4 n+4 ns, 7 (5.2)

where the #; are integer numbers. It is sufficient to consider #; = 0, because the nega-
tive integers produce no further linear independent solutions. According to Ref. [113],
p. 133, we obtain non-vahishing E- and H-type modes for any set (w;, #; > 0 for
¢ =1, 2, 3). If, however, #; or #ns is zero, then the E-type solution vanishes. If, on the
other hand, n3 = 0, then the H-type field is zero. If more than one of the #; is zero,
then both solutions vanish. Consequently, the multiplicities G = Gg + Gu read as
follows:

G =2 1if no n; is zero
G =1 if one n; is zero ' (5.3)

G = 0 if two or all of the #; are zero . ]

These are the degeneracies used by Case and Chiu [127]. For the computer calculations
we can save time by the consideration of ordered sets (n:, 0 < n1 < n2 < n3). The
following table for ‘Gz + Gu = G’ is readily established:

n1 << ng << N3 Ny << Mg = N3 Ny = Ny < N3y N1 = Ng = N3
m=0 2+4=6 1+2=3 0 0 (5.4)
ny > 0 6+ 6=12 343=6 34+3=6 1+1=2

In the case of the scalar Dirichiet problem (2.4/5) studied by Hilf [148], [149] the
degeneracies are

g=1 it #ni-n-m3#0,

g=0 if n-n-n3=0. (5.5)
Comparing (5.3) with (5.5), one can easily see that
1
N(W) = Nemag = D, Glnr, ma, m3) + — Y G(m, na, my) (5.6)
ni+ ni4 n2<Ww? 2 ni4 ni4 nd="W?*
and
2NUW) = 2 N =2 ) glm, 2, me) + ] gl 2, 03) (5.7)
ni+4 ni+ ni<W? ni4 nitni=Ww2

differ by a first order (surface) term. (The factor 2 is due to the two branches of the
solutions of the electromagnetic problem.) Therefore, Hilf’s surface corrections found
with (5.5) and (5.7) do not apply to the radiation problem.

Similarly, the well-known connection with the number of lattice points inside a
up-dimensional sphere of radius W,

FW)= Y1+ g -1 (5.8)

n%+---+n;<Wﬂ n‘f“{*""f‘ﬂﬁ:Wg 2 3
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has to be re-examined. One finds

2 N"(Ww) = (%) (F3(W) — 3 Fa(W) 4+ 3 Fa(W) — 1), (5.9)
whereas
1
N(W) = (I)(FS(W) — 3 Fy(W) + 2). (5.10)
Because of F1(W) = 2 W we obtain the simple relation
N(W) = (%) Fs(W) — (%) W+ ; i (5.11)

for the electromagnetic problem. The connection with F, and with the results of
elementary number theory is studied in the appendix A 2.

B. Results for the cube

1. Average correction terms. With the help of the weight table (4.4) we computed
the eigenvalue density of the cube. Because of the large fluctuations (see Fig. 1) we
applied a repeated-integration smoothing procedure. For Q =W2=10,1.2,...,
10000 we calculated

wi-1 - N(VV)
M(W?) = Mo(W?) + My(W?) + Mo(W?) + --- = D N(W) + — (5,13)
We=0
with N defined by (5.6), and similarly M = Mg — My. N and N are reconstructed
by differentiation, N = (d/dW2) M (W?). The result is

( ) (%ﬁ — (—2—) W 4+ % -+ osc. (5.13)

NW) = — (%) W2 4 W — % + osc. (5.14)

where ‘osc.’” denotes an oscillatory term which yields in the average a contribution

decreasing faster than some negative power of W. In terms of M (W?) and M (W?2), the
relative third order error estimates obtained by the computation are displayed in
Fig, 3.

From (5.11) and (5.13) it is easily conjectured that

4 7

Fa(W) = ( :

) W3 + osc. (5.15)
i.e. the first, the second, and the third order term in the expansion of the arithmetical
function Fs vanish in the average. This represents a well-known result proved by
Brownell [126] for the log Gaussian average in the asymptotic limit W — oo (see
A 2.C). Thus, our result (5.13) verifies for the finite domain W =< 100 an asymptotic
estimate known in principle. The presice numerical value N3 = 1/2 has been ‘assigned’
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with the help of (5.11/15), whereas N3 = — 1/4 is checked by taking the limit of the
two-dimensional resonator (see 5.D).

Figure 3 ’
4  Thecube shaped cavity with edge length L.
The open and full circles represent the
computer results for the third order cor-

rections N3 and N 3, respectively, in terms
of M(W?) = ng’ N(W?2) d(W?) with
W = 2 L|A. The straight lines represent

wodoo the asymptotic third order terms cor-
. . ; ; NN responding to N3 = 1/2 and N3 = — 1/4.
1 10 102 103 10*

w2 —

2. Fluctuating parts. The remainder in the expansions (5.13/14) denoted by osc.
allows for the large fluctuations of the eigenvalue density. These fluctuations can
still be noticed in Figure 3, although the density is integrated twice. Actually, the
degeneracy of most of the eigenvalues is higher than what might be expected from
the table (5.4). In the Appendix A 2.C we show that the mean degeneracy is approxi-
mately (3 /5) W. From the computer results we learn that the fluctuating part of the
mode density has a first-order ‘amplitude’. It dominates the average second order
correction unless a smoothing procedure is introduced. For bandwidth ¢/L = Av
< 50 ¢/L we computed the relative mean deviation (2.16) using the square-smoothing
method (2.10-12). We obtained

o(v, 4v) ~ 0.1 2 L2 p-1(Ay) 1. (5.16)

C. Results for the square prism and the vectangular parallelepiped

1. Averages. We extended our computation to the square prism with the volume
L2 - L3 for values of the parameter p = L/Ls between 0.1 and 100. The following
average expansions are found:

N(v) = No(v) — (2L + Ls) (%) —+ -‘]:? + osc. , (5.17)

N(y) = Na(») + 2 Ls (":") - _i- + osc., (5.18)
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with Ny as determined in Section 4. We point out that the constant terms 1/2 and
— 1/4 do not depend on p. This is expected from the corresponding lattice-point con-
siderations as well. :

From (5.17/18) the expansion valid for the rectangular parallelepiped with edge
lengths Ly, L3, Ls is easily conjectured:

8 [ p\3 / 1
D) e —3£ Ly Ly Ly (%) — (Li + Lo + Ls) (%) +— + osc., (5.19)
= r\2 Y 1
N() = a(Ly Ly — Ly Ly — L3 L) (7) + 2 Ls (—C-) — 4 Hosc., (5.20)

2. The oscillatory term for the flat square prism. For flat square prisms (p > 1),
the amplitude of the oscillatory term strongly increases with p, and the term is
periodic in W = 2 LA with the period p. This is shown in Figure 4. Such a behaviour
is understood qualitatively: Because of W2 = nf 4+ #n§ + p% #3, flat cavities imply
point lattices in the K-space consisting of dense plane lattices which are well separated.
The analysis of the computer results displayed in Figure 4 provides a simple formula
describing the oscillatory term M4(W?) for sufficiently large p and W 2 p:

% " (%)3 (W2)-5/2 cos [—ZM + 3] .

: 5 (5.21)

\

0 £ 13
‘.w-[ W-2W - I -OW —w] S

Figure 4
The flat square prism with edge lengths
Ly =Ly =L > L3z. Computer results for
the fluctuating part Ny of the expansion
obtained in terms of M(W?) = [IV* N(IW2)
d(W?), W = 2 L[A, are shown for various
ratios p = L/[Ls.

[ wee]
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For p =5 and 500 << W2 < 1000, the relation (5.21) and the computer results are
compared in Figure 5. If we consider only the leading term, the differentiation yields
the following fluctuating part of the mode density:

c

c

| L
Da(y) dv ~ 4 — (—’f-) sin [4 7L 1] Ly (5.22)

L3 Cc

This is valid for L » Ls and L3 > /2.

Figure 5
The flat square prism with edge lengths
Ly = Ly =L > Ly. Computer results for
the fluctuating term (heavy lines) are com-
pared with the adapted function (5.21)
(thin line), for the case p = L[/L3 = 5.
The agreement increases with increasing
- pand W = 2 L[A. For the definition of
- 10°! kil | N | M, consult caption of Figure 4.
6-10* 8-10° 102

D. The one- and two-dimensional limits

For very flat square prisms (p > 1) and for W <, only the sets (n;, n1 > 0,
nz > 0, n3 = 0) produce eigenvalues. Accordingly, only the two-parameter set of
E-type resonances with Gg = 1 survives. In the limit Lz — 0, the electromagnetic
mode density becomes identical with the fwo-dimensional scalar Dirichlet mode
density. Hence, we expect the expansion (3.12) to be valid for L > Ls < /2.

This connection between the cacity radiation problem and the ‘drum’ problem
is useful, because the eigenvalue distribution of the latter problem is known in detail
(126], [135], [142], [145]:

(i) The accuracy of the computer program is easily checked by applying it to
large values of the parameter $. Actually, our computation yields the Dirichlet version
of the expansion (3.12) in the limit W < . The relative error results leading to
N3 (v) = 1/4 are given in Figure 6 in terms of M (I72).

12
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(i) The constants in the expansions of N(v) and N(v) obtained by numerical
calculation can be interpreted and assigned a precise value by comparison with the
two-dimensional limit. As a consequence of Ny — 0 and N¢ — 0, the formal relation

lim (N(») + N(») = lim (2 Ng(»)) = N7(») , (5.23)
L,—0 L,—0
must hold. The factor 2 is due to the fact that lattice points on the k; — ky-plane are
counted with the weight 1/2 when considered as elements of an octant in three di-
mensions, but are counted with the full weigth 1 when considered as elements of a
quadrant in two dimensions. For the individual terms of the expansion, (5.23) implies
the following requirements:

., 2
N1+N1—>TCL2(;V—),
c

c

N3 + ]‘{73—%’1.

On the basis of these relations, the precise value N3 = — 1/4 can be assigned.
We observe that in the one-dimensional limit Lz > L < A/2 no eigenvalue W
with W< p exists. Hence N(v) = 0.

6

10 T T 7 T T
! ;S W
\ ,7' / ‘/ p
L ] 7 o
'\-. 7 / 10
- “.\. /' 1 o 20 —
p— ‘~~\. - [ i 2+ 50
? -1'_ / / - 100
l\! i
g .. “ =
C] D l
c; 10° - EE?L { i §
o T ME 2., we | |
T wE T W w—\j
3 b s,
2&
102 1 1 | S 1 i
1 102 10*
w? ——
Figure 6

The flat squave prism with edge lengths Ly = Ly = L > Lg in the two-dimensional limit. Computer
results (squares and triangles) are compared with the asymptotic second ovder term N1l in the ex-
pansion NI = NJU 4 NIl 4+ NIl ..o = (m4) W2 — W +1/4 4 ---, W =2LJA for the
two-dimensional ‘cavity’, for the cases p = L/Ls = 10, 20, 50, and 100. We learn that NII is
valid for Ls < A/2. M as in Figure 4.
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6. The Second Order Correction for Circular Cylinders and Their Sectors

A. The eigenvalue spectrum

The E- and H-type frequencies of the pill-box cavity are

v\E 1/, R \2\i2
LA : " 6.1
(c)m,z,n 27R (”"”Jr("‘L”)) ’ (6.1)

p \H 1 /-2 " R 2\ 1/2
¥ _ / e 6.2
(c) 2R (““”L (” L ”)) ’ ©.2)

im1 and 7, , denote the 1th zero of the Bessel function [, and its derivative J,,,
respectively, L the length, R the radius of the cylinder, m,n =0,1,2, ..., and
I =1,2,.... The degeneracies G y(m, [, n) are discussed in the Appendix A 3.
They can be summarized as follows:

m n Gg Gu
0 0 1 0
0 >0 1 0 if I=1
1 if I>1 (6‘3)
>0 0 2 0
>0 >0 2 2

B. The computation of the mode density

1. The ergenvalues. We used two independent computer programmes based on the
parameters X = 2x R/A and W = 2 L/A respectively. Hence we computed the
reduced squared frequencies

2
Xt 1) = 72+ (5 9] (6:4)
and
p 2
We(m, 1, n) = (— im, l) + n?, (6.5)
' 2o

and the analogous reduced H-type resonances. By » = 2 R/L we denote the diameter-
to-length ratio of the pill-box. We used the X- procedure for p = 1/8 and the W-
procedure for p = 2. All the reduced eigenvalues with W2, X2 = 10000 were com-
puted. This involves approximately 106 eigenvalues and 104 Bessel zeros. A few details
of the calculations of the 7,, ; and j;, ; are presented in the Appendix A 4.

2. The averaging. Because of the low degeneracy, the fluctuations of the spectrum
are weak, as is shown in Figure 1. Therefore, the square smoothing procedure (2.10-12)
is sufficient. We varied the bandwidth AW, AX between 2 and 100. For cavities of
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usual laboratory size, this corresponds to spectral resolutions 4(1/4) between 0.1 and
10 cm~1. The computer results are obtained in terms of

(D(W, AW) — Do)

Fcomp(W, AW) - (6.6)
Dy
for W=0,1,2,...,100 — AW/2. The constant C of the average relative second
order correction is defined by
D — Dy Dy
- = CW-2 6.7
D Da (6.7)
and is thus recovered by comparing Fomp With
L AW\ -2 | AW l
3C(\W—4—2) it WS-
C Wz—{—%é*— if W%AZV

It is convenient to use the largest obtainable bandwidth AW = 100 or 4X = 100 for
the precise determination of C. For AW = 100, only W = 50 occurs, and therefore

Feomp 1s compared with F = 3 C(W + 50)-2. An additional smoothing Feomp i

achieved by averaging over ten F¢omp-values. Then C is recovered from F(W) =3 C
(W 4 45)-1 (W -+ 55)-1. Typical computer results are presented in Figure 7.

-0.01
l I ! T
o
CYLINDER L =4R ,J |
o
! 7°
i <
resolution h
- =01 AW .4 ‘—‘
g oowf
. | 222
»,
g-“ 100 &
3
o
B
: W
=,

-1 40 >’ ,‘9&(’ — :
o Figure 7

g /\\1.8 w-? The second ovder corvection of the Planck-
/ Weyl mode density Dy for the cylindrical
- 9/0 . cavity with the length L = 4 R in terms of
® W = 2 L[A. The computer results Feomp
// = [D(W, AW) — Dg]/Do are plotted for
- various spectral resolutions AW. The fitted
curves correspond to the average correction

i Ll / i | | Dg/Dy = — 1.8 W-2,

2 5 10 20 50 100
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C. Results for the circular cylinder

1. Average results. By the above procedures, we determined the second order
correction for a variety of cylindrical cavities with p between 0.1 and 10. In terms of
Q2 = 2 V1/3/), the results are compiled in Figure 8 and read as follows:

D) dQ = Q1 — C -2 dQ, (6.9)
C = (0.25 + 0.05) (p1/3 + p=2/3) | (6.10)

The accuracy is discussed in the Appendix A 4. We observe that the cylinder with
 R2 = L2 (i.e. p = 2712 = 1.13) and the cube possess quite similar corrections in
terms of £2 with C close to 0.5 in both cases.

T l 1 | T ]
1 [ A i
[ A8
e~
“\e\ | O‘A
0.5 8-!§_ J—""
8 T
(@]
cLlipve P-zfa}
O computed with 2nR/A c 41:P
0.2 -
® computed with 2L/X
| ] | | i
0:1 0.2 0.5 1 2 5 10
P-2R/L
Figure 8

The second order correction of the Planck-Weyl mode density for a variety of cylindrical vesonators.
The coefficient C defined by DDy =1 — C 2-2, Q = 2 V1/3/4, is plotted as a function of the
cylinder parameter # = 2 R/L. The open circles correspond to values obtained by the X-programme
(6.4), the full black circles to those computed using the W-programme (6.5). The fitted curce
is (1/4) (p13 + p~273).

In terms of (v/c) we obtain

N=Ny—{(14+02 L +aR} (%) + 0(1) . | | (6.11)

The coefficient 7 is obtained from the two-dimensional limit (L — 0). It is compatible
with the corresponding computer value 2.9 4 0.5. We point out that (6.11) is purely
conjectural when considered as an expansion valid in the limit » — oco. For the present
state of the art see the ‘Note added in proof’ at the end of the paper.

2. Fluctuations. For the particular cylinder with 4 = 2 7#~1/2 and volume L3 we
found

O(v, Av) ~ 0.04 2 L2 p~1{Ay)-1, (6.12)
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The fluctuations are larger for extremly flat or extremly long cylinders, » > 1 or
p <€ 1. An example is shown in Figure 9. For flat cylinders, oscillations similar to
those described by (5.22) occur:

R3 (v . v\ av
Dyse(v) dv = const — [ —}sin (47 L —} —. (6.13)
L \c¢ c/ ¢
T T l T T T ]
~  LONG 7
CYLINDERS 4
50 -
|- AW:=18
L l 4
s F
C" 3-dim.
n 0 TPlanck
8
3 -
o=
..i T
[LJ
£ Lk
Figure 9
a The relative deviations from the Planck-
" . , ;T Weyl mode density Dy for extremely long
L e 100 o0 | civcular cylinders (L > R). The computer
i / results Foomp — [D(W, AW = 10) — D3]
i 7 [Dg are plotted. W = 2 L[A. For W &
- . L/2 R, we find D = 0. This agrees with
p s / 1- dim. the cut off [113], R < (ju/2 @) ~ 0.3 A
-8 I SR S R S T D=0
0 50 100

D. Results for sectoral cavities

Let @ denote the sectoral angle of a cavity defining the shape of a sector out cut
of a circular cylinder. For @ = n/k, k = 1,2, 3, ..., the eigenvalues are easily ob-
tained from (6.1/2) by omitting certain quantum numbers (m, /, #). For the half-
cylinder with @ = x, we find the table

m n Gg Gy

0 0 0 0

0 >0 0 1 & 454 (6.14)
0 if I =1

>0 0 1 0

>0 >0 1 1
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instead of (6.3). For @ = n/k, out of the m > 0 only the values m = &, 2k, 3k, . ..
survive. For @ < 7, the only solutions providing low frequency modes are (0, 1= 2,
n > 0). Thus, the extremely narrow sector shows a two-dimensional low-frequency
mode density.

Computer results combined with limit considerations lead to

N=N0—{O.25(A+@)L+(l +%)R}(%)+-.. (6.15)

with the fitted values A = 2, 3, 5/2 for @ = x, n/2, n/4, respectively. In Figure 10,
the computer results are compared with (6.15) in terms of X = 2 7 R/A. We observe
that in terms of £2, square, circular, and sectoral cylinders possess fairly similar second
order corrections.

16 T
o w
A w2
8
i A n/4
O 4+ el
-——-"’A"-—
.
2 /0
/O
U | 1 1 | 1
1/8 1/4 1/2 1 2 4
p:-2R/L —
Figure 10

The average second ovder correction of the Planck-Weyl mode density Dy for sectoral cavities. The
computer results for the constant C defined by D{Dg =1 — C X2, X = 2zt R|4, are plotted as a
function of p = 2 R/L for the sector angles @ = m, n/2, m/4. The fitted curves C = (n/4 D)
[A + @ + p(D + 2)] correspond to the relation (6.15) with 4 = 2, 3, 5/2.

E. Two-dimensional limits

~ For the full cylinder, as well as for the sectors, we studied the limit L — 0.
According to (3.11) we expect

D — D — DU (1 —p (%) (%)) , | (6.16)

with C =1/4 7 = 0.07977.... For @ between 2 m and m/4, our X-program
produced 0.080 2 C 2 0.0785 in excellent agreement with (6.16). From (6.4) we learn
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that for » > 1 the only low frequency modes are Xg(m, [, 0) = j,,,, i.e. we count the
‘pure’ Bessel zeros. Hence, the above result represents a valuable confirmation of our
Bessel program.

7. The Second Order Correction for the Sphere and Spherical Sectors

A. The sphere

The scalar wave potentials for the spherical resonator with radius R are
Uy = ty = §,(x) P"(cosd) &7, (7.1)
113], [114] where 1 denotes the /-th spherical Bessel function,
x) =272 I 0, (7.2)
withy =2x7v/cand 1 =0,1,23,....
(1) With the eigenvalues
v ,
XﬁZWR(*)za“,als, (7.3)
c, 5

the functions (7.1) fulfil the scalar Dirichlet and Newmann problems, respectively.
The a, ;and a; ; are the s-th zeros of i(x) and (d/dx) j1(x), respectively, where s =1, 2,
3, .. .. The degeneracy is

g=¢g =21+1. (7.4)
(ii) The electromagnetic fields derived from (7.1) correspond to the eigenvalues:

Xp~aj,, Xy=ua,. (7.5)
Rigorously, the Xz are the solutions of the equation

[;;(x j;(x))] — 1) (7.6)

r=X

and the aj ; represent an approximation. The field components vanish identically for
[ = 0 [114], and the corresponding resonance frequencies are discarded. Hence

Cr=lre=2l-L1 i In0, Cu=Ge=0 H [=@, (7.7)

The computer results based on (7.5-7) were published in a previous paper [93]. The
second order correction to the mode density reads

B s Wy s B3 L5 B (%) . (7.8)

The low accuracy is due to the approximation (7.5) as well as to the extremely large
fluctuations of the spectrum (see Fig. 1).
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The above result is at variance with the positive second term

N — No = + (2) R (1) , (7.9)

¢

found by Balian and Bloch [125]. We think that this relation is erroneous because the
accidental vanishing of the (I = 0) fields has been overlooked. This can be illustrated
as follows: Because the sphere has no edges, it seems possible to apply the scalar
potential method used in Section 4. The boundary conditions read

i =0, g0, (7.10)
on

for x = X. Adding up the well-known contnbutmns (3.13) of both the scalar Dirichlet
and Neumann problems leads to

Ne—No=2- (%)J 2R-14S - (%) » (2) R (%) , (7.11)

i.e. Balian and Bloch’s result. It does not apply to the black-body problem because
1t corresponds to (7.3/4) rather than to (7.5-7). In particular, the resonances Xz ~ ag ,
and Xy = a, ; belonging to vanishing electromagnetic fields are included. Because
of ag,~ ms and aj ; ~ xs — z/2, the error in D(X)dX is approximately Z/z.
This leads to the crude estimate

8
N_N0~(§—4)R(-’C)<o, (7.12)
¥

i.e. a negative second order term. The remaining discrepancies are supposed to be due
to the various approximations.

B. The hemisphere

The eigenvalues are given by (7.5/6), but the degeneracies are Gg = 1, Gu=141
if /> 0and Gg = Gy = 0if I = 0. Our previous computer result [93] leads to

N_—No=— (47 +13)R (—Z-) . (7.13)

C. The cones

The case of the cones or spherical sectors with half-angle 6 < 7/2 is the most
complicated considered so far. The equations

P}(cosb) =0, P’f(cos@) e, (7.14)
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for the index ¢ of the Bessel function j, have to be solved. This requires further
approximations [93], and no more than the order of magnitude of the second order
coefficient is obtained. For 6§ = n/4, #/6, and #/12, we computed

N—_—No=—CR (1) , (7.15)

C i

with C ~ 2, 1, and 0.5.

8. A Comprehensive Conjecture

The average second order correction for (i) the rectangular parallelepiped (5.19),
(1) the circular cylinder (6.11), (iii) the half-cylinder (6.15) with 4 = 2, and (iv) the
quarter-cylinder (6.15) with 4 = 3 can be summarized in the following conjecture:

N——N(,:ﬂ%(z;lﬁ—;mk)(%). 8.1)

The /; indicate the lengths of the rectangular edges of the resonator. The my are
defined as follows:

e — [ dSclReE + R, 52)
Sk

where Sy denotes the %-th smooth component of the boundary surface with Rz and
Ry2 as principal radii of curvature. Flat faces with Ry = R = 0 yield a zero contribu-
tion. Because of the inaccuracy of the numerical results (6.11/15), we must admit an
unknown factor close to one (e.g. 3/x) in (8.2). Cavities with non-rectangular edges are
not described by (8.1).

For the sphere and the hemisphere, the above conjecture leads to N — Ng
= — C R(v/c) with C = 2z and C = 3 /2, respectively. This is in good agreement
with our computer results (7.8/13). For the cones studied in 7.C, the conjecture yields
C = 2.8, 1.9, and 0.9 compatible with the fairly inaccurate computer values (7.15).
We mention that for extremely narrow cones (6 > x/2), the conjecture leads to

N — No= —ERsine-(l). (8.3)
2 ¢

In the following sections we make use of the quantity A with the dimension of a
length. In terms of /A, the corrected mode density reads

A

D(y) dv — (Do('p) = 7) dv — Do(») (1 - ;1 > (%}2) dv . (8:4)
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According to the results obtained in the preceding sections, /1 depends on the linear
dimensions of the resonator:

cube A=3L |

parallelepiped A=L+ Ly + Ls
circular cylinder A = (144+02)L+ nR

half-cylinder A=(13402 L+ (1 + 72‘) R

quarter-cylinder A4 =(1.1+40.2)L + (1 -+ 77:—) R (8.5)
eighth-cylinder A = (0.8 + 0.1) L + (1 1 %) R

sphere A~6R

hemisphere A~5R

cones (15°...45°% A= (0.5...3)R. J

9. The Correction of Wien's Displacement Law

With 2 v/k T = x, the equation for xmas reads

d x3—Bx1 A he\2
— =90 0 B = . 91
dx{ S SnV(kT) (-1)

This leads to the transcedental equation

efv—l__xf*'—Bx
er 322 —B'

(9.2)

The quantity xmas is meaningful only if ¢/ is well below the cut-off wavelength of the
cavity, i.e. for sufficiently large temperatures and volumes. Hence we assume B < 1,
which leads to

2
x—xom(?)Bxgl, % —=282=x (B=0], : (9.3)
whence
]’b Vmax A ]’b c \2
— 2822 ~ 001 —{—1 . 9.4
BT V (k T ) (94)

E.g. for the cube with edge length L, the right side of (9.4) reads (0.24/TK] L[cm])2.
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10. Refinements of the Stefan-Boltzmann Formula

A. An Abelian and a Tauberian theovem for the Bose-Einstein summation

The total radiation energy E(T) is usually computed by formal integration of the
asymptotic frequency density multiplied with the Bose-Einstein factor. Actually, this
integration is justified by the following Abelian theorem :

Let D(x) be the eigenvalue density of a regular elliptic boundary value problem

with D(x) ~ a x* if x — oo for some real # > — 1. Then, for { — oo,

o0

’. L D(x)dx ~al'(n + 2) {(n + 2) tn+2 . _ (10.1)

ex/t — 1

0

Since Case and Chiu [127] determined the second order correction Es(7) (3.10)
for the total energy of the cube shaped resonator, the converse of the above theorem
has gained physical relevance. We should like to derive the asymptotic behaviour of
Ds(v) from that of E3(7T). This implication is not valid, unless Ds(») is subjected to

additional conditions. Looking for these conditions, we found the Tauberian theorem:
If

o0

[ Y D) dx ~Atm,

er/t — 1

0

for { — oo for some real m > 1, and if 2™ D(x) is bounded and slowly decreasing,
then

D(x) ~———5—2m2 for x—>oc0. (10.2)

With # = 2, theorem (10.1) constitutes a rigorous proof of the Stefan-Boltzmann
formula and constant, based on Weyl's theorem [131], [132]. With m = 2, and Case
and Chiu’s term E3(T), theorem (10.2) yields D — Dy = Dz ~ — 3 Ljc if v — cc.
This is in excellent agreement with the result found in Section 5. The proofs of the
above theorems will be published elsewhere [150]. They are based on Wiener’s first
Tauberian theorem [151] and on the non-vanishing of the zeta function {(s) for argu-
ments with Re(s) > 1 [152].

B. The second order correction

The refinements of the mode density lead to the corresponding expansion of the
total radiation energy, viz. E(T) = Eo(T) + Ei(T) 4+ Eo(T) + - - -, where Eo(T)
= (4 o/c) V T* represents the Stefan-Boltzmann formula (1.9). The first order or
surface term E1(7) vanishes. The first non-vanishing correction is

BT} =— % A (kT)?, (10.3)
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with A given in the Table (8.5). E.g. for the circular cylinder with p = 2 R/L this
leads to

Es

5~ (p +1) (10 R [em] T [K])-2. (10.4)

These results are meaningful only if 7 is large enough to populate modes well above
the cut-off frequency of the resonator.

C. The measurement of the Stefan-Boltzmann constant

Many experimental determinations of the Stefan-Boltzmann constant have been
reported since 1915. A survey is given in the Ref. [22] and [153]. Only the most recent
measurements made by Blevin and Brown [153] at the freezing point of gold produced
a result consistent with the theoretical value. Withouth exception, all the prior
experimental values were higher than oeor. The differences range between 0.39%, and
2.29%,. The above refinements of the Stefan-Boltzmann formula are #of responsible
for these discrepancies. They lead to

Oexp = %4— = Otheor — “;g << Otheor - (10.5)
Besides, the correction is extremly small for high temperatures. For the black-body
used by Blevin and Brown [153] we find the insignificant correction Es/E¢ &~ — 3-10-9.
In the case of Kendall’'s low-temperature measurements we estimate — 10-7 for the
radiometer and — 2.10-% for the large 77 K test cavity.

D. Hugher order corrections

(i) The third order correction Ns(v) = 1/2 valid for the parallelepiped formally
corresponds to a single resonance of arbitrarily low frequency with the weight 1/2.
Thus the contribution to the total radiation energy is

1 hov 1
Es(T) = li Suet) o S e 10.6
@=tin 5[] = a
This agrees with Case and Chiu’s result for the cube [127].

(ii) In the case of the extremly flat square prism (L/Ls = p > 1), the integration
of the oscillatory term Dy (5.22) yields

30 ~ ooxﬂsinxy W
E““’”wﬂ”E"”lf:x—_Td"’

0 (10.7)

2kRT Ls
Y= :
i ¢

The integral in (10.7) is related to the Langevin function [154]

1
L(x) = cothx — —, (10.8)
x
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as well as to the generalized Riemannian function [155]

00 1 xs—l e—ax
5 precnct e — d 10.9
tls,0) = 3 (a4 ) r(s)f1_e—z x (10.9)
0
Viz.
i w d?
= — Lz or 10.10
|} = =g o (10.10)
0
e
= —2Im[{(3,1 +ivy)]. (10.11)
0
The evaluation of (10.11) yields
Eys =29 Eo Cgly), (10.12)

with
30 & 3m?—y2
Cely) = — — , 10.13
B0 =, e g (
A plot of Cg(y) for y between 0 and 2 is found on p. 296 in Ref. [103]. The above
relations enable us to describe the asymptotic behaviour of E4:
y>1 1e. L3T >01cmK.

From (10.10) we obtain

f —y3 —4qmge? for y—>o0 (10.14)
0
and therefore
he L3 1 / 3
By i _ (E_k I Ls ) ¢—4ThT Ly fhe | . (10.15)
n Li| 8= he

y<1 ie. LiT <01lcmK .

In the limit ¥ — 0, the function (10.13) reads Cz(0) = 1. Hence
Es=2pEy~T4. (10.16)

As a consequence, the only significant term in the low temperature expansion would
be Es3 leading to

1
E(T) > kT for LyT 0. (10.17)

in formal agreement with a conjecture by Case and Chiu [127]. But (10.17) is obtained
by inconsistently applying the Ls 7" — 0 limit to the mode density (5.22) valid for
L3 > ¢/2 v and thus does not provide the correct answer. Furthermore (10.17) is at
variance with the third principle of thermodynamics. The correct T — 0 behaviour
reads exp (— const/7T) and is studied in a forthcoming paper [156].
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E. Thermodynamic properties of the radiation field

The total radiation energy of the photon gas with the second order correction can
be written as

EV, T)=a VI4—a ViidT2, (10.18)
where
72 k2
ey V-1/3 10.19
as & ho /1 ( )

The dimensionless parameter /1 V-1/3 depends on the shape, but not on the volume,
of the cavity. From (10.18), further thermodynamic properties are easily derived [93]:

entropy S=So—2a V3T, (10.20)

free energy F=Fy—a V1372, (10.21)

specific heat Co=Cyo—2a V13T, (10.22)

1

radiation pressure p = po — (3) az V2372, (10.23)
with Fo = — Eo/3, So =4 Eo/3 T, Cys,0 = 4 Eo/T, po = Eo/3 V. We mention that in
the high-temperature limit the complete expansion is of the form

EV, T) ~aVTt—aVIBT2 4 asT +ag V13 4 -+ -, (10.24)

The relation p V' = E/3 remains correct for finite cavities. For the photon gas this
relation seems to play the role of the Landsberg condition $ V' = 2 E/3 valid for non-
relativistic perfect gases [144].

11. Refinements of the Temporal Autocorrelation

The theory of the complex coherence function or second order correlation tensor (1.11)
of the electric and magnetic fields has to be modified for finite cavities. We restrict our
considerations to the first order correction of the temporal auto-correlation
(r==ras— r1 =20, ¢ = 7). In the infinite space approximation, these functions are
[100], [101]:

16 (R T)
2,0 — n(h C)3

{4,1+4i7), 7= (%) £ (11.1)

The generalized zeta function is defined by (10.9).

Let us consider the modes with non-vanishing Es- and Hs-components, respec-
tively. In the relation (1.12) we substitute Do/2 by Dg (4.11) and Dy (4.12), respectively.
We obtain ‘

4 (R T)3

a3 — &g = — (H33 — Hy) = 3 (o) (

S, — 5
V-

) (3,1 +i1). (11.2)
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Details of the calculation are found in [93]. We observe that the refined components
&1, 22, and £33 are in general different from each other, as well as #;; # €. As an
example we mention the parallelepiped:

e = BRI g pa ] -
&y — Eo = 3 (7o) 1]‘@' — (L + L7y [ £G3,1+11). (11.3)

The indices of the edge lengths L; are counted modulo 3, and Lz || E3. The &;; are
equal in the case of the cube.
12. The Correction of the Lamb-Shift

Using the result (8.4), we substitute D, in the relation (1.14) by Do — AJc.
Because of 1 € »2, we find the relative deviation

AE — (AE)()) 2 A (logvz _1
45 =1 . “2( ) . 12.2
(AE)o 6x v '\ (12.2)
With log (va/v1) = 7.36 and 1 = 2.9 Ry ¢ &~ 1013 sec~! [106], we calculate
SE ~ —2.7-10-0 LW (12.2)
Vicm?®]

i.e. an irrelevant correction. We observe that JF is so small because only wavelengths
A > ¢/v1 &~ 30 pm are considered. Furthermore, the above result has the character
of an average taken over the cavity volume. More important deviations probably
occur for atoms at positions very close to the ideally reflecting resonator wall.

Appendix
A 1. An Illustration of Carleman’s Method

As an illustration of the methods mentioned in Section 3.B we prove Weyl's
theorem by a Carleman procedure. Consider the heat diffusion equation

0
2y — —u=20. Al
Vau Y 0 (A.1)

The Green function for (A.1) is related to the eigenvalues K, and the eigenfunctions
un belonging to the wave equation with Dirichlet or Neumann boundary conditions by

fe(®,y) = D) un() et un(y) . (A.2)
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The integral

F(t) = f A’ fo(x, &) = D' e~ K, (A.3)

n
14

is the Laplace transform of the eigenvalue density. In the case of Weyl’s limit V' — oo
we may disregard the boundary conditions and use the infinite-space Green function

Frol®, ) = (4 8)-3/2 -la-vi/4 (A4)
Thus we find

F(t) ~ Fo(t) = V(4 mt)-3/2 (A.5)
if £ — + 0. Here, the intuitive physical argument is that short diffusion times lead

to the infinite space approximation [135]. From (A.3) and (A.5) we conclude

(e o]

f oK% AN (K2) ~ V(4 m )32, | (A.6)

if £ - 4 0. Applying the Tauberian theorem due to Hardy, Littlewood, and Kara-
mata [140] we obtain

|4

6 n2

N(E?) ~—— (K292, (A7)

for K — oo. In the infinite-space limit, Ny (electromagnetic) is equal to 2 No(scalar),
and thus we find

%4 8n v\3
~ 3 — —_ .
Nk =27 (2], (A8)

valid for V' — oo or (v/c) — oo.

A 2. Lattice-Point Problem Connections

A. Definitions

For a cube shaped domain with edge length L, the squared reduced eigenfre
quencies of the wave equation can be written as sums of three squared integers,

0= wr— () =t bt (A9)

where the weights G(n1, 72, n3) depend on the physical nature of the problem and on
the type of boundary conditions imposed. Consequently, the number N(Q) of eleciro-

13
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magnetic modes of a lossless cube shaped cavity with a reduced frequency not exceeding
Q%72 can be represented as

17 3 1
N(O) = _—_F — 012 4 — A.10
Q=R ~g 0+, (A.10)
where F3(Q) is the number of lattice points (#1, #2, #s) inside a sphere with the radius
@'/2. Precise definitions of N and F3 are given in Section 5.A. In the fwo-dimensional

limit of the above electromagnetic problem we have a square shaped domain, and the
squared eigenvalues are

Q0 =n+n2, (A.11)

with #; > 0 and G(#n1, n2, #3) = 1. This identical with the two-dimensional Dirichlet
problem (the ‘square shaped membrane’). Here we find the relation

1

1 - 1/2 1
N(Q) =5 FolQ) — 02+, (212

where F3(Q)) denotes the number of lattice points inside a circle of the radius Q2.
For convenience we mention the three-dimensional Dirichlet problem, where (A.9)

is valid with the additional requirement #; > 0 for any ¢. The connection with the
functions F» and Fj is as follows:

NU(Q) = 5 Fal0) — 5 FalQ) + o 0 — 5. (13

F,(Q) can be written as a sum of the arithmetic functions 7,(Q), which denote the
number of representations of the integer Q as a sum of x squares. E.g. 72(Q) is the
number of lattice points touching the circumference of the circle with the radius Q1/2.

I.e., we count representations as distinct even when they differ only in respect of the
sign and the order of the #;.

B. The functions r3(Q) and Fa(Q)

From elementary number theory we recall the following results [A1] valid for
9 0= K.

r2(Q) =8 if Q=4m + 1= prime, (A.14)
r2(Q) =0 if Q=4m+4 3 = prime, (A.15)
r2(Q) = 4(d1(Q) - ds(Q)) with Q = 2% H P’ H q°, (A.16)

where p and g are primes 4 m + 1 and 4 m + 3 respectively, and d1(Q) and ds(Q) are
the numbers of prime divisors of Q of the form 4 m + 1 and 4 m + 3, respectively.
The asymptotic behaviour F2 ~ & Q was known already to Gauss [A2]. The refined
asymptotic relation

Fo(Q) =aQ + 0(Q"""), (A.17)
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valid for arbitrary & > 0 has been the starting point of a great deal of modern work.
The aim is the determination of the real number 6. Geometrical arguments show that
6 = 1/2 [A2]. We list the refinements of this estimate:

0 = 3 Sierpinski 1906 [A3],
.|
0 = Y Landau and Hardy 1915 [A4], [A5],
1
6 < 5 Van der Corput 1923 [A6],
37 ; ;
6 < 112 Littlewood and Walfisz 1924 [A7], (A.18)
27 :
6 < " Nieland 1928 [A8],
17 :
P = 3 Vinogradov 1932 [A10],
15 .
6 < T3 Titchmarsh 1935 [A9],
12
0 <5 Yin 1962 [A11].

As a consequence, the asymptotic expansion for the eigenfrequencies of the square
drum reads

N(Q) =20 — QU2 + 0(¢f), (A.19)

with 0.32 26 = 0.25. |
According to Landau and Hardy, 6 cannot be smaller than 1/4. A further refine-

ment of (A.17) is achieved only if the averaged asymptotic behaviour 0 instead of 0 is
investigated. Brownell [126] was able to show that

Fa(Q) = Q + 0(Q), (A.20)

where 7 is an arbitrary positive real number 0 denotes the log Gaussian average. A

shortened version of the definition of 0 reads: We define ) = 0(y—f) for » > 0 over
y > b > 0 if for every ¢ > 0 there exists some M, < oo so that

1fexp [—— —é—gzln( )] afly )1 =M,vr, (A.21)

over v = e.
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As a consequence of (A.20), Brownell obtains
NUQ) =T 0 — g 4+ 80 (A2

C. The functions r3(Q) and Fs(Q)

In the three-dimensional case the results are less complete [Al]:

r3(Q) =0 if Q=48m+7), km=0,12..., (A.23)

75(0) >0 it Q =48 m + 7). (A.24)
According to Eisenstein [A12]

r3s(4m + 1) = 2415; (m%:—f) for prime 4 m + 1, (A.25)

= l
4 3) =8 —_—
ral o+ 3) z;(4m+3
where (//n) is the Legendre-Jacobi symbol [Al]. The above relations are useful for
controlling the computation of N(Q).
For comparison, we mention the simple and complete results for the case u = 4

[AT1]:

) for prime 4 m + 3, (A.26)

74(Q) >0 forany Q, (A.27)
74(Q) = 8 times the sum of the divisors of () which are not multiples of 4 . (A.28)

Obviously, the odd dimension 3 is a rather complicated case compared to y = 2 and 4.
Geometrical arguments show that

Fa(Q) =27 @ + 0(Q) . (A.29)
Landau [A13] obtained
Q) = o+ o0 +e), (.30)

improving the earlier refinement 5/6 + & [A14]. Todays best estimate with the expo-
nent 19/28 has been found by Vinogradov as reported in [147]. Brownell [126] found
the averaged estimate

Fa(Q) =T o 1 00 (A31)

As a consequence of (A.10), (A.13), (A.20) and (A.31), the following average results are
valid:

NQ =T Qo — 5 QU 2+ (0, (A32)
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for the eletromagnetic problem, and

NT(Q) = 3;_ Q3/2 — %n 0 + %01/2 . % _|_ré(Q—r) , (A.33)

for the three-dimensional scalar Dirichlet problem.

It can be shown [A15] that 1 out of 6 numbers has, in the average, the form (A.23).
Thus the average level distance is AQ = A(W?) = 6/5 and hence AW = (6/5)/2 W.
As a consequence, the mean degeneracy of an eigenvalue W is

= 3 d 3

G(W) = S " W} P W, (A.34)

D. The numbers (Q, Q = ni + ni + #n —>n, - 0, - n3 = 0)

We mentioned above (A.13) that in the case of the scalar Dirichlet problem only
the lattice points (#1, #2, #3) with #y - #2 - #3 > 0 are counted. Thus, those numbers Q
which can be represented as a sum of three squares if and only at least one of the #;
is zero, have to be discarded. Hilf [148] studied this particular set

(Q, Q = ni + n3 + n5 —>n, - n, -y = 0) (A.35)
and found the representation

Q =47, (A.36)
wheren =0,1,2,...,7=20,1,...,10, and where the numbers 7, . . . , 710 are

0,1, 2,5,10, 13, 25, 37, 58, 85, 130 . (A.37)

We extended Hilf’s computer investigations and confirmed that (A.36) is valid for
(Q < 40000. In particular, no further ‘basic number’ 7; beyond (A.37) is needed. For
32 < @ < 40000 we also found the new relations [A16]

a = 4m-1 Ly
QlO m+ QlO+ o (A38)
Qrom'+o = 4™ 2 Qaoip .
witha=3,4,...,9, m=1,and b=0, 1,2, m' = 2. Here, (Q;) is an ordered set
with Q1 = 0. The basic numbers for (A.38) are (i3, . . ., Q22 and read
37, 40, 52, 58, 64, 80, 85, 100, 128, 130 . (A.39)

A 3. Electromagnetic Modes in Cylindrical Cavities

For the lossless pill-box cavity with the length L and the radius R the scalar wave
potentials are [113]

ug = A €™ Jm(nr) cosp z,

ugr = A €™ Ju(n' r) sing z,

} (A.40)
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with ] m = Bessel function of the order m, n =4, /R, ' =, i/R, B =mnn/L,
}zvhere Im,and 7,, ; are the /-th zeros of [, and its derivative [,,, n» = integer, and 4
1s a constant. The resonance frequencies are

§ 2 2
(3) ={" L (A.41)
‘ 2+ p

Replacing ¢ in (A.40) by cosm ¢, the field components described in Ref. [113],
p. 234 and 235, are obtained.

For the computation of the eigenvalue density, a careful discussion of the allowed
‘quantum numbers’ m, I, » and their respective degeneracies is indispensable. If
m > 0, the factor ¢”? in (A.40) is responsible for two independent solutions (sin ¢,
cosm @). For the E-type resonances we thus find the weight Gz = 2, whereas Geg = 1
for m = 0. Because of 7,,;> 0 for Il =1,2,3...., any of these / may occur. Simi-
larly, » may take the values » =0,1,2,3,.... Negative » are allowed, but do not
lead to additional independent solutions and therefore are redundant. For m = 0 and
n = 0, we still have the non-vanishing field components E, and H,. This is quite
different from the behaviour of the H-type resonances: All the field components vanish
if w=0, i.e. § =0, for arbitrary m, l. Hence, Gu(m, I, 0) = 0. Furthermore, zero
amplitudes are obtained if m = 0 and / =1 because of 75, =0, i.e. ' =0 and
(@/dr) Jm(n' 7) = 0. Hence, Gy(0, 1, n) = 0. The weights are summarized in the table
in Section 6.A. We point out that for all the non-vanishing solutions, E, # 0, H, = 0
and E, = 0, H, # 0 are valid for the E- and H-type, respectively. Thus the density of
the modes with non-vanishing E. is identical with the E-type desnity Dg, an the
analogous statement holds for H,. This remark is essential for the calculation of the
(2, 2)-component of the coherence tensor in Section 11.

For sectoral cavities with the angle @, a possible choice for the additional boundary
conditions is

E.=E, =0

at ¢ =0,0. (A.42)

H,=0
For @ = n, e.g., this leads to the following restrictions:

E-type: Only the (sinm ¢) solutions fulfil (A.42). Thus Gg = 1 for m > 0 and
Ge = 0 for m = 0.

H-type: Only the (cosm @) solutions are compatible with (A.42). Hence Gu = 1
for m, n > 0. lf m = 0, and #» > 0, the components E,, E., and H, vanish identically
for arbitrary ¢, and therefore obey (A.42) for any @.

The resulting table of weights is given in Section 6.D.

A 4. The Computation of the Zeros of the Bessel Functions

A. Olver's Expansions

Our study of the circular-cylinder-shaped cavity requires the knowledge of all
the zeros '

Tnss Tns S 100, (A.43)
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of the Bessel functions [, and J;,. The notation (#, s) is now introduced instead of the
(m, 1) found in technical textbooks [113].

The notation (n, s) with#n = 0,1,2,...,ands =1, 2, ..., is used in the mathe-
matical literature [A17]-[A21]. In order to determine the second order correction of
the mode density, an accuracy of 0.001 is adequate. This means 4 to 6 significant
figures. Because of

Inis Jma~m, (A.44)
the range of the well-known tables [A17], [A18] is not sufficient, as it is restricted to
#n = 20. The simple McMahon expansions [A22]

(A.45)

valid for s > # > 1 are of unsufficient accuracy and limited in range. For these
reasons, we calculated the required 104 zeros with the help of a computer program
based on Olver’s asymptotic expansions.

The results of Olver’s theory [A19], [A20] are as follows

4 \VA[ Ai(n23l) & As(l) | Ai'(n¥3L) & Bs(L)
Ju(n 2) ~ ( T 22) [ — ;’0 =t — ;; |0 (A40)
as # — oo. Here, { is defined as
%Ca/z = Jioe 1+ (1z_ z2)1/2 — (1 — )2, (A.47)

A1 denotes the Airy function. The expansion coefficients 45 and Bs are determined by
recurrence relations. The above expansion is uniformly valid with respect to the
complex variable 2.

From (A.46), Olver obtains rapidly converging expansions for the zeros:

T'n,s~%2+%"1;bl+%‘3pz—l—"', (A48)
fms~nz4+nlg +n3g 4 .- (A.49)

with z = 2({) according to (A.47). 2, the p:, the g; are tabulated as functions of { for
— { = 7.5 [A18]. For (A.48),

= n"28g, (A.50)
whereas for (A.49)

= mn-23a}. (A.51)
Here, as and a5 are the s-th zeros of the Airy function and its derivative,

Ai(as) =0, Ai(al) =0. (A.52)
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These zeros are easily calculated with the aid of the asymptotic formulae [A18]

5 3x
s~ — J2/8 1 PP e — A.53
a A (1+482 + ) A= (4s—1), (A.53)
7 3n
.~ — 23 —_ 2 W i — . A.54
a 7 (1 25 U -+ ) p=—g (4s—3) ( )

For large values of — ¢, the asymptotic expansion
4 2
d8) ~5 + 5 (— 0= + 0] ¢|-20), (4.55)

is valid. Using only the first term in each of the expansions (A.48), (A.49), (A.53),
and (A.54), the approximation (A.55) leads to the McMahon relations (A.45). Because
of

| #1] £0.014, |p2| $0.0012

(A.56)
| 1] $0.15, |g=| <0.008.

(A.48) and (A.49) are excellent approximations. The first term # z in (A.48) alone
gives four-figure accuracy at # = 4.

B. The calculation procedure

(i) (—¢) =74 ie. 7, S15% or s $5#: We use the first two terms of the ex-

~

pansions (A.48) and (A.49):

1. Input: 6 figures of Olver’s table for z(— {) with (— {) = 0.0(0.1)7.5, and
3 figures of p1(— ¢) and q1(— ©).

2. Computation of the a;, a4 for s < 35 with an accuracy better than 0,00005.

3. Computation of (— {),, ;.

4. Computation of z from the z(— ¢) table with the help of improved linear inter-
polation.

5. Computation of j, ; =%z + p1/n and 7, , = n 2 + q1/n.

() (—¢) >74ie.4,, 215n0rs 25n: We use the improved McMahon relations
[A18]

4n2—1

7
o= | , A.57
s = g @ s — ) = a1 (A.57)
: 7 452+ 3
f o= s Gy . A.58
s = g s = ) = T 45— 3) (A.58)
The accuracy obtained is better then 0.0005.
(iii) 7, s—1: As (A.49) is to weak, the special expansion
Im1 = 1+ 0.8086165 n1/3 + 0.072490 #-1/3 — 0.05097 n-1, (A.59)

is used, which yields a 0.0005 accuracy.
(iv) Smalln and s: The tabulated Bessel zeros [A18] are used for fy ; and f,<4 s<4-
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C. Discussion of the accuracy

The above procedures lead to an accuracy of 0.001 for most of the zeros below 100.
Only a few values have inaccuracies as large as 0.005. This is checked by
(i) comparison with the neglected third terms of Olver’s expansions; (ii) comparison
with the tabulated zeros for » < 20, s < 50; (iii) comparison with the calculation
based on first terms only. Here, the errors are below 0.02. The second term leads to
one further significant figure.

The average error relevant for the eigenvalue density is of course lower, as plus
as well as minus deviations occur. It is supposed to be not larger than 0.001. This
leads to the relative error

AD P
‘T o003, (A.60)

for the mode density D(X), where X = 2x R/A and p = 2 R/L. Thus, the relative
error of the second order correction of the mode density is estimated by

p
< 0.004 X. A.61
~ (1’ + 1) by

‘ 2
D;

This means less than 109, error for the coefficient of the second order correction
in the case p = 1 and X = 50. Deviations of this order of magnitude were actually
observed when X- and W-results (see Section 6.B) were compared with the respective
first and second order corrections. We observe that, for X > 100, the above computa-
tion procedures are not sufficient for yielding the second order correction of the mode
density, because the relative error increases with X according to (A.61).

Note added in proof

Recently we obtained asymptotic expansions of the averaged mode density for
cavities with the shape of a prism with arbitrary cross section [157]. The mode den-
sities of the pill-box cavity and the sectoral cavities with arbitrary sectoral angle @
are included. For finite frequencies these expansions provide analytical formulae for
the refined mode density. Within the accuracy of the numerical calculation all cor-
responding computer results (5.17/18), (6.11) and (6.15) agree with the analytical
expressions. E.g. for the circular cylinder the precise second order coefficient reads
4/3 L 4+ m R, which is compatible with (6.11). On the other hand the computer results
assert that asymptotic expansions for » V1/3 — co are valid for the far-infrared and
submillimeter-wave frequency range. As far as the L dependence of the second-order
coefficient is concerned, the analytical expressions are more complicated than con-
jectured in chapter 8. However, the R-dependent terms in (6.11) and (6.15) as well as
the conjectures (5.19) and (5.20) are exact. A comparison of analytical and computa-
tional procedures in the field of mode densities is reported in a fortcoming paper [158].
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