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Scattering Theory in a Model of Quantum Fields II
by Sergio Albeverio!)?)

Department of Physics, Joseph Henry Laboratories,
Princeton University, Princeton, N.J. 08540

(28. I1. 72)

Abstract. We pursue the study of the scattering theory in Nelson’s model with relativistic
kinematics (‘Eckmann’s model’). For the choice of mass renormalization yielding a renormalized
Hamiltonian with the relativistic single-particle spectrum, we construct physical asymptotic
nucleon fields as strong limits of dressed fields on dense sets of states with finitely many nucleons
and arbitrarily many mesons. The commutation relations of the asymptotic fields among themselves,
with the asymptotic meson fields and with the Hamiltonian are derived, as well as the asymptotic
decomposition of the latter and the relation with the wave operators. An expression for the S-matrix
is also given, which is then discussed for the case of the meson-nucleon scattering.

1. Introduction

In a previous investigation [1] (to which we shall always refer in this paper as I)
we have constructed some basic quantities for the study of the scattering in two
closely related models of quantum field theory, which had been previously renormalized
and discussed by J. P. Eckmann [2], [3]. The present paper is based on I and uses
everywhere the same notations and definitions. Let us recall briefly the definitions and
results of I we shall use most.?) There are two kinds of ‘bare particles’ in the model,
‘nucleons’ (or ‘b particles’) and ‘mesons’ (or ‘a particles’). Both nucleons and mesons
are assumed to have strictly positive masses m,, m,> 0, to have spin 0 and Bose
statistics, and to move in 3-space dimensions.#) The Fock space 4 is the tensor product
of the individual Fock spaces for the two kinds of particles. Since the number of nucleons
is conserved by the interaction, the model splits into dynamically independent sectors
HM = DS_o A ™™ with fixed number # of nucleons (n =0, 1, 2, ...) and any number
of mesons. The subspace s#™™ of the states with exactly » nucleons and 7 mesons is
realized as the space L{(R*™*™) of square integrable functions which are separately
symmetric in their # nucleon arguments momenta and in their 7 meson arguments
(momenta). Let (, ), ||, | be the scalar product resp. norm in 5.

The free kinetic energy operator is Hy = H® + H{, where

H® = f (k) a* () a(k) dk,

1) Supported by the Swiss National Foundation (Forschungsstipendium of the Eidgendssische
Technische Hochschule, Ziirich).

?)  Present address: Institute of Mathematics, University of Oslo, Blindern, Oslo 3, Norway.

3)  For more details we refer to I (even if not stated every time explicitly).

4)  For remarks to these assumptions see I.
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H® = f w(k) b*(k) b(E) dk,

k) = (o + (112,
w(k) = (mg—i— |%]%)1/2,

a*(k), b*(k) being the usual formal creation-annihilation operators for a, respectively b,
particles (always in this paper the symbol #attached to any operator ¢ stands for the
star * or its omission: c¢* = c* or ¢).

The formal euclidean invariant interaction is AV = A(V?® + V), where A is a real
number (‘coupling constant’) and

Pe f @(ky) V2 w(ky) V2 p(ky) V2 8(k, — ks + ks) b*(Ry) b(ky) a*(ks) dk, dk, dks.
(1.1)

V4 is the formal adjoint of V*.

Because of its ultraviolet divergence, V° is not a well-defined operator in any #°™,
n > 0 and the renormalization is done by introduction of an ultraviolet cut-off ¢ in all
momenta in the interaction and a suitable mass counter term .# ,.

In I we discussed the possible choices of .#,. In the present paper we continue the
study initiated in §3 of I of the ‘full model’ with mass renormalization .#,= M,
chosen in such a way that it compensates, in a suitable resolvent limit, the ultraviolet
divergence of V for ¢ — o and, at the same time, determines the energy dependence
on the momentum % of any physical nucleons associated with the Hamiltonian to be
the relativistic one (w(k)) (so that bare mass equal physical mass, if we take the ter-
minology of relativistic theories) This choice of mass renormalization is given explicitly
- ([3], 1) as a power series M () = 32, A** M,y in A%, convergent for || sufficiently
small. The correspondent renormahzed Hamiltonian H, = Hy+ AV, + M (}) is, for
any ¢ < o, self-adjoint on the domain D(H,) of H, and bounded from below in each
S, Moreover by construction, H, acts as the free-energy operator H, on states
with at most one nucleon, in the sense that H (T, 4,) = (T, 4,) Ho on

(VO U #O) N D(H,y),

for a suitable invertible operator (T ,4,) (T, is the dressing transformation defined by
(3.8) of I and A4 , is the amplitude renormalization defined by (3.9) of I: see also Theorem
13.1.%) T,A, acts as the identity in #®.) This solves the ‘one-body problem’ for the
nucleons and mesons.®) The dressing operator T, is itself a convergent power series
in A, given in [3] and I.

In I weintroduced accordingly creation-annihilation operators for (dressed = bare)
mesons and dressed nucleons.

5) We shall use the notations Theorem Ix, Lemma Iy, formula I(z), etc., for Theorem x in I,
Lemma y in I, formula (z) in I, etc.

¢)  If there are no bound states for the Hamiltonian in the center of mass system (e.g. for |A|
sufficiently small) (besides of course the vacuum, the physical one nucleon and the one meson
states), then only physical particles with the relativistic energy-momentum dependence would
be associated with the Hamiltonian. In any case the particular choice of mass renormalization
can be looked upon as a tentative to mimic as far as possible a relativistic situation (the

additional bound states would not necessarily have the relativistic energy-momentum
dependence).
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Their general form is:
B*(hg) = b*(h,) + b*(h,), (1.2)

where b*(.) is a ‘cloud term’ which creates one bare nucleon and infinitely many

mesons. The test-function %,(.) is obtained from an arbitrary L,(R?)-function A(.)

with L,-norm 1 by multiplication with an ‘amplitude or field-strength renormalization’
-1/2.

Vg :

R, (k) = h(k).v; (k) forall k e R,

(A ; acts as multiplication by v;!/2(.) on one nucleon functions.) v, is given in [3] and I
((3.9), (3.97)) as a power series in A2, convergent for |A| sufficiently small. The intro-
duction of %/ in (1.2) makes that the physical (dressed) one-nucleon states

B*(h) Qo = Ty A, b*(7) £,

- £, being the vacuum, have norm 1, as the correspondent bare ones. In I (§3.1.1) we
have shown that B*(4,) is a linear operator defined on a dense set

D/ = U D,
o >(1/2)1n2

of states @™ in H#’™, the norm of whose components with high numbers # of mesons
- decreases exponentially: [|@®™™| = O(e~*™), & > 1In2, m — . We recall the definition

Dm.x — {q)(n) E'#(")i sup eam”@(n.m)“ < oo}.
Moreover (I, §3.1.1),
B*(h;) € B(D™*; Do),

for all @ > $In2, 0 < &’ < & — 1In2, where we denote in general by B(X, Y) the set of
all bounded operators between Banach spaces X, Y with their respective norms.
In particular the # dressed nucleons, » mesons states

1 B*(9) ﬁ a*(fD) Q

J=1 i=1
can be formed, for any #», m =0, 1, 2, ... A9, f e L,(R?) (the prime ” and the label o
associated simultaneously to an L,-function denote always multiplication by the
amplitude renormalization v;'/2(.): A\ =v3'?h{’). T,A, maps the bare states
I1,0%(AY) T1; a*(f) 82, into these correspondent dressed states:

T,A, H b* (hD) H a*(fP) Qy = H B*(h, @) T a*(f @) R

i

The wave operators Q2 in #™ exist as the partial isometric extensions to ™ of
the strong limits (in the #™-topology) of the operators 2,(f) = ¢'*Ho T A e '"Ho on
D’™._ They have been shown (Theorem 13.4) to have the usual propertles of wave

operators Qx Qx =1, .Q+ Qx — P, where P, are the projectors on the ranges
=Q8, and e“””.Q .Q+6”H0

The Heisenberg picture adjusted dressed fields
8§_,(h:,) = (itf,y B¥(eFw ) e~itHo
and

ik (N = ity a*(cFitnf) o-ithy
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(— going with *) have also been shown to be defined on D'™ resp. g, o D™ A and to
belong to B(D™-*; D@.&"y regp, %(D‘"’ B, D®.Fy for any 0 <o < oa—$In2,
0 < B’ < B. Since

[T 8%, (he9) [T a% . (f9) Qo = Q,(t) TT b*(H9) TT a*(f )2,
J i Jj i

the strong convergence of £,(¢) implies the strong convergence of the time dependent
states

[T 02, () TT &% (f) Q2
Jj i
to

|BO . pm; O pom s = G TT b*(AD) [T a*(fD)
i

j

We also proved the strong convergence of the fields a2 ,(f) in this model,”) derived
their asymptotic properties and extended finally all the results to the case without
cut-off. In this paper we first show (section 2) that the dressed nucleon fields &% , (/)
also converge strongly as £ — 4+ on dense domains, for all test functions % in L,(R?).

As described in the introduction of I, espemally in relation with the opposite case
of the space cut-off models, only the dressed fields b (hg) and not the bare ones can give
strong convergence (because of the translation i invariance of the model and the related
persistent effects by which the nucleon ‘gets dressed’). The creation operators for
dressed nucleons create, as described above, infinitely many mesons and are given by
convergent power series in A. Although they are not bounded even after multiplication
by inverse powers of H, and/or the number operator N, by suitable analytic domination
arguments we get control on the relevant power series for the time derivative of the
adjusted Heisenberg picture dressed fields and in this way we show the strong con-
vergence to asymptotic physical nucleon fields and establish the free commutation
relations of these fields among themselves and with the meson fields as well as with
the unitary time translation group generated by the Hamiltonian. Whereas the
interacting dressed nucleon and meson fields do not satisfy canonical commutation
relations (the commutators are in general not even c-numbers and there is a field-
strength renormalization) the asymptotic fields do have the canonical commutation
relations of free fields. Remarks on the case without cut-off are also given.

In Section 3 we derive an asymptotic decomposition of the Hamiltonian, establish
the relations between asymptotic fields, states and wave operators and give an expres-
sion for the S-matrix.

In Section 4 we give a preliminary discussion of the scattering between a physical
nucleon and meson, including an asymptotic series expansion in powers of the coupling
constant for the asymptotic meson fields and S-matrix elements.

2. Strong convergence of dressed fields to asymptotic physical fields

Since (except for a few remarks) we shall always keep the ultra-violet cut-off
0 < 0 <« fixed, we shall drop the label ¢ from all quantities (most of them were
introduced in I with a label o). We also suppose accordingly that the coupling constant

) And in a related model (I, section 2). For Nelson's model [4] see [5].
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A is chosen in such a way (generally dependent on o) that all quantities we shall use
and which were introduced in I are well defined (by the propositions of I). Thus we
shall write in particular A for A, (defined by Theorem I 3.1), 5¥(%’) for b% ,(h.) (defined
by Theorem I 3.2b), etc. We shall also make the convention that a,ll operators are
restricted to a fixed #™ (=0, 1, 2, ...).

The following theorem gives the strong convergence of the dressed nucleon fields
on dense domains in the Fock space #™ of » nucleons and arbitrarily many mesons
(this theorem is the correspondent of the one proved in I for the mesons: Theorem I 3.5).

Theorem 2.1. There exists a number A >0 such that for any |A| <A and all
h € Ly(R?) the following propositions hold :

i) s— lim b¥(W) = b% (W)

t-to

exist on a domain A which is dense in '™ and contains the set E(H?) of all entire
vectors®) for H2.9)

1) Furthermore, for all ® € #®,
bo(W)®=b,n)P=0,
and for any ¥ e #10 U #O .
b (W) TAY = s — lim b*(W') TAY = s — lim Q(t) b*(h) ¥

toto toto
= Qb (i) V.

For W=1Y£ one has the correctlly normalized physical one-nucleon states
b(W') Ry = TAb*(h) Qq with |b* (') Qol| = 1 whenever |k = 1.

117) (bi(h’))* = b;(h’) on A™ (= means complex conjugation). The operators 51‘(.) are
closable, we shall denote their closures by the same symbols and call them the asymptotic
physical nucleon creation and annihilation operators (or fields).

1) The Hamiltonian and the asymptotic fields satisfy the same commutation relations
as do the free Hamiltonian and the bare fields in the sense that

ehuﬁ Bi(k ) eitH b#(e+ttwk )

on 4™,

Remark 2.1. The set 4™ contains a certain subset B{) > & (H 2) (dense in H#'™)
of a,nalytlc vectors for (H + B)?, B = infimum over all 8 such that & + B =1 (B exists
since A is lower bounded by Theorem I 3.1). More details on 4™ will be given in the
course of the proof of Theorem 1.1 (after Lemma 2.4).

We shall now state the theorem on the commutation relations of the asymptotic
physical nucleon and meson fields and then devote the rest of the section to the proofs
and some remarks. Note that the commutation relations of the meson fields among
themselves have already been given in I, Theorem I 3.5, and shall not be repeated here.

8) An entire vector for an operator 4 in a Hilbert space is any vector @ such that > 7=, |[4" ¢l|/!!
st < « for all s > 0 (see e.g. [6]).
%)  See Remark 2.1.
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Theorem 2.2. For all f,g € L,(R3) there exist:

1) a number 0 <Ay <A such that for all |A| < A the following strong commutation
velations hold on a dense subset 4™ :

[6:(f), (&)1 =0=[B%(f"),8%(e)],  [Bx(F).02(e)] = (/.0).
One has &(H?2) < 4'™ < 4™ ;10)

1) a number 0 < A5 < such that for all |\| < A
[6:("), a%(e)] = 0 = [B%(f"), 3% (g)]

on 4™,

Proof of Theorem 2.1. We shall write the proof for the case of the creation operators
(the case of the annihilation operators being treated in a completely similar way).
We shall try to keep the proof short. More details can be found in [7].

To the notations for contractions between Wick monomials used in I (§3.1) we
shall have to add the following one. Let W be the basic Wick monomials we shall
have to deal with, of the operator form d*a*'b (where a*! stands for the product of ¢
consecutive a* operators) (W is defined more precisely in I (3.1)). We define V¢ W®

as the sum of all 7 terms one obtains by contracting the 2 annihilator in ¥ with any of
the 7 a* creators in W®,11)

Lemma 2.1. Let h € L,(R?),D,¥ € D™* N D(H,), o > %In2. Then the time deriva-
tive of L(t) = (D, b} (h') W) exists, is continuous and equal to

d % .
aL(t) = 1A(D, ' BB (h, 1) e~ 1B P), (2.1)
where
B(h,t)=A V%b*(e‘“‘” )+ A: V%F(Q)Tb*(e‘”‘” Y+ A: V;(I"(Q)Tb*(e“““’ ),

2.2)

I'(Q) being defined in I §3.1.1 (formula (3.7)) as the basic quantity which gives the dressing
transformation T = :expI'(Q):.

Proof of Lemma 2.1. The function (W ()@, B*(W) W(t) W), W(l) = eitHog~1tA jg
separately continuous differentiable with respect to £,#’ (as seen using Lemmata I 3.1,
13.2 and Theorem [ 3.1). m

19y For more details on Ay, A;, 4’™ see the proof of Theorem 2.2.
1y W js of the form (I(3.1)):

W(”=JX(9-’P1'“P1)W‘” (qif’l"'Pt)b*(Q‘jél PJ) (]Ij PJ)) blgydgip;: 4y

and

VW = 3 | )2 wlln) 12 ik = ko) 8y — ha = P @i 12 w2 )

b (ko (g - 3 #) (

i=1

a*(p;) ) b(k;)b(q)dk,dRydqgdp, - dp,.

1“‘,:1@.

J
7
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In the following we shall make estimates using the following dense subset of
Ly(R*): 2° ={f|f e Z2(R®); f =0 in a neighbourhood U, of the origin in the momentum

space R%},/2(R3) being Schwartz space of infinitely differentiable functions of compact
support.

Lemma 2.2. Assume h € 2°. There exists a number Ay > 0 such that for all |A| < A,
and any ® e H# ™ ;

1B (R;8) e NP2 Q|| < Ky (1 + [£]2) 71D, (2.3)

where B (h;t) is as in Lemma 2.1 and K, is some constant (dependent on (o), A, h but)
wmdependent of @, t. N, is the meson number operator.

Proof of Lemma 2.2. From the definition we have:

Bh;t) =BYVR; )+ S S BOELD( ) )

v=iz>1 7m=a,b

where
BUD(hst) = AVEb* (e k) ( (2.4)
BOCLD(30) = X VIS, ) K):

£}

B t) = X VHT(S, Jrb* (e ),

forallv>¢>1 (the terms S, ; are contributions of order v, with 7 meson creators, and
are defined in I §3.1). #'D has the operator form b*a, #@®¥+1.D the operator form
b*b*a*~1h and Z®@+1-D has the operator form b*a*a. For the proof of the decay
property (2.3) it is essential that each term is not a pure creation term but contains
one uncontracted annihilation operator (4 or 4) and a contraction of a b operator with
b*(e""*#’). This yields an integration in the kernel over a function oscillating in time,
which is then responsible for the decay (as shown for the similar case of the meson
operators in I, section 2).!2) To give a few more details let us pick up an example (this
simplifies the notation and gives the idea how to proceed in the general case).
Let us consider e.g. the term:

BOCDY = 3. Ve [(V$TV)rb*(e i i) : P,
Y exinm,

Its Friedrichs diagram !3) is:

(1)
——Z— -- 7 -»- -
(@) (o) /()

There is no decay in the case of adjusted Heisenberg picture bare nucleon fields, because
here pure creation terms arise. In fact these bare fields cannot converge, as discussed in the
introduction of I. Note that pure creation terms do not prevent the convergence in the case
in which the interaction has a space cut-off in it; the space cut-off gives namely an additional
integration (which is lost when translation invariance holds, due to the momentum-conserva-
tion §-function). Hence in the space cut-off case bare nucleon fields (and of course also the
meson fields) converge strongly (see Section 4). Plainly this is a common feature of all space
cut-off models ([8], [9], [10], [11], [12], [13]).

13)  Definitions are, e.g., in [14], [15].

J

12)
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where the solid lines are nucleon lines, the dotted lines are meson lines, @ are the
vertices. There are 4 external lines, with momenta which we call ¢,, ¢,, resp. p; (corre-
sponding to creation of nucleonsresp. mesons) (j=1...n+1;l=1...n;i=1,...,m +1)
and # (corresponding to annihilation of a nucleon). Set q=(q;,...,9,+1)
P=(p1,.-»Pms1). It can easily be seen that (B@CD(p 1) P)rrlimiD(q . p) is of the
form A(m+1)7V2(n + 1)712 300 S8, ST x(g) wlgy) V2 @Gy 0(q;p), where
x(.) is the smooth cut- off function (xs of I §2) and the @, ,, are, as functions of
q; + g, + p;, convolutions of the function

x"2@) x 2 (p) x(.) w() "2 W™ (q4, G, s phy)

(A standing for omission of the corresponding momenta) and of a function

gl 01 p) =7 Ox() W () ()X 2 (@) X2 (P) @l 9 P1)

where ¢(.,q,,;) is a product of everywhere positive energy denominators times
(w(. —p) —w(.) + u(p))~! (the integration variable (.) in the convolution is #).

Hence we have expressions of the same structure as I (2.20) and taking the Fourier
transform with respect to the external variable ¢; we obtain:

| B DD (h; 1) e Nt/ 2)1n2 D|| < K[| |l 1P1, (2.5)
where K. » 1s a constant, independent of ¢, @ and, setting go(.) =g,(.) for £ =0,

1€,/ = sup | f dvet*iv et gy (v, g, p)) |

the sup being taken over all x, € R3, |¢,| < o, | ;| < 0. As a function of x, the integrand
is a smooth solution of the Klein-Gordon equation. But e.g. from [16] we have then, for
all £#0:

sup |8, (x,, g, p)| < K3 |72 [ dx, Fle), 01,80,
*j
where K, is independent of ,q,,$; and

F(x, qus) =| | dv ™ (o) + 1) w(v) go(v, 91, 50).

Split now above integral over #; in one over |x,] <8 and one over |x;| > 8, for some
8 > 0. Estimate the second one after 4 times partial integrations with respect to ||
(the boundary terms vanish since 4 € 29) as

4

[ {a|v|4“‘"(”) +1) w(v) £o(2, q.,m)]} .

< ile—“

1:le < K4(1 + |£]2)7! follows then observing that the integrand in {:--} is bounded
uniformly over the whole range of the variables (since there w(v + ¢;) — w(v + ¢, + p;)
+ () > Qo) — w(a) > 0, with 2(0) = [(m, +m,)? + o?]1/2).

This and (2.5) prove then

|B@CD ;1) e Nall D102 B < K@OSD(1  [£]42)~1) D) (2.6)

where K@G:2) is independent of ¢, ®.
For the reason mentioned before each term ZM®+1.1 can be estimated in the
same way. The control over 3, ; KM +1.D s obtained for |A| small enough, as in [3],
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since K®+*1:D can be obtained essentially by estimating the kernel of ZF™w+1.1
and some of its derivatives, using the condition % e £°. This proves Lemma 2.2.
For more details we refer to [7]. We would also like to stress that another proof of this
Lemma is contained in the very interesting Thesis by J. Frohlich [17] (proof of Theorem
9,§3.3). m

Lemma 2.3. Let AP ={¥ eH™| S0, (/i) |H'W|| < w} be the set of all analytzc
vectors of H with radius of convergence not smaller than o, o> 0. Then for any given

8 > 0 there exist numbers Ay(8) >0 and oy = ag(A,8) > 0 such that, for all [A| < Ay(8),
M o Dimstled andfor any Ve AP, he P°:
1B (1) e B < KI(1 + [£3)7, (2.7)

where K’ is a constant (independent of ?).

Remark 2.2. The set AY) is dense in #'™, since it contains in particular all entire
vectors for the self-adjoint operator A (restrlcted to ™).

Proof of Lemma 2.3. Following [6] we shall use the following notation, for any
number z, operator 4, vector y:

) |z[l
el || = Z = 1A .
1=0
It is easily seen, using Lemma 2.2, that it suffices to prove

|[Nal 1/ DIn2+81 5| “gcxolﬁ+ Blyl, (2.8)

for any y € AL) and some B> 0. We shall now give a short proof of (2.8). (For more
details see [7]. An independent proof follows from [17] (§1.2, Corollary 1’ after Lemma
4)). We shall use following Theorem of Nelson [6] (Theorem 1):

Let A, B opérators in some Hilbert space. Suppose C*(4) < C*(B) (using the
definition C*(T) = N, D(TY) for any operator 7).
Suppose, for all W e C®(A4):

IB¥|| < c||AP], ¢<oo
llad BY(4) Pl < ¢yl AP,

where ad B!'(4) is defined recursively by ad B!(4) =[B, 4], ad B'*!(4) =[B,ad B} (4)]
and ¢, ¢, are constants.

Let g(r) = >7.; (c;/i!) 7!, where the right-hand side is assumed to converge for all
<7y, 7,>0.

Let

s’

Hs')=¢ f (1 —g(r)' dr.

0
Then, for all W e C*(A4),
[le!sIBI || < |lelresniallig|,
We shall apply this theorem for B = N,, A = H + B, where 8 is such®) that 4 + 8> 1.
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One has the simple first order estimate (Lemma I 2.1 and Lemma I 3.1):
INxI| < Koll(H + B xll,
where Ko = 2(m7Y)[1 + |B| + (m,/2) + (2/m,)(2n|A|L)? + ||M]|]]. L is defined in Lemma
I 2.1 and is independent of A.[M|| is the norm of the restriction to #*™ of the total
mass renormalization. We remark that C=(H) <C®(N,), as a consequence of
D(H" = D(H}), a property which can be proved using estimates of H! in terms of

c(Ho + d)},¢;,d, being constants (these estimates can be proved e.g. as in [18]).
For x e A = C*(H) we can therefore compute

ad NYH + B)x = NV¢ + (1)1 V) x.
Hence:

lad NA(H + B)xl| < &ll(H + B)
with

e, =8n|A|L(1 + Kp)'2 = K",
Then, applying Nelson'’s theorem, (2.8) follows when s’ < () In2 + 8 and #(s’) < «. For
the latter it suffices to show K” < 1/(¢®/2 — 1). This is certainly verified for given 8
when A is sufficiently small and K, is finite for all bounded |A|. A look at the definition

of Ky shows that this is indeed the case (Theorem I 3.1). Setting s’ = 4In2 + & and
g = t(%In2 + 8) we have then (2.8) and the Lemma 2.3 is proved. m

Remark 2.3. The proof of Lemma 2.3 shows in particular that for any given
8 >0 (and in fact also for 8 = 0) and |A| sufficiently small the inequality (2.8) holds
for some ay(6) >0, Band all y € QI;"J(B) This implies

QI( ) c D(eN,,[(i,’Z)ln2+5]) c D(n),(l/2)ln2+5 c D(n);(1/2)ln2
oo <

Furthermore, under above conditions, one has the uniform bound in ¢:

||eNal(1/2)1n2+3) e—-ttﬁxu < “eao(é)[ﬁ+ﬁ|x“_ (2.9)

Remark2.4. (2.9) together with Theorem I 3.2 a shows that, for all y € AP )

163 (1) Il < K™ 1A, _ (2.10)

with K” independent of 4 and ¢.14)

In order to prove the strong continuity in ¢ of the operator AR (h;t) e we
introduce the following domain:

B = {cbe,;ﬂn

© i
z_f (H+ ) d| < 0}, (2.11)
1=0

where o, B are as before. B is dense in #™ and one has

Ung,(H?) = BE) <UL,

14)  The estimate (2.10) follows also from the already quoted Corollary 1" after Lemma 4 (§1.2)

of [17]. See Theorem 9 (§3.3) of [17] and our Remark 2.5 below.
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Lemma 2.4. Let 8, oy(8) be as in Lemma 2.3. Then for all ¥ € B s, and he P°
one has:

bE(h) W = B*(W) ¥ + i) f dt VAR ¢y AP, (2.12)
y 0

where the integral on the right-hand side is to be understood in the strong sense.

Proof: Lemma 2.3 shows that the norm of the integrand is bounded by const.
(14 |¢3/2)71. The strong continuity of the integrand is proved using Lemmata 2.2,
2.3 and estimating separately the strong continuity of the bounded operator
B(h;t') e Nall/DIn2+8] g of Nall/DI2+314it'A The former follows by an estimate
like the one in Lemma 2.2 together with Lebesgue’s dominated convergence theorem,
the latter is proved using Lemma 2.3. The equation (2.12) is then a consequence of
Lemma2.1l.m

After these preliminary lemmata the proofs of the single points of the Theorem
2.1 follow now easily:.

i) Require A to satisfy 0 < < A,, A, being such that 5%#’) are well defined
(by Theorem I 3.2). Moreover fixe 8 > 0 and choose /1 such that for all |A| < 4:

K"<(V2-1)"!

(K" is defined in the proof of Lemma 2.3). Fixe now A such that |A| < 4. Let 7(A) be
any number in the interval I () = (0,In[1 + (K")~! — 1In2]) and define

oo(7) =£(3In2 + 7(A)),
with #(.) as in the proof of Lemma 2.3. Define furthermore
A™ = Ureray BEry, With B ., as in (2.11)

Note that, in particular, 4® < D™ for all & > 4In2 and &(H?) = B 7y Lemma
2.3 gives then the strong convergence of the right-hand side of (2.12) for { — 4o,
which proves 1), for & € 2°. The extension to all z € L,(R?) follows from the uniform
bound (2.10).

ii), iii), iv) follow also easily, from i) and estimates of I (Theorem I 3.2b, Theorem
I 3.2a and Lemmata I 2.1, T 3.1). This concludes the proof of Theorem 2.1. m

Remark 2.5. Theorem 2.1 as it stands is limited to the case with ultraviolet cut-off
o in the interaction. From its proof we see that it remains true with small modifications
once suitable higher order estimates of N! in terms of (H, + B,)" (as those involved in
Lemma 2.3) are proved to hold also for the case o = « (with the usual restriction on all
nucleon momenta to be in a ball of finite radius R in momentum space: see[3], [17], [1]).
These estimates have now been proved (in this and related models) by J. Fréhlich [17]
(§1.2, Corollary 1, after Lemma 4). For the correspondent application to the extension
of our convergence result Theorem 2.1, i), we refer to the same reference [17] (§3.3,

Theorem 9).

Proof of Theorem 2.2

i) Choose 0 < A] <A such that, for all |A| <A}, one has K" <1. Fixe now
A, |A| < A}. The domain 4’™ can then be chosenas 4'™ = ¢, By, Where

I’ = (3In2,In[1 + (K")~! — }1n2)).
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Note that in particular &(H?) < 4’™ < D™ for all > In2. We can now proceed
similarly as in the proof of the meson-meson commutation relations (Theorems I 2.1
and I 3.5). We have that |[5% (4) 5% (¢’) V|| (where & stands for f or f) is uniformly bounded
in ¢ for any W e 4’™, because IIB*( Fitw p7) B# (gFitw o) g~Naln2|| ang ||eNaln2 o~itA Y|
are separately uniformly bounded in ¢, by Theorem I 3.2a and (2.9). Then it follows
for ®ed™: (b% (W) *®,b*(¢') W) < E||®|, with E independent of #,®, and therefore
bi(¢’) maps ¥ into the domaln of b%(#’). Then we can compute (P [b# 1), b%(2")1W)
as limits of (®,[6¥(7"),b%(¢")]P). The cases where both 4 stand for creation . or both for
annihilation are trivial (I 3.19a). In the remalmng case we have that [b,(f7), 5%( 91k 4
is the sum of the t1me~1ndependent term I = (f,g") ¥, of the term II = e“”@e‘“” s
with Z = [b(e!™ f)_[(Q)*, ['(Q)_b*(e~**g")], and of terms which have the same good
form as the terms Z™M¢ *1.0(};¢) we discussed for the proof of Lemma 2.2, Using the
same method we can show that these terms vanish for |{| — «. For the same reason all
graphs of £ with more than two external lines give a vanishing contribution to ||I7].
It is then not difficult to verify that I 4+ IT — (f,g) ¥ strongly as ¢ — +w (see [7] for
details), which proves i). The proof of ii) is similar. The corresponding uniform bound
is obtained!?) by (2.10) and (2.9) and then use is made of the fact that

[b*(f’) 3(0)] ¥ = gttﬁvggfe—uﬁ '
where
A = aleg) s T(Q) TH(e )

contains two contractions involving operators smeared with oscillating functions. m

3. Asymptotic decomposition of H. Connection between
asymptotic states and fields. The S -matrix

3.1. Asymptotic decomposition of H.

We can prove the asymptotic decomposition of A along the lines of [9], [10],
exploiting the fact that both the commutation relations between all fields and with
the unitary group generated by H hold on the subset &(H?) of D(H), dense in ™,
Let V™ be the closed linear spans of all vectors which are annihilated by all b, (%),
he L,(R%) and by all @, (f), f € L,(R?). The V™ are subspaces of #™ which reduce
Proceeding then as in [9], [10], using the commutation relations, Theorem 2.1.iii) and
Theorem 2.2 on &(H?) (instead of the domains of [9], [10]) we can construct for any
¢o € V™ the asymptotic symmetric Fock spaces #{(¢,), with ¢, as cyclic vector,
namely () = @m _o ™ (do), where ™ (hy) =closed linear hull of
TT0, 0% TI™, aX(f®) qSO for all f®, gD e L,(R}), m=0,1,2,... ([[°=1).

Clearly o# ("’(qS ) =HPM(dy) @ AP (d), where H ””(")(qb ) = H 10 (),
HO (o) = HD (o). All these spaces reduce H. For ¢ = £2, we get the asymptotic Fock
spaces H#'{ (§2,) for physical nucleons and mesons, which reduce H in such a way
that H| P = Ho 21 Q H? +HP ® 1 (~ stands for unitarily equivalent). In
particular the spectrum of A in #™, # > 0 has a continuum containing [nm,, «). In
HO it consists of course of the simple isolated eigenvalue 0 and the absolutely con-
tinuous part [m,, ©). Defining ™™ = closure of g cyom#{"™ ($o), we can prove
that @2_o L™ = ™.

15)  For details see [7].
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This is done by an adaptation of the arguments in [8], [9], using essentially the
fact that H is bounded from below in #°™, all commutation relations hold for & (H?)
and one has, for any ¥ e £(H?), the t-umform estimate (2.10) and the similar one for
aj(n) (I (2.16)).16

It follows then in particular the following tensorial decomposition of A (on H#™):
Az HQIT1+1® H|y0(n)

3.2 Connections between asymptotic states, fields and the S-matrix.

We shall briefly give some connections between the asymptotic states constructed
in I through the wave operators and the asymptotic fields constructed in Section 2
above. It will be convenient for this to introduce the following unified notation for all
fields.

Let 7 be a label taking the values a (for mesons) and b (for nucleons). Set, for any
B € Ly(R3), A = (yW)~12 0 with y® = =172 @ =] Define then

b (v 12 h®)  for n=b
i

M # (J(M) =

— (ltH C(p# (e¢i: Qm k"')) gmitH

with
Con% () = B#(.) forn=2»5
a*(.) forn=a,
Qm(y = w(.) forn=25>
w(.) forn=a.

Thus ¢{P #(-) are the time ¢ Heisenberg picture’s adjusted creators and annihilators
for dressed b and a particles. Let finally

A™ = A forn =a
T\ DHLY? (NA#™) form=1b
n(n) — (n), forn==5
D —A':anD Y] s,y - | 0F() forn=0
D™ = o) = a*(.) foryp=a
7 D'® = U D™« for n=a % 7
a>(1/2)Iin2

Theorem 2.1, Theorem 2.2 and Theorem I 3.5 give the properties of the strong limits
e ().

Theorem 3.1. Let A be as in Theorem 2.1 (for n = b) vesp. Theovem I 3.5 (for n = a)
andlet O be any vector in DYP. Let furthermore (as before and Theorem I 3.4)

Q(f) = ¢ T A 1tHo,

16)  For details see [7]. (2.10) gives the basis for the needed extension of Lemma 5 of [8] to the case
of our unbounded operators.
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Then for any h'P € L,(R3):

1) s— lim &™*(AM) Q(t) ® = E* (M) Q*

toto
© Moreover (!~2i)*68_,’7’*.{~2i = c*(AP) on D,
2) For any K™ € L,(R%), n,=4a,b;1=1,2,.

s — lim c(n)t(h(n)) I c("?l)*(k('h)) Qo s c(n)*(k(n)) H C(m)*(k(m)) QG

tot 1

M oreover

EP*(hM)s — lim 1—[ EMO* () Qg = O cOD*(RD)TT cCm*(h{m) Q,

totoo 1

(+ (k(’”) _Q+ H g(n,)*(h(m))g

This gives in particular the action of the asymptotic physical fields CP* on scattering
states of the form

|- B>y = s — lim [T 8m%(im) Q. (3.1)

toto |1

One has 0P = QEH™, if O denotes the closed linear span of all scattering states of the
form (3.1) with exactly n indices v, equal to b.

3) The scattering operator S is defined'?) (asin I) by S = (f)*)*f)‘. It is a contraction
operator') mapping ™ into H'™, extending to all # and commuting with e'*Ho,
Its matrix elements between bare states give the amplitude for scattering from the corre-
spondent in and out physical asymptotic states (in ™).

In particular the amplitude for scattering from an incoming state

lg(l)...g(n);f(1>...f(m) % e ﬁ bx(g'W) ﬁ a*(fD) 2,
Jj=1 i=1

to an outgoing state |FV... g™ ; fO . fm = (all distributions of momenta g, ..., f
being normalized functions of L,(R3)) is

(B0 g fO ... fim Sarlghee g™ D foy )
- (§+ I;I b* () l:[ a*(f‘”) Q, 0 I;I b* () I:I a*(f®) Qo)
- (H b*EY) T1 a* () Q,,5 H b* (gD 1:1 a*(f®) -Qo)-
Remark 3.1. This is an improvement over the correspondent Theorem in I. Except

for $ =1 in #© we expect S to be a nontrivial map (0, 1) from ™ into ™ for
all # > 0. In section 4 we shall give preliminary remarks to this.

7)  In the channel in which all physical nucleons and mesons are free.
18)  For remarks on the unitarity of S (equivalent with the equality of the ranges of G+ and §-)
and asymptotic completeness see I.
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Proof of Theorem 3.1. 1) has already been proved in I for the case n = a. The case
1 = b is proved similarly, using the construction of section 3.1. 2) and 3) follow then
easily. m

4. Some remarks on the meson-nucleon scattering

We shall give a preliminary discussion of the scattering of one physical nucleon
and one meson, from an asymptotic situation at £ = —oo, described by

A fD > _ = bR (D) (D) Q,
to an asymptotic situation at ¢ = 4o, described by [A®;f@® > | = b¥(K'®)a*(f@) Q,,
1BD) = fP||=1, i=1,2. The study of the S-matrix element for the transition,

S fO; B @) has been already started in I, where we derived reduction formulae
and in particular the formula:

S fO; pD F@Y = (D, D) (D @) 4 SD 4 SAD,
with

+o0 +00 —®
§(l) = 'l f dtg F“)(tz), §(II) — f dtz f dtl F(")(tZ:tl)
. —® 0

FOf) = (a*(fD) TAW*(hD) Qy, e Bof*(fP; 1) TA* (e hP) Q)

(*(f;t) = o/*(f,) is the bounded extension to #™ of the bounded, densely defined
operator A [V,a*(e""#f)]) and

FUD(4, 1) = (o *(fD;8,) TAb* (19 hV) Qy, el t0R o7 5 (7. 1)
TAb*(e"2% h®) Q).

We first prove that it is possible to expand the integrands F®(,), FUV(4,,¢))
for finite times |¢,|, |¢,| < o into power series in A, absolutely convergent for |A| suffi-
ciently small, in such a way that each term contains only bare quantities and has a
dependence on ¢ given entirely in terms of factors of the form ¢!*?. Let in fact AY(t,)
be the term of order 7 (in A) in the Dyson expansion of ¢ 2 given by Lemmal 3.2,
convergent in the B(D™:E; D(™:¥)-topology, 0 < B < y.

Let moreover B*®(4')£2, be the term of order & in the expansion of

B*(hol) Qo = TAb*(h) Qo

in powers of A.
This expansion is strongly convergent for |A| sufficiently small (Lemma I 3.1).
Using a*(f) e B(D™:*; DM) 0 <o <a, *(g;t) € B(A#™; #™) for any
/., & € L,(R®) and Schwartz inequalities, we can show easily that the right-hand sides
of

FO(L) = 5 X FOO()
l=2
and

«©
F(")(tz,tl) = z L F(Il)(l)(tzltl)
1=2
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are absolutely convergent for |A| sufficiently small. Here
FOO@Yy= S (AD(L,) a*(fD) B*® (R D) Q)

Jok,i
Jtk=1-1-i
SH[ D) B0 D) Qy),
FabO, t) = z (Am(tz)ﬂ*(f(”,t;) PR (gl k'“’) Q,,
k N
j+k .=

M*(f(Z) ; tz) B*(!')(e-—itzw k’(2)) QO)

Thus before integration over times the terms giving the scattering amplitude are
convergent power series in A and can be computed one by one. The study of the resulting
series for the scattering amplitude itself requires of course special care.

The non-triviality of the scattering would follow from a strong control on the
series as a whole.’®) As a preliminary remark in this direction we shall show, using
methods of Hgegh-Krohn [10], that, at least in the case in which the interaction has a
space cut-off, the expansions of the asymptotic meson fields and of the scattering
amplitudes in powers of the coupling constant A are (strong) asymptotic series (for
|A| = 0), for which the (strong) Borel transform exists, at least for |A| sufficiently
small.2%) In particular the non-triviality of the scattering is established.

Let AV (g) be the space cut-off interaction, defined from AV in the usual way (see
e.g. [19], [15]), with a space cut-off function g(x), g(.) e Z (R?. Let H(g) be the
correspondent Hamiltonian, for which we have of course the same estimates asfor H. In
this case all the asymptotic fields are obtained as strong limits of adjusted Heisenberg
plcture bare fields ¢{M* (k) = eitA@ c# (712 ~itA@) [ an entirely similar way as
in Theorem I 3.4 one can prove the convergence in the B(D®:*; D™;if)-topology,
0 < & < B, of the Dyson-Schwinger perturbation series for ¢{R#(%). In particular (as
in I (3.27)):

L
a¥ (¥ =s—lm > XID(g;4) VP,

Lo 1=0

for all ¥ € C*(NV,), where I¥(g;#) are independent of A, I‘(g;¢) = a* (k) and X' V(g ;1)
for/=1, 2,3, ...1is the sum of all the terms of order / (in the coupling constant) one
can extract from

4 J. at, f dtz o f— an [V'(4).[V'(ti_y), ... [V7(@), a* (R)] ... ],
0 0 0

%) Of course the strongest one would be the convergence of the series. But also its asymptotic
character would suffice, at least for |A| sufficiently small (since term by term S is non-trivial).

20)  We call a (formal) power series expansion » A' 4, of 4, where 4, A, are operators defined on a
dense domain D of a Hilbert space #, strong asymptotic to 4 (on D, for A - 0) when
(A = 27-0 X4 VIl < [AI"*1C sy (¥), 7 > 0, for some C,.,(¥) independent of A, all |A] >0
sufficiently sma.ll and all ¥ € D. Similarly we call strong Borel transform of a series > A'4,on D
the series >, (A'/l!) 4,, whenever the latter is strongly convergent on D for all |A| > 0 sufficiently
small. If the 4, A, are constants we have the usual concept of asymptotic series resp. Borel
transform (restricted to real A), see e.g. [21]. Note that the above adjective ‘strong’ refers to
the operator topology and its meaning should not be confused with the one in B. Simon’s
‘strong asymptotic series’ [21].
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with V"(g) = AV (g) + / M(g), V"(t) = e*HoV"(g) e *Ho, Moreover one can show, adapting
methods of [10], that there exists a dense subset 2,, of L,(R’) and a constant 4, >0
such that, forall 2 e 9,, |A| < 4,, one has:

D% ) Wil < CoCI(N, + V2. (N, + 1) 2 W), S

for some constants Cy, C, (independent of J), I¥(g; +) ¥ being defined as the strong
limit of 7W(g;#)¥ for ¢t — +oo. In the following we shall always make use of the fact
that in the present space cut-off case it is no restriction of generality to assume, in the
discussion of scattering quantities, that the Hamiltonian H(g) is simply Ho + AV (g)
instead of H, + AV (g) + M(g). Assume now ¥ e C*(H,).

Denote agaln by IV(g;4x), a¥,(h) the quantities defined as before, but with
M (g) replaced in their definitions by the operator multiplication by 0. We claim that
the strong limits for { — 4o of af,(h) ¥ (which exist, as shown by the same methods
as for Theorem I 3.5) admit the power series expansions

i) ¥=s—lim af () ¥= 2 NIP(g:40) W+ R, (\(h;+0) P, (4.2)

ke toto 1=0
with R ,(h;+0)=0and, forr=1, 2,3, .

tr_1 tr

too t

[V”(T)’ [V”(tr)’ AR '[V”(tl)» ﬂ#(h)] . .] g oy G—hﬁ(g) .

This holds because the formal power series expansion can be justified here, using the
information on the domains of the various operators involved (in particular estimates
involving powers of N,, H(g) and H,) and (4.1):

||R (,,)(h +0) ¥ < |/\|"+IC CH'I Sup (N, +7+ ].)”2 (AN, + l)“ze"i"&(g)'f'HQ
< |A|*C, O i1y (),

(¢¢r+1y TeESp. C,, C4 being constants, independent of A resp. A, ¥, 7).

The same estimate shows moreover that the power series Sieo ALID(h; +o0) is
asymptotic (in the strong sense??) to the asymptotic fields af . (k), on C*(H,), for
A — 0 along reals.

We have also an immediate application for the meson-nucleon S-matrix element,
which in this space cut-off case is simply

Solh D, fD;hD, fD) = (a_(fD) b*(hD) 820, af  (fP) 0* () £p). (4.3)

Assuming f®, =1, 2 in the dense subset &, of L,(R’), choosing again Al <4,
and inserting the asymptotic expansion (4.2) 1nto (4.3) we obtain a power series expan—
sion > Als; in the coupling constant A (s, independent of A) which is asymptotic
to the S-matrix element (4.3) for A — 0 along reals.

From the same estimates we have also the existence, for |A| sufficiently small,
of the strong Borel transform??), > (A1) IP(h;+x) ¥ of the asymptotic meson
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fields. This implies the existence of the Borel transform > 2, (A/l!) s,, for |A| sufficiently
small, of the meson-nucleon S-matrix elements.2!)

In the same way one can prove that all the similar expansions in powers of the
coupling constant for the S-matrix elements between states with finitely many nucleons
and mesons are asymptotic series (for |A| sufficiently small and distributions of momenta
in a dense set of L,(R?)). The S-matrix is non-trivial. Moreover its asymptotic series
have Borel transforms (for |A| sufficiently small).??)

This concludes our discussion of the scattering in Eckmann’s model. The methods
can be applied, with due modifications, to other models as well, including Nelson’s
model and Lee-type models. For the discussions of many other problems (like e.g.
existence of Green’s functions, scattering theory along the lines of [22], infrared
problems) we refer to the very interesting work by J. Frohlich [17].
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