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Scattering Theory in a Model of Quantum Fields II
by Sergio Albeverio1)2)

Department of Physics, Joseph Henry Laboratories,
Princeton University, Princeton, N.J. 08540

(28. II. 72)

Abstract. We pursue the study of the scattering theory in Nelson's model with relativistic
kinematics ('Eckmann's model'). For the choice of mass renormalization yielding a renormalized
Hamiltonian with the relativistic single-particle spectrum, we construct physical asymptotic
nucléon fields as strong limits of dressed fields on dense sets of states with finitely many nucléons
and arbitrarily many mesons. The commutation relations of the asymptotic fields among themselves,
with the asymptotic meson fields and with the Hamiltonian are derived, as well as the asymptotic
decomposition of the latter and the relation with the wave operators. An expression for the S-matrix
is also given, which is then discussed for the case of the meson-nucleon scattering.

1. Introduction

In a previous investigation [1] (to which we shall always refer in this paper as I)
we have constructed some basic quantities for the study of the scattering in two
closely related models of quantum field theory, which had been previously renormalized
and discussed by J. P. Eckmann [2], [3]. The present paper is based on I and uses
everywhere the same notations and definitions. Let us recall briefly the definitions and
results of I we shall use most.3) There are two kinds of 'bare particles' in the model,
'nucléons' (or 'b particles') and 'mesons' (or 'a particles'). Both nucléons and mesons
are assumed to have strictly positive masses mB, ma > 0, to have spin 0 and Bose
statistics, and to move in 3-space dimensions.4) The Fock space X is the tensor product
of the individual Fock spaces for the two kinds of particles. Since the number of nucléons
is conserved by the interaction, the model splits into dynamically independent sectors
X<n) ©„„o 3ff(n,m) with fixed number « of nucléons (« 0, 1, 2,...) and any number
of mesons. The subspace X(n,m) of the states with exactly « nucléons and m mesons is
realized as the space T._,s)(R3(n+m)) of square integrable functions which are separately
symmetric in their n nucléon arguments momenta and in their m meson arguments
(momenta). Let ||, || be the scalar product resp. norm in J.?'.

The free kinetic energy operator is 770 77&0 + H(0b), where

77<0a)= j p(k)a*(k)a(k)dk,

Supported by the Swiss National Foundation (Forschungsstipendium of the Eidgenössische
Technische Hochschule, Zürich).
Present address : Institute of Mathematics, University of Oslo, Blindem, Oslo 3, Norway.
For more details we refer to I (even if not stated every time explicitly).
For remarks to these assumptions see I.
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H<0b) j w(k)b*(k)b(k)dk,

p.(k) (m2+\k\2)1'2,

co(k) (m2+\k\2)1'2,

a*(k), b*(k) being the usual formal creation-annihilation operators for a, respectively b,

particles (always in this paper the symbol # attached to any operator c stands for the
star * or its omission : c* c* or c).

The formal euclidean invariant interaction is XV X(V + Ve), where À is a real
number ('coupling constant') and

Ve =\ <o(kx)~1'2 co(k2)~112 p(k3)~ll28(kx -k2 + k3) b*(k.) b(k2) a*(k3) dk, dk2dk3.

(1.1)

V is the formal adjoint of Ve.
Because of its ultraviolet divergence, Ve is not a well-defined operator in any X<n),

« > 0 and the renormalization is done by introduction of an ultraviolet cut-off a in all
momenta in the interaction and a suitable mass counter term Jt'a.

In I we discussed the possible choices of Jt'„. In the present paper we continue the
study initiated in §3 of I of the 'full model' with mass renormalization Jta Ma
chosen in such a way that it compensates, in a suitable resolvent limit, the ultraviolet
divergence of Va for a -> oo and, at the same time, determines the energy dependence
on the momentum k of any physical nucléons associated with the Hamiltonian to be
the relativistic one (co(k)) (so that bare mass equal physical mass, if we take the
terminology of relativistic theories). This choice of mass renormalization is given explicitly
([3], I) as a power series Ma(X) 2™_,, X2k Mo2k in À2, convergent for |A| sufficiently
small. The correspondent renormalized Hamiltonian Ha H0 + XVa + Ma(X) is, for
any a < oo, self-adjoint on the domain D(H0) of 770 and bounded from below in each
X(n). Moreover, by construction, 77a acts as the free-energy operator 770 on states
with at most one nucléon, in the sense that Ha(TaAJ (TaAa) H0 on

(jf<1-°>UJr(0))n7)(770),

for a suitable invertible operator (TaAJ (Ta is the dressing transformation defined by
(3.8) of I and A a is the amplitude renormalization defined by (3.9) of I : see also Theorem
13.1.5) T0Aa acts as the identity in X(0).) This solves the 'one-body problem' for the
nucléons and mesons.6) The dressing operator Ta is itself a convergent power series
in A, given in [3] and I.

In I we introduced accordingly creation-annihilation operators for (dressed bare)
mesons and dressed nucléons.

We shall use the notations Theorem Ix, Lemma Iy, formula I(z), etc., for Theorem x in I,
Lemma y in I, formula (z) in I, etc.
If there are no bound states for the Hamiltonian in the center of mass system (e.g. for |A[
sufficiently small) (besides of course the vacuum, the physical one nucléon and the one meson
states), then only physical particles with the relativistic energy-momentum dependence would
be associated with the Hamiltonian. In any case the particular choice of mass renormalization
can be looked upon as a tentative to mimic as far as possible a relativistic situation (the
additional bound states would not necessarily have the relativistic energy-momentum
dependence).
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Their general form is :

B*(h'0) b*(h'a) + b*(K), (1.2)

where b*(.) is a 'cloud term' which creates one bare nucléon and infinitely many
mesons. The test-function h'a(.) is obtained from an arbitrary 7_2(R3)-function h(.)
with 7.2-norm 1 by multiplication with an 'amplitude or field-strength renormalization'
Va'112-

h'a(k) h(k). v~ll2(k) for all keR3.

(A a acts as multiplication by v~l,2(. on one nucléon functions.) va is given in [3] and I
((3.9), (3.9')) as a power series in A2, convergent for |A| sufficiently small. The
introduction of h'a in (1.2) makes that the physical (dressed) one-nucleon states

B*(h'jQn=TaA„b*(h)Qn,
Q0 being the vacuum, have norm 1, as the correspondent bare ones. In I (§3.1.1) we
have shown that B*(h'„) is a linear operator defined on a dense set

£>'°° IJ DM-X
a>(l/2)ln2

of states 0W in X(n), the norm of whose components with high numbers m of mesons
decreases exponentially: [|ç?><n-m>|| 0(e~xm), x > iln2, m -> oo. We recall the definition

£>(«),« s CQln) ejtf>l.n)\ sup e°»»jj0O.m)|| < qqJ

Moreover (I, §3.1.1),

B*(h'J e93(_D<">-a;7)<''+1>-a'),

for all a > iln2, 0 < a' < a — -|ln2, where we denote in general by ©(X, Y) the set of
all bounded operators between Banach spaces X, Y with their respective norms.

In particular the « dressed nucléons, m mesons states

ff m

y\b*(k») n«*(/(i))^o
j=i t-i

can be formed, for any n, m 0, 1,2, hu), fa) e L2(R3) (the prime ' and the label a
associated simultaneously to an L2-function denote always multiplication by the
amplitude renormalization v~i,2(.): h'au' v"172/^). TaAa maps the bare states
Y[jb*(hu'>) YI, a*(fU))Q0 into these correspondent dressed states:

TaAa n b*(h<») n a*(f«1Q0=n B*(h'j») n «*(/(i))ß0-
i t j i

The wave operators Q% in Xw exist as the partial isometric extensions to X(B) of
the strong limits (in the ^'"'-topology) of the operators Qa(t) eim" TaA„e~itHo on
D'w. They^have been shown (Theorem 13.4) to have the usual properties of wave
operators ß**_Q* 1,_Q^_Q^* P+, where P± are the projectors on the ranges
Ri Q+X,andeit6"Q^ QiettHô.

The Heisenberg picture adjusted dressed fields
S* t(h'J euS- B*(e*it0>ho) e~lt"°

and

«*,(/) =eltS° a*(eTi^f)e-it&"
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(— going with *) have also been shown to be defined on D'(n> resp. (Jß>o DM-ß and to
belong to »(T)00'"; D<»±i>.«') resp. %(Dw-ß; Dw-ß') for any 0 < a < a - iln2,
0 < ß' < ß. Since

n k.t(h'au)) n âi,(nQ0=Qa(t) n **(/>a)) n «*(/(i))ß0,
j i J '

the strong convergence of Qa(t) implies the strong convergence of the time dependent
states

j I

to

|Ä(1>... Â<"> ;/<».../««> >± =Q± Y\b*(h<-») yi «*(/«>) Q0.
J i

We also proved the strong convergence of the fields «*,,(/) in this model,7) derived
their asymptotic properties and extended finally all the results to the case without
cut-off. In this paper we first show (section 2) that the dressed nucléon fields b*it(h'J
also converge strongly as t -> ±oo on dense domains, for all test functions h in L2(R3).

As described in the introduction of I, especially in relation with the opposite case
of the space cut-off models, only the dressed fields b*t(ha) and not the bare ones can give
strong convergence (because of the translation invariance of the model and the related
persistent effects by which the nucléon 'gets dressed'). The creation operators for
dressed nucléons create, as described above, infinitely many mesons and are given by
convergent power series in A. Although they are not bounded even after multiplication
by inverse powers of 770 and/or the number operator N, by suitable analytic domination
arguments we get control on the relevant power series for the time derivative of the
adjusted Heisenberg picture dressed fields and in this way we show the strong
convergence to asymptotic physical nucléon fields and establish the free commutation
relations of these fields among themselves and with the meson fields as well as with
the unitary time translation group generated by the Hamiltonian. Whereas the
interacting dressed nucléon and meson fields do not satisfy canonical commutation
relations (the commutators are in general not even c-numbers and there is a field-
strength renormalization) the asymptotic fields do have the canonical commutation
relations of free fields. Remarks on the case without cut-off are also given.

In Section 3 we derive an asymptotic decomposition of the Hamiltonian, establish
the relations between asymptotic fields, states and wave operators and give an expression

for the S-matrix.
In Section 4 we give a preliminary discussion of the scattering between a physical

nucléon and meson, including an asymptotic series expansion in powers of the coupling
constant for the asymptotic meson fields and S-matrix elements.

2. Strong convergence of dressed fields to asymptotic physical fields

Since (except for a few remarks) we shall always keep the ultra-violet cut-off
0 < a < oo fixed, we shall drop the label a from all quantities (most of them were
introduced in I with a label a). We also suppose accordingly that the coupling constant

And in a related model (I, section 2). For Nelson's model [4] see [5].
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A is chosen in such a way (generally dependent on a) that all quantities we shall use
and which were introduced in I are well defined (by the propositions of I). Thus we
shall write in particular H for Ha (defined by Theorem I 3.1), l*(h') for S* ,(h'g) (defined
by Theorem I 3.2b), etc. We shall also make the convention that all operators are
restricted to a fixedXM (n 0, 1, 2,

The following theorem gives the strong convergence of the dressed nucléon fields
on dense domains in the Fock space Xin) of « nucléons and arbitrarily many mesons
(this theorem is the correspondent of the one proved in I for the mesons : Theorem 13.5).

Theorem 2.1. There exists a number A > 0 such that for any \X\ <A and all
h e L2(R3) the following propositions hold:

i) s - lim bf(h')=b?Jh')
t->±00

exist on a domain Aw which is dense in XM and contains the set S(H2) of all entire
vectors*) for H2.9)

ii) Furthermore, for all 0 e Xm,
b±(h')0 bt(h')0 O,

and for any W e X(U0) U X<0) :

b* (*') TAW s - lim b*(h') TAW=s- lim Q(t) b*(h) Y
ï-»±oo r-»±co

Q±b*(h)V.

For ¥ Q0 one has the correctly normalized physical one-nucleon states
l*±(h')Qn TAb*(h)Q0 with \\bt(h')Qn\\ 1 whenever \\h\\ 1.

iii) (b+(h'))* b*(h') on AM (~ means complex conjugation). The operators b*(.) are
closable, we shall denote their closures by the same symbols and call them the asymptotic
physical nucléon creation and annihilation operators (or fields).

iv) The Hamiltonian and the asymptotic fields satisfy the same commutation relations
as do the free Hamiltonian and the bare fields in the sense that

e-ltubl(h')ei,« bt(e+itu'h')

on Aln>.

Remark 2.1. The set _d(n) contains a certain subset »?„> => <?(772) (dense in XM)
of analytic vectors for (77 + ß)2, ß infimum over all ß such that 77 + ß > 1 (ß exists
since 77 is lower bounded, by Theorem I 3.1). More details on _d(n) will be given in the
course of the proof of Theorem 1.1 (after Lemma 2.4).

We shall now state the theorem on the commutation relations of the asymptotic
physical nucléon and meson fields and then devote the rest of the section to the proofs
and some remarks. Note that the commutation relations of the meson fields among
themselves have already been given in I, Theorem I 3.5, and shall not be repeated here.

8) An entire vector for an operator A in a Hilbert space is any vector <p such that 2f-o IM'^II/"
sl < oo for all s > 0 (see e.g. [6]).

9) See Remark 2.1.
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Theorem 2.2. For allf,g e 7.2(R3) there exist:

i) a number 0 < A'x < A such that for all \X\ < A'x the following strong commutation
relations hold on a dense subset _d'<">.-

[b±(n, i±(g')]=o=[bt(f), h(g')i &±(h. k(g')] (f,g)-

One has é(H2) cz _/)'(«> c AM;10)

ii) a number 0 < A2 < A such that for all | A | < A2

[k(.n,àï(g)]=o=[b*±(f'),â*±(g)]

on Ain).

Proofof Theorem 2.1. We shall write the proof for the case of the creation operators
(the case of the annihilation operators being treated in a completely similar way).
We shall try to keep the proof short. More details can be found in [7].

To the notations for contractions between Wick monomials used in I (§3.1) we
shall have to add the following one. Let W(i) he the basic Wick monomials we shall
have to deal with, of the operator form b*a*'b (where a*' stands for the product of i
consecutive a* operators) (Ww is defined more precisely in I (3.1)). We define V% Wil)
as the sum of all i terms one obtains by contracting the a annihilator in V with any of
the i a* creators in W(n.lx)

Lemma 2.1. Let h e L2(R3),0,We DM-* 0 D(H0), x > -_rln2. Then the time derivative

of L(t) (0,b*(h') \P) exists, is continuous and equal to

— L(t)=iX(0,eit6SS(h,t)e-itû\¥), (2.1)
dt

t)=X Vjb*(e-itu>h') + X: Vzr(Q)~b*(e-"wh') : + X:V3(r(Q)~b*(e-"wh')) :,

(2.2)

r(Q) being defined in I §3.1.1 (formula (3.7)) as the basic quantity which gives the dressing
transformation T :expP(Q):.

Proof of Lemma 2.1. The function (W(t')0,B*(h')W(t)W), W(t) eltH° e~itk is
separately continuous differentiable with respect to t,t' (as seen using Lemmata I 3.1,
I 3.2 and Theorem I 3.1). ¦
10) For more details on A[, A2, A'w see the proof of Theorem 2.2.
'") W«>isof the form (1(3.1)):

W«> jx(q;p.---pt)w<» (q;p,---p,)b*(q-.2Pj)(A a*{^) W*1*Pf'*Pt
and

VfW<n f f MA.)""2 oi(A,)-«" p(k, - *,)-•« 8(*_ -k2- p.) x(q;p, ¦¦¦pt) w«>(q;p, ¦ ¦ -p.)

b*(k.)b* {q-j2pjU E a*(pJ)\b(k2)b(q)dk,dk2dqdpr--dpl.

i*i
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In the following we shall make estimates using the following dense subset of
L2 (R3) : S>° {/1/ e S(R3) ;f 0 in a neighbourhood Uf of the origin in the momentum
space R3)J'3(R3) being Schwartz space of infinitely differentiable functions of compact
support.

Lemma 2.2. Assume h e S°. There exists a number A0 > 0 such that for all \X\ < A0
and any 0 e X(B) :

(2.4)

i;t)e-N^l^in20\\<Kx(l + \t\3'2)-l\\0\\, (2.3)

where 3§ih;t) is as in Lemma 2.1 and Kx is some constant (dependent on (a), X, h but)
independent of 0, t. Na is the meson number operator.

Proof of Lemma 2.2. From the definition we have:

SS(h;t)=SSa-l\h;t)+ £ 2 SäW+l-l\h;t)
"Ss.»l r\-a,b

where

^<-l-l'>(h;t)=XV&b*(e-i'a'h')

@sa)iv+i,t,'h]ts) Jsx:Vf(r(SVri)^b*(e-ttu>h')):

@<w+i.»(h;t) X:Vf(r(Sv^b*(e-ltu>h')):,
for all v > i > 1 (the terms S„ are contributions of order v, with i meson creators, and
are defined in I §3.1). ä?(1,1) has the operator form b*a, cgwiv+i.t) the operator form
b*b*a*l~lb and ^cb,iy+\,i, jjas the 0perator form b*a*ia. For the proof of the decay
property (2.3) it is essential that each term is not a pure creation term but contains
one uncontracted annihilation operator (a or b) and a contraction of a b operator with
b*(e~i,u,h'). This yields an integration in the kernel over a function oscillating in time,
which is then responsible for the decay (as shown for the similar case of the meson
operators in I, section 2).12) To give a few more details let us pick up an example (this
simplifies the notation and gives the idea how to proceed in the general case).

Let us consider e.g. the term :

0/C'<3-2>W= A3: Vfr(VfrVc)^b*(e-itu,h') : W,

WeXC«-m\

Its Friedrichs diagram 13) is:

(u),

/-—y _^
to) Aq.) ''(Pi)

") There is no decay in the case of adjusted Heisenberg picture bare nucléon fields, because
here pure creation terms arise. In fact these bare fields cannot converge, as discussed in the
introduction of I. Note that pure creation terms do not prevent the convergence in the case
in which the interaction has a space cut-off in it; the space cut-off gives namely an additional
integration (which is lost when translation invariance holds, due to the momentum-conservation

8-function). Hence in the space cut-off case bare nucléon fields (and of course also the
meson fields) converge strongly (see Section 4). Plainly this is a common feature of all space
cut-off models ([8], [9], [10], [11], [12], [13]).

u) Definitions are, e.g., in [14], [15].
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where the solid lines are nucléon lines, the dotted lines are meson lines, • are the
vertices. There are 4 external lines, with momenta which we call qJt q,, resp. p,
(corresponding to creation of nucléons resp. mesons) (j =l...n+l;l l...n;i l,...,m + l)
and u (corresponding to annihilation of a nucléon). Set q (qx, ...,qn+.),
p=(pu---,Pm+i)- It can easily be seen that (J,<a)(3-2)(A;0'ry)("+1:m+1)(q;P) is of the
form A3(w + l)~1/2(n + 1)"1/2 2"jtl 2?=i 27=1 xtij)">(?;)~I/2 0l"X\' (<*'• P)> where
X(-) is the smooth cut-off function (xa of I §2) and the 0,,,,,. are, as functions of
q, + q,+p„ convolutions of the function

x1/2(?i)x1/2(^)x(-)"'(-)-I/2^(','m)(q?J?<-;pÂ)

(A standing for omission of the corresponding momenta) and of a function

gt(-,ql,Pi)^e~''"'C-.x(.)h'(.)<o(.)-1'2xV2(ql)xll2(Pt)fa-,qiiPi)i

where 9(.,qi,pt) is a product of everywhere positive energy denominators times
(to(. — p,) — co(.) + p(p,))~1 (the integration variable in the convolution is u).

Hence we have expressions of the same structure as I (2.20) and taking the Fourier
transform with respect to the external variable q} we obtain :

\\^Hi,2,{h.t)e-Naa/2nn20ll <£2||£,||J|4>||, (2.5)
w

where K2 is a constant, independent of t, 0 and, setting g0(. =g,(. for t 0,

HltlL sup | j" dvelxJ<> «-'«»<»>g0(v, q„p,) I

the sup being taken over all x} e R3, \q,\ < a, \p,\ < a. As a function of x} the integrand
is a smooth solution of the Klein-Gordon equation. But e.g. from [16] we have then, for
all t=£ 0;

suPlf.(*_i.?..£.)! <Ki\t\~m fdxJF(xJ,q„p,),
*j J

where K3 is independent of t,q„p, and

F(Xj,q,,p,) =\jdvetxi"(co(v) + l)3 co(v) g0(v,q„p,)\.

Split now above integral over Xj in one over \xj\ < S and one over \xj\ > 8, for some
8 >0. Estimate the second one after 4 times partial integrations with respect to |w|

(the boundary terms vanish since h e S°) as

a4

\ dv\—A[(co(v) + l)3 co(v) gn(v,q,,p. )]

||g,||00<7<'4(l + \t\312) l follows then observing that the integrand in {•••} is bounded
uniformly over the whole range of the variables (since there co(v + q,) — w(w + q,+ p,)
+ p(p,) > Q(a) - co(a) > 0, with Q(a) [(», + mb)2 + a2]112).

This and (2.5) prove then

l^Ma,2,^h.t)e-Naai2na2 0^<KMo,2,ß + ^myi^ (2.6)

where 7C(a)(3,2) is independent of t,0.
For the reason mentioned before each term ^?<w+1>n can be estimated in the

same way. The control over 2v,t 7£(7)><"+1,(> is obtained for |A| small enough, as in [3],
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since /fW«"*».') can be obtained essentially by estimating the kernel of ä?W"+1 •'>

and some of its derivatives, using the condition h e S°. This proves Lemma 2.2.
For more details we refer to [7], We would also like to stress that another proof of this
Lemma is contained in the very interesting Thesis by J. Fröhlich [17] (proof of Theorem
9, §3.3). ¦
Lemma 2.3. Let 21<a"> {feXw\ 2T=o (<xlßl)\\HlW\\< oo} be the set of all analytic
vectors of H with radius of convergence not smaller than x, a > 0. Then for any given
S > 0 there exist numbers A0(8) > 0 and x0 a0(A,S) > 0 such that, for all \X\ < A0(8),
yrM c £)C)Ki/2)in+8 an^ f0r any V e 2I<?0\ heS°:

\\ß(h;t)e-ltkW\\<K'(l + \t\3l2)~l, (2.7)

where K' is a constant (independent oft).

Remark 2.2. The set 31^ is dense in X(B), since it contains in particular all entire
vectors for the self-adjoint operator 77 (restricted to X(n)).

Proof of Lemma 2.3. Following [6] we shall use the following notation, for any
number z, operator A, vector x '¦

'xInJtJ-P'xII-
7=0

It is easily seen, using Lemma 2.2, that it suffices to prove

\\e,jV,,I(l/2)ln2+8] Xll<ll«-,â+"xll. (2-8)

for any x e 3l«o and some ß>0. We shall now give a short proof of (2.8). (For more
details see [7]. An independent proof follows from [17] (§1.2, Corollary 1' after Lemma
4)). We shall use following Theorem of Nelson [6] (Theorem 1) :

Let A, B operators in some Hilbert space. Suppose C°°(_4) <=C°°(B) (using the
definition C°°(T) nj°_.0 D(T>) for any operator T).

Suppose, for all W e C°°(_4) :

\\BW\\<c\\AW\\, c<oo

\\*ABl(A)V\\<Cl\\AV\\,

where adBl(A) is defined recursively by adß1^) [B,A], adBl+1(A) a [B,adBl(A)]
and c, c, are constants.

Let g(r) 2T-i (cilfy r', where the right-hand side is assumed to converge for all
r < rn, rn > 0.

Let
S'

t(s')mcf (l-gWrldr.
o

Then.forall^eC00^),

We shall apply this theorem for B Na, A 77 + ß, where ß is such9) that 77 + ß > 1.



312 Sergio Albeverio H. P. A.

One has the simple first order estimate (Lemma I 2.1 and Lemma I 3.1) :

\\NaX\\<Kn\l(H + ß)x\\,

where K0 2(m;1)[l + \ß\ + (mJ2) + (2/ma)(2«|A|7.)2 + \\M\\]. L is defined in Lemma
I 2.1 and is independent of A. ||Af|| is the norm of the restriction to X(n) of the total
mass renormalization. We remark that C°°(H) <zzCc0(NJ, as a consequence of
D(H') D(Hl0), a property which can be proved using estimates of 77' in terms of
c'i(Ho + d,)x,c',,d, being constants (these estimates can be proved e.g. as in [18]).

For x e 5la"o c C°°(H) we can therefore compute

ad Aj(77 + ß)X X(VC + (-1)' V) X-

Hence :

\\adN>a(H + ß)x\\<cl\\(H + ß)x\\,

with

ci 8«|A|L(l+7_:0)1/2 7_:".

Then, applying Nelson's theorem, (2.8) follows when s' < In2 + S and t(s') < oo. For
the latter it suffices to show K" < l/(e5\/2 — 1). This is certainly verified for given 8

when A is sufficiently small and K0 is finite for all bounded |A|. A look at the definition
of Kn shows that this is indeed the case (Theorem I 3.1). Setting s' ^ln2 + 8 and
a0 t(\ln2 + 8) we have then (2.8) and the Lemma 2.3 is proved. ¦

Remark 2.3. The proof of Lemma 2.3 shows in particular that for any given
8 > 0 (and in fact also for S 0) and |A| sufficiently small the inequality (2.8) holds
for some a0(S) > 0, ß and all x £ ^«„'.ay This implies

2((") c £)(gN„[.l/2)ln2+3]\ c £)(n);(l/2)In2+8 c JT)(n);(l/2)In2

Furthermore, under above conditions, one has the uniform bound in t :

|jgiv„C(i/2)in2-t-8] e~l,"x\\ < |ka°(6)|ô+'3|xll- (2-9)

Remark2.A. (2.9) together with Theorem I 3.2 a shows that, for all x e ^«„(S).

||*f(*0xll<^" 11*11. (2-10)

with K" independent of h and t.14)

In order to prove the strong continuity in t of the operator eitHSä(h;t)e"itH we
introduce the following domain :

<$,\ïl \0eX™
00 n,1

ao,^-£\\(H + ß)2'0\\<«> (2.11)

(-0

where a0, jS are as before. S^ is dense in Xln) and one has

V2ao(H2)^®%<=W».

The estimate (2.10) follows also from the already quoted Corollary l' after Lemma 4 (§1.2)
of [17]. See Theorem 9 (§3.3) of [17] and our Remark 2.5 below.
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Lemma 2.4. Let 8, x0(8) be as in Lemma 2.3. Then for all PeSJ^j) and he 2>°

one has :

t

~b*(h')V= B*(h')W+iX J" dt'e"'»0/(h; t') e-i,RW, (2.12)
o

where the integral on the right-hand side is to be understood in the strong sense.

Proof: Lemma 2.3 shows that the norm of the integrand is bounded by const.
(1 + |2|3/2)-1. The strong continuity of the integrand is proved using Lemmata 2.2,
2.3 and estimating separately the strong continuity of the bounded operator
J,(/.;Oe"*',c<1/2)ln2+5] and of ^<.t(i/2)in2+8]ei«'Ä The former follows by an estimate
like the one in Lemma 2.2 together with Lebesgue's dominated convergence theorem,
the latter is proved using Lemma 2.3. The equation (2.12) is then a consequence of
Lemma 2.1. ¦

After these preliminary lemmata the proofs of the single points of the Theorem
2.1 follow now easily:

i) Require A to satisfy 0 < A < A,, Xx being such that b*(h') are well defined
(by Theorem I 3.2). Moreover fixe S > 0 and choose A such that for all |A| <A:

K" < (V2 - I)"1

(K" is defined in the proof of Lemma 2.3). Fixe now A such that |A| < A. Vet r(X) he

any number in the interval 7(A) (0,ln[l + (K'y1 - ^ln2]) and define

a0(T)=^ln2 + r(A)),

with t(. as in the proof of Lemma 2.3. Define furthermore

4W ¦ Ure/(A) a&r), with »w(T) as in (2.11)

Note that, in particular, _d(n) c 7)<");a for all a > ^ln2 and «f (772) cz 93<œ"o>(T). Lemma
2.3 gives then the strong convergence of the right-hand side of (2.12) for t ->-±co,
which proves i), for h e S°. The extension to all h e Z,2(IR3) follows from the uniform
bound (2.10).

ii), iii), iv) follow also easily, from i) and estimates of I (Theorem I 3.2b, Theorem
I 3.2a and Lemmata I 2.1,1 3.1). This concludes the proof of Theorem 2.1. ¦

Remark 2.5. Theorem 2.1 as it stands is limited to the case with ultraviolet cut-off
a in the interaction. From its proof we see that it remains true with small modifications
once suitable higher order estimates of N'a in terms of (Ha + ßa)' (as those involved in
Lemma 2.3) are proved to hold also for the case a oo (with the usual restriction on all
nucléon momenta to be in a ball of finite radius 7? in momentum space : see [3], [17], [1]).
These estimates have now been proved (in this and related models) by J. Fröhlich [17]
(§1.2, Corollary 1, after Lemma 4). For the correspondent application to the extension
of our convergence result Theorem 2.1, i), we refer to the same reference [17] (§3.3,
Theorem 9).

Proof of Theorem 2.2

i) Choose 0 < A\ < A such that, for all |A| <A'X, one has K" < 1. Fixe now
A, |A| <A[. The domain A'w can then be chosen as A ,("> (JTeI, ©«„(t)- where

7' (iln2,ln[l + (r)-'-iln2]).
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Note that in particular ê (H2) <= A'M cz D(ny'e for ail 0 > ln2. We can now proceed
similarly as in the proof of the meson-meson commutation relations (Theorems I 2.1
and 13.5). We have that ||J|(A') 6*(g') W\\ (where h stands for/or/) is uniformly bounded
in t for any WeA'M, because \\B*(e^lUuh')B*(e^ltu'g')e-N'lD2\\ and \\eN°ln2e-"s¥\\
are separately uniformly bounded in t, by Theorem I 3.2a and (2.9). Then it follows
for 0eAln>: (b*(h')*0,b*(g')W) <E\\0\\, with E independent of t,0, and therefore
bf(g') maps W into the domain of b\(h'). Then we can compute (0\J>\(h'),b%(g')]\¥)
as limits of (0,[b*(h'),b*(g')]W). The cases where both # stand for creationor both for
annihilation are trivial (I 3.19a). In the remaining case we have that \b,(f'),b*(g')]\¥
is the sum of thejime-independent term 7 (f'.g') Y, of the term 77 e""Sêe-ttH W,
with M [b(eUu>f%r(Q)*, r(Q)^.b*(e'ltu'g')], and of terms which have the same good
form as the terms _^,<1>)(,'+U)(A;i) we discussed for the proof of Lemma 2.2. Using the
same method we can show that these terms vanish for \t\ ->• oo. For the same reason all
graphs of M with more than two external lines give a vanishing contribution to ||77||.

It is then not difficult to verify that I + 11 -^- (f,g) W strongly as t -> ±oo (see [7] for
details), which proves i). The proof of ii) is similar. The corresponding uniform bound
is obtained15) by (2.10) and (2.9) and then use is made of the fact that

[bt(f'),ât(g)]W =ei'»X e-ttSW,

where

X a(e^g)^ar(Q)-xb*(e~itu>f)

contains two contractions involving operators smeared with oscillating functions. ¦
3. Asymptotic decomposition of H. Connection between
asymptotic states and fields. The S -matrix

3.1. A symptotic decomposition of 77.

We can prove the asymptotic decomposition of 77 along the lines of [9], [10],
exploiting the fact that both the commutation relations between all fields and with
the unitary group generated by H hold on the subset i_?(772) of D(H), dense inJf(n).
Let V±M be the closed linear spans of all vectors which are annihilated by all b+ (h'),
h e L2(R3) and by all a±(f),fe L2(R3). The Vlw are subspaces of X(n> which reduce 77.

Proceeding then as in [9], [10], using the commutation relations, Theorem 2.1.iii) and
Theorem 2.2 on tf(H2) (instead of the domains of [9], [10]) we can construct for any
9o e V±-n) the asymptotic symmetric Fock spaces X(^(9n), with cp0 as cyclic vector,
namely 3ff(p(9n) ®%=nXfm}(cpo), where XÇ-m)(9o) closed linear hull of

UU b*+(g'U)) YIT-i à*+(fw)fo, for all/<», g™ e L2(R3), m 0,l,2,... (U° 1).
Clearly X<?\9o) Xiw"\9o) ®X+>\(9o), where X^(9o) JfÇ-»(9o),

Jf^((p0) X^(<pn). All these spaces reduce 77. For cp0 Q0 we get the asymptotic Fock
spaces Xi+>(Qn) for physical nucléons and mesons, which reduce 77 in such a way
that 771 ^-pcQn) ~H0zzt ® 77£° + 77^ (g) 11 (s stands for unitarily equivalent). In
particular the spectrum of 77 in X(n), « > 0 has a continuum containing [nmb, oo). In
X(0) it consists of course of the simple isolated eigenvalue 0 and the absolutely
continuous part [ma, oo). Defining X(n,m) closure of IJ^ ^vam-,X^'m)(<po), we can prove
that ©£_0 X^ XM.

s) For details see [7].
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This is done by an adaptation of the arguments in [8], [9], using essentially the
fact that 77 is bounded from below in X(n>, all commutation relations hold for S(H2)
and one has, for any W' e<f>(H2), the ^-uniform estimate (2.10) and the similar one for
â*(h) (I (2.16)).16

It follows then in particular the following tensorial decomposition of 77 (on X(n)) :

77 H0 <g) 1 +1 ®77|Ko(n).

3.2 Connections between asymptotic states, fields and the S-matrix.

We shall briefly give some connections between the asymptotic states constructed
in I through the wave operators and the asymptotic fields constructed in Section 2
above. It will be convenient for this to introduce the following unified notation for all
fields.

Let n be a label taking the values a (for mesons) and b (for nucléons). Set, for any
Ä(1»> 6 L2(R3), A(1» (yW)-1'2^, with vw v~112, v(a) 11. Define then

'g# („-»«#») for r] b

âf (hia)) for v a
go»# (ÄCJ))

_ eitHç(ij)# ie+itQ"i)^(1J), e_,tft

C<v*

with

(B*(.) for rj 5

for t; a

QW(.)
co(.) iorr) b

p(.) for t/ a.

Thus c(t*>)#(-) are the time < Heisenberg picture's adjusted creators and annihilators
for dressed b and a particles. Let finally

Af
Aw for v a

D(Hl0'2) (C)XM) iorv b

[!)'<»>= U £><">•" for ^ 6 /ft#() f d

D?>s D'(»)s U D».- forr, «' '
la#(-) ^7'^0

Theorem 2.1, Theorem 2.2 and Theorem I 3.5 give the properties of the strong limits
c<_?>*(.).

Theorem 3.1. Let X be as in Theorem 2.1 (for n b) resp. Theorem I 3.5 (for v a)
andlet 0 be any vector in D^. Letfurthermore (as before and Theorem I 3.4)

Q(t) eitS TAe-itH«.

l6) For details see [7]. (2.10) gives the basis for the needed extension of Lemma 5 of [8] to the case
of our unbounded operators.
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Then for any hW e L2(U3) :

1) s - lim c^>*(Â(T»>) Q(t) 0 c^*(h^) .Q* 0
t-»±oo

Moreover (ß±)*c(±1')*ß± c*(A<1») on D§\
2) Forany hWeL2(R3), 7), a, b; I 1,2,

s- lim c«'»>*(Ä('») n cy><>*(A^>)ßo e±'>*(Ä(,')) El ê(±'")*(Â,(,''))_Q0.
.-»±00 | 1

Moreover

g<i»)«(A<i))s - lim n ^"(ÂÎV) ß0 Û* cCî>*(à(,î>) n c<i.)*(â(,'»i>) _Q0

=c<±,'>*(ä{,')) ß± n a(,'<,*(Ä(/''>))ß0.
i

TAîs gives in particular the action of the asymptotic physical fields cÇ'* on scattering
states of the form

|... hiv,)... >± s - lim n c,*»(hW) Qn. (3.1)
t->±00 1

One has 0(+> ^X(n), j/ ö(±) denotes the closed linear span of all scattering states of the

form (3.1) with exactly n indices r/, equal to b.

3) The scattering operator S is defined17) (as in I) by S (Q+)*Q~. It is a contraction
operator18) mapping XM into Xw, extending to all X and commuting with eitH°.

Its matrix elements between bare states give the amplitude for scattering from the
correspondent in and out physical asymptotic states (in 0^>).

In particular the amplitude for scattering from an incoming state

|£<1>...£(«>;/U>.../Cm) >= YI fcfg'W) {j «*(/«>) Q0
i-l i=l

to an outgoing state ||(1)... gw ; /(1)... /<m0 > + (all distributions of momenta gu),..., /((c)

being normalized functions of L2(R3)) is

(|g<!>... |(ff) ;/(!).../(m)>+;|ga)...^);/a)... /(»)>_)

=(& n **(ia)) n a*ifc")Qn,Q- n &*feu)) n «*(/(0)A>)
\ J I j I '

(n b*(gU)) n «*(/(i))ßo.s n &*(sU)) n «*(/(,))A,).
W i j I >

Remark 3.1. This is an improvement over the correspondent Theorem in I. Except
for S 1 in Xm we expect S to be a nontrivial map (#0,1) from X<B) into X(B) for
all « > 0. In section 4 we shall give preliminary remarks to this.

17) In the channel in which all physical nucléons and mesons are free. ^
18) For remarks on the unitarity of S (equivalent with the equality of the ranges of Ù+ and Q~

and asymptotic completeness see I.
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Proof of Theorem 3.1. 1) has already been proved in I for the case n a. The case

n b is proved similarly, using the construction of section 3.1. 2) and 3) follow then
easily. ¦
4. Some remarks on the meson-nucleon scattering

We shall give a preliminary discussion of the scattering of one physical nucléon
and one meson, from an asymptotic situation at t —oo, described by

|Ä<i);yO) > 3= S*(ä'U>) âï(/<!>) Q0,

to an asymptotic situation at t +oo, described by |A<2);/(2) > + b%(h'm)â%(fm)Qn,
||Ä«>|| ||/«)|| 1, i=l,2. The study of the S-matrix element for the transition,
S(A(I)/(1); A<2)/<2>), has been already started in I, where we derived reduction formulae
and in particular the formula :

S(A(1)/(1);A(2>/<2>) (A(,),A(2))(/(1>,/«>) + _§<» +S(II\
with

4-00 +00

S«> i f dt2Fa\t2), S<"> j* dt2 j dtx Fm(t2,tx)
-co -co 0

F">(0 («*(/(1>) TAb*(h<li)Q0, elt»s/*(fC2>;t) TAb*(e~itu>h™) Q0)

(s/*(f;t) =s/*(ft) is the bounded extension to X(n) of the bounded, densely defined

operator A [F,a*(_r">y)]) and

Fm(t2,tx) (s/*(f^;t.) TAb*(elt^h^)Qn, ew^t^ss/*(f(^;t2)

TAb*(e"2Whm)Q0).

We first prove that it is possible to expand the integrands Fw(t2), Fm(t2,t,)
for finite times \t2\, \tx\ < oo into power series in A, absolutely convergent for |A|

sufficiently small, in such a way that each term contains only bare quantities and has a
dependence on t given entirely in terms of factors of the form e',ßW). Let in fact Au)(t2)
he the term of order j (in A) in the Dyson expansion of e~"2 H given by Lemma 13.2,
convergent in the <B(D(n):^; 7)<"^-topology, 0 < ß < y.

Vet moreover B*m(h')Q0 he the term of order k in the expansion of

B*(h')Q0=TAb*(h)Qn

in powers of A.

This expansion is strongly convergent for |A[ sufficiently small (Lemma I 3.1).
Using «*(/)6 95(D<B):a; _D(n);a'), 0<a'<a, s/*(g;t) e <B(XM;X(n)) for any

/, g e L2(R3) and Schwartz inequalities, we can show easily that the right-hand sides

of

F»>(t2) 2 A' F<»«>(*2)
1=2

and

Fm(t2,tx)=2 A'F<">«>(Mi)
1.2
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are absolutely convergent for |A| sufficiently small. Here

FilK,)(t2)= 2 (A<J\t2)a*(fC»)B*w(h'll')Qn,
J.k.l

J+k=l-l-t

*/*(Jm; h) B*«>(e-"2U>h'm) Qn),

Fcmco(tlttx)= 2 (A^(t2)s/*(fly,tx)B*M(e-"tu'h'^>)Qn,
J,k,i

j+k —1-2—i

s/*(f™;t2)B*ci\e-lt2U>h'™)Qn).

Thus before integration over times the terms giving the scattering amplitude are
convergent power series in A and can be computed one by one. The study of the resulting
series for the scattering amplitude itself requires of course special care.

The non-triviality of the scattering would follow from a strong control on the
series as a whole.19) As a preliminary remark in this direction we shall show, using
methods of H0egh-Krohn [10], that, at least in the case in which the interaction has a

space cut-off, the expansions of the asymptotic meson fields and of the scattering
amplitudes in powers of the coupling constant A are (strong) asymptotic series (for
|A| ->0), for which the (strong) Borel transform exists, at least for |A| sufficiently
small.20) In particular the non-triviality of the scattering is established.

Let XV(g) be the space cut-off interaction, defined from XV in the usual way (see
e.g. [19], [15]), with a space cut-off function g(x), g(.)eS(R3). Let 77(g) be^ the
correspondent Hamiltonian, for which we have of course the same estimates as for 77. In
this case all the asymptotic fields are obtained as strong limits of adjusted Heisenberg
picture bare fields c$*(A) eitüwcO># (e+"n(v) <>-'«&»>. In an entirely similar way as
in Theorem I 3.4 one can prove the convergence in the 93(7)(");a;7)<");^)-topology,
0 < x <ß, of the Dyson-Schwinger perturbation series for c^t'*(A). In particular (as
in I (3.27)) :

a*,(h)W=s- lim 2 XlF'\g;t)W,
L->oo 1=0

for all YeC°(Na), where P'^g-.t) are independent of A,7(0)(g;<) a*(h) and X'l(l>(g;t)
for I 1, 2, 3, is the sum of all the terms of order I (in the coupling constant) one
can extract from

• H '1-1
;> J a, J Àj... J dt, \y'(tù.\y'(t,.l),.... \y'(t.), «* (*)]

0

Of course the strongest one would be the convergence of the series. But also its asymptotic
character would suffice, at least for |A| sufficiently small (since term by term S is non-trivial).
We call a (formal) power series expansion 2 A'A, of A, where A, A, are operators defined on a
dense domain D of a Hilbert space _3f, strong asymptotic to A (on D, for A -*¦ 0) when
\\(A -2[-oA'^,)¥'||<|A|r+1C.+ 1(¥'), r>0, for some Cr+1(V) independent of A, all |A|>0
sufficiently small and all W e D. Similarly we call strong Borel transform of a series 2 A1 A. on D
the series 2, (A'/?!) A,, whenever the latter is strongly convergent on D for all | A| > 0 sufficiently
small. If the A, A, are constants we have the usual concept of asymptotic series resp. Borel
transform (restricted to real A), see e.g. [21]. Note that the above adjective 'strong' refers to
the operator topology and its meaning should not be confused with the one in B. Simon's
'strong asymptotic series' [21].
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with V"(g) XV(g) + M(g), V(t) ei,Ho V(g) e~itHo. Moreover one can show, adapting
methods of [10], that there exists a dense subset 3)y of L2(R3) and a constant Ay > 0
such that, for all h e 9>y, |A| < Ay, one has:

\\Pl\g;±cx,)W\\<C0C[{\(Na + l)1'2...(Na + iy'2n, (4.1)

for some constants C0, C, (independent of I), Iin(g; ±oo) W being defined as the strong
limit of Pn(g;t)W for t -> ±oo. In the following we shall always make use of the fact
that in the present space cut-off case it is no restriction of generality to assume, in the
discussion of scattering quantities, that the Hamiltonian 77(g) is simply 770 + XV(g)
instead of 770 + XV(g) + M(g). Assume now W e Cm(770).

Denote again by 7(')(g;±oo), a*_t(h) the quantities defined as before, but with
M(g) replaced in their definitions by the operator multiplication by 0. We claim that
the strong limits for t -» ±oo of a*t(h)W (which exist, as shown by the same methods
as for Theorem I 3.5) admit the power series expansions

m*±m(h)Wms- lim a*t(h)W=2 A'7<»(g;±oo) W + R w(A;±oo)y, (4.2)
t-»±<o ' 1=0

with 7?9>(0)(ä; ±oo) 0 and, for r 1, 2, 3,.

±co t, »r-1 t-

Rg,ir. (Ä;±oo) A'4"1 ir+l j dtxj dt2... J" dtr j dr eiT»^ e~tTHo

0 0 0 0

[V(t), [V(tr),... ,[V(tx), «*(*)]... ] e'THoe-trÊ<<>\

This holds because the formal power series expansion can be justified here, using the
information on the domains of the various operators involved (in particular estimates
involving powers of Na, 77(g) and 770) and (4.1) :

||7?9j(r)(Ä;±oo) W\\ < |A|'+1 C2C'3+l sup \\(N. + r + l)1'2.. .(Na + l)V2e-'T"c<»V\\<
T

<\xric2c^x,r+X)(W),

(a(r+1) resp. C2, C3 being constants, independent of A resp. A, \P, r).
The same estimate shows moreover that the power series 2T-o A'7(,)(A;±oo) is

asymptotic (in the strong sense20) to the asymptotic fields a*+m(h), on CCO(770), for
A -> 0 along reals.

We have also an immediate application for the meson-nucleon S-matrix element,
which in this space cut-off case is simply

S9(A<1>,/(1>;A<2\/<2>) «_(/(1>)6*(A(1>)ß0.<+(/<2))**(*(2))ßo)- (4-3)

Assuming/(0, i l, 2 in the dense subset S>y of L2(R3), choosing again |A| <Ay
and inserting the asymptotic expansion (4.2) into (4.3) we obtain a power series expansion

2T-o ^'si m tne coupling constant A (s, independent of A) which is asymptotic
to the S-matrix element (4.3) for A -> 0 along reals.

From the same estimates we have also the existence, for |A| sufficiently small,
of the strong Borel transform20), 2T=o (X*/11)I(n(h;±<x>)W of the asymptotic meson
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fields. This implies the existence of the Borel transform 2T=o Wfi-) si> f°r I'M sufficiently
small, of the meson-nucleon S-matrix elements.21)

In the same way one can prove that all the similar expansions in powers of the
coupling constant for the S-matrix elements between states with finitely many nucléons
and mesons are asymptotic series (for | A | sufficiently small and distributions of momenta
in a dense set of 7.2(R3)). The S-matrix is non-trivial. Moreover its asymptotic series
have Borel transforms (for |A| sufficiently small).22)

This concludes our discussion of the scattering in Eckmann's model. The methods
can be applied, with due modifications, to other models as well, including Nelson's
model and Lee-type models. For the discussions of many other problems (like e.g.
existence of Green's functions, scattering theory along the lines of [22], infrared
problems) we refer to the very interesting work by J. Fröhlich [17].
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