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Quaternion Determinants')

by Freeman J. Dyson

The Institute for Advanced Study, Princeton, New Jersey 08540
(30. IX. 71)

Abstract. Many years ago, E. H. Moore proposed a definition for a determinant with non-com-
muting elements. It applies in particular to determinants with quaternion elements. The definition
is here generalized and its properties studied in detail. The determinant is a multilinear polynomial
in its elements. In a wide class of cases, it reduces to a Pfaffian. It possesses the property of multi-
plicativity only to a limited extent. It finds an application in the statistical theory of energy-levels
of complex systems represented by an ensemble of random matrices.

“We find therefore, that in Equations, whether Lateral or Quadratick, which in the strict Sense,
and first Prospect, appear Impossible; some mitigation may be allowed to make them
Possible; and in such a mitigated interpretation they may yet be useful.’

John Wallis, Treatise of Algebra (London 1685), p. 272, quoted by William Hamilton in the
Preface to his Lectures on Quaternions (Dublin 1853), p. 34.

«Vier Elemente
Innig gesellt
Bilden das Leben,
Bauen die Welt.»

Friedrich Schiller, quoted by Markus Fierz in his essay Die Vier Elemente (Schweizerische
Gesellschaft fiir Analytische Psychologie, 1963).

I. History

Hamilton never mentioned determinants in his massive books [1, 2] on the theory
of quaternions, although Cayley had published a paper [3] on quaternion-determinants
many years earlier. In the second edition of Hamilton’s work, published long after his
death, the editor added a brief appendix [4] on determinants with a reference to
Cayley. Hamilton expounded with loving care and in minutest detail every ramification
of the quaternion algebra except this one. Why was he silent on the subject of quater-
nion determinants?

The reason for Hamilton'’s silence is presumably that he believed a satisfactory
theory of quaternion-determinants to be impossible. In modern language, one can con-
struct a simple proof of the impossibility along the following lines. Let R be aring, let A
be the ring of square matrices (» x #) with elements in R, and let W be the set of single-
column matrices with elements in R. By a‘ determinant’ we mean a mapping D from 4
into R which satisfies the following three axioms.

Axiom 1. For any a in A, D(a) = 0 if and only if there is a non-zero w in W with
aw = 0.

1) Dedicated to Markus Fierz on the occasion of his sixtieth birthday.
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Axiom 2. D(a) D(b) = D(ab). (L.1)

Axiom 3. Let the elements of abe ay;, 1,7 =1, . . ., n, and similarly for b and c. If for
some row-index k we have

ay=by=cy 1#Ek, (1.2)

ay;+b;=cy, 1=k, (1.3)
then

D(a) + D(b) = D(c). (1.4)

Of these axioms, only Axiom 1 is indispensable for the utility of the notion of a deter-
minant. But both 2 and 3 are desirable if one wishes to preserve the customary rules for
manipulation and computation of determinants. The difficulty of keeping all three
axioms is shown by

Theorem 1. Let R be a ring with a unit element and without divisors of zero. If, on the

matrix ring A withn > 1, a mapping D exists satisfying Axioms 1-3, then R is commuta-
tive.

This means that quaternion-determinants cannot be constructed unless one is
prepared to abandon one or more of the axioms.

Proof of Theorem 1. To save writing, we take n = 2. The proof for » > 2 goes in
exactly the same way. For any 7 in R, we write

1 0
ﬂ”=D“07D’ (1.5)

where 1 means the unit element in R. Since R has no zero-divisors, Axioms 1, 2, 3
together imply that the mapping » — f(r) is an isomorphism of R into a sub-ring R’ < R.
Next, Axiom 3 gives

g3 R

and by Axiom 1 this reduces to

( 1 O ’ ( : )
1 O ' (. )

Hence, by Axiom 2

or

r 0 1)-f()- (=1 18
p(|7 )= 000 =100, 0



Vol. 45, 1972 Quaternion Determinants 291

Finally by Axiom 2 again, (1.5) and (1.8) imply

r O
D([O SJ) = fr) f(s) =1(s) f(7). (1.9)

But f(r) and f(s) may be any two elements of R’. Hence R’ is commutative. But R is iso-
morphic to R’ and is therefore also commutative. End of proof.

The subject of quaternion-determinants entered a long sleep, from the time of
Cayley’s 1844 paper until Study [5] attacked it again in 1920. Study constructed a deter-
minant which he denoted by V(a), where @ is a matrix over R and R is the ring of quater-
nions with real or complex coefficients. The values of V(a) are real or complex numbers
as the case may be, not quaternions. Study proved that his V satisfies Axioms 1 and 2.
Axiom 3 is not satisfied. In fact, Axiom 3 states that the determinant is a linear function
of the elements in each row of the matrix, whereas Study’s V is explicitly given as a
quadratic function of the elements. Without Axiom 3 there is no convenient way to
compute the value of a determinant of large order. Study’s definition, while solving in
principle the problem of the consistency of sets of linear quaternionic equations, has
never found any practical application.

Independently of Study, E. H. Moore [6, 7] worked out a theory of determinants
whose elements belong to a quasi-field (i.e., a non-commutative ring in which every
element has an inverse). During his lifetime Moore published only a brief announce-
ment [6] of his work. His notes were edited and published [7] after his death under the
title ‘ General Analysis’. By ‘ General Analysis’ Moore meant a redevelopment of large
parts of classical mathematics using more general concepts than the classical system of
real and complex numbers. Trying to carry out this grandiose project single-handed,
Moore was overtaken by younger men, many of them his own pupils, who were
generalizing mathematics in far more radical ways. When his work finally appeared in
print [7], encumbered with an elaborate symbolic-logic notation, it looked like a throw-
back to the nineteenth century rather than the wave of the future. The Bourbaki group
later adopted Moore’s program and succeeded where he had failed. While Bourbaki set
the style for the mathematics of the second half of the twentieth century, Moore’s
pioneering efforts were buried in books which the new generation found antiquated
and irrelevant.

The theory of determinants which we shall describe in this paper is essentially due
to Moore. We have only translated his definitions into modern notation and generalized
them where appropriate. The elements out of which the determinants are constructed
will belong to a ring R possessing an involution. This general frame can then be suc-
cessively specialized according to the scheme: Ring-with-involution — Composition
algebra — Quasi-field — Quaternion algebra. We find that some properties of the
determinant hold for a general ring-with-involution while others require more special
assumptions.

A more abstract approach to the construction of determinants with non-commut-
ing elements was later worked out by Dieudonné [8] and is summarized in a book by
Artin [9]. The Dieudonné determinant det (@) is defined only when R is a division ring
(i.e., when every non-zero element of R has an inverse). The case when R consists of
quaternions with complex coefficients, which caused no difficulty to Study, cannot be
handled by Dieudonné. When R is a division ring, det (a) always exists and satisfies
Axioms 1 and 2. Axiom 3 has no meaning because the values of det (¢) do not lie in R.
The values of det (@) lie in a semigroup R which is defined by adjoining a zero element
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to the quotient of R (regarded as a multiplicative group) by its commutator subgroup.
For example, when R is the division ring of real quaternions, the quotient is the group
of positive real numbers, and R is the semigroup of non-negative real numbers. Instead
of Axiom 3, det (a) satisfies only the much weaker statement that equations (1.2) and
(1.3) imply

det (c) = det (@) -« + det (3) - v, (1.10)

where # and v are elements of the commutator subgroup of R. When R is commutative
equation (1.10) reduces to (1.4), and by Theorem 1 Axiom 3 can never hold otherwise.

II. Determinants of Self-Adjoint Matrices

In a recent investigation of the correlations between eigenvalues of random
matrices [10, 11], it was found unexpectedly that the correlation-functions could be
conveniently expressed as determinants of quaternion matrices, constructed according
to the rules laid down by Moore [7]. These determinants avoid the awkward features
that made Study’s and Dieudonné’s determinants unpractical. They have most of the
desirable properties possessed by determinants of commuting elements. Why should
Moore’s definition of a determinant be superior to the others in this application? The
reason is that, quite fortuitously, all the matrices for which determinants were required
were self-adjoint in the quaternionic sense. By a self-adjoint matrix we mean one whose
elements satisfy the conditions

iy =al, (2.1)

where g7 denotes the quaternion adjoint to g.

To give the discussion greater generality, we suppose that R is not necessarily a
quaternion algebra but a general ring with an involution. That is to say, we assume that
every element ¢ in R has a conjugate ¢t with the properties

g'" =g, (2.2)
@+nNt=q"+7", (2.3)
(gr)t =r1q". (2.4)

Elements with g = ¢' are called scalars. We assume that R is a ring with commuting
scalars, that is to say, we assume that every scalar in R commutes with all elementsin R.
In particular, the scalars form a commutative ring S € R. When R is the ring of real or
complex quaternions, S is the ring of real or complex numbers. Finally, we assume that
R has also the scalar product property. By this we mean that the scalar product

(g.7)=gqr+7"q" (2.5)
is symmetric, that is to say

(9.7)=(r.9) (2-6)
for all ¢,7 in R. The general symmetry (2.6) is a consequence of the special case

99" =q"q. (2.7)

If R is a quasi-field as Moore [7] assumed, the scalar product property follows from the
commuting-scalar property.
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The real and complex quaternions are examples of rings with commuting scalars
and the scalar product property. Another example is the ring R whose elements are
(2 x 2) matrices with conjugation defined by

t
MM |
z w -2 X%

When «, y, z, w are complex numbers, this R is equivalent to the ring of complex quater-
nions. But when x, vy, z, w are real numbers, R is distinct from both the real and the
complex quaternion ring.

We do not know whether the class of rings with commuting scalars and the scalar
product property is exhausted by the rings of quaternions and (2 x 2) matrices with co-
efficients in suitable commutative rings. It would be interesting either to find other
examples or to prove that none exist. A complete classification theory has been worked
out only for a more restricted class of objects called Composition Algebras. We say that R
is a composition algebra if 1. R is a ring with an involution, 2. R has commuting
scalars and the scalar product property, 3. the scalar product is non-degenerate (i.e.,
(g,7) =0forall7in R implies ¢ = 0), and 4. the ring S of scalars is a field (i.e., every non-
zero element of S has an inverse). Jacobson [12, 13] has classified these objects without
assuming the associative law of multiplication in R. Since we are only interested in
associative algebras, we may state Jacobson’s main result [14] as follows: Every
(associative) composition algebra is either commutative or is a quaternion or (2 x 2)
matrix algebra over the field S. So, to find new examples of rings satisfying our postu-
lates, we must look outside the class of composition algebras.

It turns out that Moore’s definition of determinants applies not only to self-adjoint
matrices satisfying equation (2.1) but also to matrices which are self-adjoint except for
a single row or column. A matrix a with elements in R is defined to be almost self-adjoint
[15] if there is an integer % such that

a;=a', when i#kj#k (2.9)

The definition implies that a self-adjoint matrix is also almost self-adjoint. We define
the determinant Q det (a) of an almost self-adjoint (» x #) matrix a4 by induction on .
Namely, forn =1,

Qdet (a) = a4, (2.10)

and for n > 1
Qdet (a) = il €1 4, Q det (a(k,1)). (2.11)
1=

Here % is the integer singled out by equation (2.9),
€ = '"“]., l # k; €xx = +1, (2.12)

and a(k,/) is the matrix obtained from a by first replacing the elements of the /th column
by the corresponding elements of the k2th column and then deleting both the Zth row
and the kth column. This recipe agrees with the usual definition of a determinant if R is
commutative. It works as an inductive definition because a(k, ) is an almost self-adjoint
(n —1) x (» — 1) matrix.

When a is almost self-adjoint but not self-adjoint, the definition (2.11) is un-
ambiguous, since & is uniquely determined by equation (2.9). However, when a is self-
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adjoint, any value of £ may be used in equation (2.11). To make the definition unique,
we must prove

Lemma 1. Let R be a ring with commuting scalars and the scalar product property,
and let a be a self-adjoint matrix with elements tn R. Then the value of Q det (a) defined by
Equation (2.11) is independent of k. Also, Q det (a) is a scalar.

Proof of Lemma 1. When a is any almost self-adjoint matrix, we define the cycle-sum
C(a) by an induction similar to equation (2.11). For n =1,

Cla) =ay,, (2.13)
and for n >1
C@) =3 auCla(k,), (2.14)
1%k

with a(,) defined as before. By iterating the definition (2.14) (» — 1) times, we arrive
at the result

Cla) = ; Ay By - - - Ay (2.15)
where P is summed over the (# — 1)! cyclic permutations

P=k—>l—>m—>- -+ —>u—>=p (2.16)
of the integers (1, . . ., n). At the various stages of the iteration of equation (2.14), the

column which was originally in position % is moved successively to the positions Z, m,
. . ., u. The columm-index k can never reappear at any stage of the process until the last,
when equation (2.13) is used. At the final stage, the single element a,, survives in row %
and column #. If a is not self-adjoint, equation (2.15) defines C(a) uniquely. The first
stepin the proof of Lemma 1 is to show that for self-adjoint a the value of C(a) isindepen-
dent of k.

Let a be self-adjoint, and let C’(a) be the sum (2.15) with some other integer 7
replacing k2. The same cyclic permutations P appear in C’(4) as in C(a). Any term in
C(a) 1s of the form g7, with

q = akl a,m. i atj, V= a’js‘ 5 .auk. (2.17)

The term in C'(a) corresponding to the same P is then rg. Now consider the permutation
P obtained from P by reversing the cyclic order. When # > 2 P is distinct from P. In
C(a) the term arising from P is

A« - - Ay Ay = (q7) T =77 g7 (2.18)

by virtue of equation (2.1). In C’(a), the term arising from P is ¢'#'. Thus, P and P
together contribute to C(a) the scalar product (g,7), and to C’(a) the scalar product
(r,q). The scalar product property (2.6) then implies

Cla) = C'(a). (2.19)

When # = 2 the same result follows trivially from equation (2.7). So we have proved
that C(a) is independent of %, and also that C(a) is a scalar.

Now let G denote any division of the integers (1, . . ., #) into m subsets (G, . . ., Gp)-
If a is any almost self-adjoint matrix, we denote by a(G,) the submatrix of a formed by
the elements a,; with both 7 and 7 in G,. Without loss of generality, we suppose that G,
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contains the index % defined by equation (2.9). Then a(G,) is almost self-adjoint and all
the other 4(G,) are self-adjoint. We now show that the definition (2.11) implies [16]

Qdet @) = 3 (-1~ IT C(aiG,). (2:20)

Since all factors but one in the product on the right of equation (2.20) are scalars, and
since R is a ring with commuting scalars, the order of factors in the product is
immaterial.

The proof of equation (2.20) goes by induction. For # = 1, equation (2.20) holds by
virtue of equation (2.10) and (2.13). For » > 1, we suppose that equation (2.20) holds for
the matrices a(k,/) which have (n — 1) rows and columns. The sum (2.20) can be divided
into two parts, >, containing terms for which the set G, consists of the integer % alone,
and », containing terms for which G, contains other integers besides £. In >, we have
by equation (2.13).

C(a(G))) = an. (2.21)

Since equation (2.20) holds for a(k, k), >, is equal to the term with / = % in equation
(2.11). In >, we expand the factor C(a(G,)) in each term using equation (2.14), and pick
out the sum > ,; of contributions arising from a particular value of /. The G which appear
in >, are those which have the integers 2 and / together in G, and these G correspond in
one-to-one fashion with the divisions G of the integers (1, . . ., #) omitting 2 which appear
when Qdet (a(k,1)) is expanded according to equation (2.20). Since equation (2.20)
holds for a(,/), the sum >,, reproduces exactly the term in [ on the right of equation
(2.11). The signs agree by virtue of equation (2.12). Putting together >, and the 3 ,,, the
induction is complete and equation (2.20) is proved for all almost self-adjoint a.
When a is self-adjoint, the proof of equation (2.20) is still valid. In this case, every
a(G,) is self-adjoint, and we have already proved that each C(a(G,)) is then a scalar
independent of the choice of % in equation (2.14). Hence equation (2.20) defines Q det ()
as a scalar independent of the choice of % in equation (2.11). End of proof of Lemma 1.
For any matrix a over R, we define the adjoint matrix a' by

(@)= (a;)". _ (222
If a is almost self-adjoint, a' is also, and equation (2.15) implies

C(a®) = (C(a))t. (2.23)
Hence, equation (2.20) gives

Qdet (a?) = (Q det (a))1. (2.24)

It follows from equation (2.24) that Q) det (@) would have the same value if it were de-
fined with an expansion by columns multiplying from the right instead of by rows
multiplying from the left.

Another simple consequence of equation (2.20) is

Lemma 2. If a is almost self-adjoint and has two identical rows (or columns) then
Qdet (a) = 0.

Proof of Lemma 2. Let the two identical rows have indices s and ¢. Consider the
cycle-sum C(a) defined by equation (2.15). Each cyclic permutation (2.16) defines a
division G of (1, . .., %) into two sets (G',G"). The division is made by cutting tife cycle P
at two points, one between s and its successor, the other between ¢ and its successor.
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We choose G’ to be the set of the pair which contains %. If s belongs to G’, a typical term
in C(a) has the form

Bigis » 3 Tpgllp s w 5l Oaiys: = 5 hpps (2.25)
If ¢ belongs to G’, the same argument will apply with s and ¢ interchanged. Since
Asy = Qg App = A, (2.26)

the product (2.25) consists of a term of C(a(G")) corresponding to the cyclic permutation
P"=(t—f— -+ —g—t),inserted in the middle of a term of C(a(G’)) corresponding
to the cyclic permutation P'=(k >4 —> -+ >e¢—>s—>h—> -+ —>j—>Fk). If we
keep G’, G” and P’ fixed while summing over P”, all terms of C(a(G”")) appear in turn in
equation (2.25). But a(G") is self-adjoint, and therefore C(a(G")) is a scalar and commutes
with the other factors in equation (2.25). After C(a(G")) is extracted from the product,
the remaining factors when summed over P’ give C(a(G’)). We have thus proved the
identity

Cla) = g C(a(G")) C(a(G")). (2.27)

Consider now the expansion (2.20) of Q det (2). Divide the sum > into two parts
>1and 2 ,, where >, contains the terms for which both s and ¢ belong to the same subset
G,, and >, contains the terms with s and ¢ in different subsets. Each term in >, is ob-
tained from a unique term in >, by dividing G, into two parts (G,, G,). Equation (2.27)
applied to a(G,) shows that the term in 3, is equal apart from sign to the sum of all the
corresponding terms in > ,. The signs are opposite since m» changes by one in going from
>1 to >,. Therefore

21+2,=0. (2.28)
End of proof of Lemma 2.

II1. Verification of Axioms

The definitions of Study and Dieudonné preserve the multiplicative property of a
determinant (Axiom 2) but sacrifice the linearity property (Axiom 3). In contrast,
Moore’s definition (2.11) preserves Axiom 3 but sacrifices Axiom 2. It is clear that we
cannot save Axiom 2, because equation (1.1) is usually meaningless. The product of two
self-adjoint matrices 4 and & is in general neither self-adjoint nor almost self-adjoint,
and so Qdet (abd) is usually undefined. The fact that Axioms 1 and 3 are satisfied by
Moore’s definition of a determinant is expressed by [17]

Theorem 2. Let R be a ring with commuting scalars and the scalar product property.
Let a, b, c be almost self-adjoint matrices with elements in R, satisfying the conditions (1.2),
(1.3), and (2.9) for some common row-index k. Then

Qdet (a) + Q det (b) = Q det (c). (3.1)
If further the ving S of scalars in R contains no zero-divisors of R, i.e., if
r$s=0, reR, seS§ (3.2)

implies either r = 0 or s = 0, and if a is any self-adjoint matrix with elements in R, then
Qdet(a) =0 (3.3)
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1s a necessary and sufficient condition for the existence of a non-zero vector v with elements
wn R such that

av=0. (3.4)

This formulation of Axiom 1 does not require that R have no zero-divisors. We
require only that there be no scalar zero-divisors. The ring of complex quaternions,
for example, has zero-divisors but no scalar zero-divisors. The price we pay for this
weakening of the conditions on R is that we can prove Axiom 1 only for self-adjoint
matrices. For Axiom 1 to hold also for almost self-adjoint matrices, it is necessary that R
have no zero-divisors. The statement of Axiom 1 for a (1 x 1) matrix, which is auto-
matically almost self-adjoint, is just the statement that R has no zero-divisors. We do
not know whether the absence of zero-divisors is a sufficient condition for Axiom 1 to
hold for almost self-adjoint matrices. We shall return to this question in section IV.

Proof of Theorem 2. Equation (3.1) follows trivially from the definition (2.11) com-
bined with equations (1.2), (1.3). We next assume that equation (3.4) holds and prove
equation (3.3). Let % be an index for which

v # 0. (3.5)
Write

dy = €, Qdet (a(k, 1), (3.6)
so that equation (2.11) becomes

Qdet (a) = ; Ay Ay (3.7

For any j # &, the sum
? a; dy, =Qdet(a), (3.8)

where a’ is the almost self-adjoint matrix obtained from a by putting the elements of
row & equal to the elements of row 7. Lemma 2 states that Q det (2") = 0. Now equation
(3.4) with self-adjoint @ implies

vta=0. (3.9)
Thus, equations (3.7), (3.8), and (3.9) give

ZZU}aﬂdm=szdet (a) =0. (3.10)

Jj 1

Since Q det (a) is a scalar and cannot be a zero-divisor, equations (3.5) and (3.10) imply
equation (3.3). .

Next, we assume that equation (3.3) holds and find v to satisfy equation (3.4).
If a = 0 there is nothing to prove. If 2 # 0 we can define an integer p in the range

2<p<n (3.11)
such that
Q det (a(G,)(k, D) # 0 (3.12)

for some G, %, I, while
Qdet (a(G,41) (1) =0 (3.13)
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for all G,4,, &, I. Here G, means a subset containing p of the integers (1, . . ., %), a(G,)
means the matrix [4,;] with ¢, 7 in G,, and a(G,)(k,/) is defined like a(k,/) in equation
(2.11). If p = n, the condition (3.13) is empty. In any case we have for all G,

Qdet (a(G,)) =0. (3.14)

If p = n, equation (3.14) is just (3.3), and if p < # equation (3.14) is included in equation
(3.13). Now choose G, %, and ! to satisfy equation (3.12), and write

v, = 6,0 det (a(G,) (k7). j€G, (3.15)
with v; =0 for 7 not in G,. Then v 5 0. Consider the sum

For ¢ =&, s; is zero by equation (3.14). For 7 in G, with ¢ # £, s, is a determinant of a
matrix with two identical rows like equation (3.8) and is zero by Lemma 2. If 7 is not in
G,, then

sy =Q det (a(G,41) (R, 7)), (3.17)

where G,,, means the set obtained by adding 7 to G,, and this vanishes by equation
(3.13). Thus, s, =0 for all 7, which means that equation (3.4) holds. End of proof of
Theorem 2.

IV. Additional Results for Special Rings

We have been able to prove results stronger than Theorem 2 only for a restricted
class of rings R. We say that R belongs to the binary matrix class if the elements of R are
(2 x 2) matrices with conjugation defined by equation (2.8) and if the x, y, z, w (elements
of elements of R) belong to a commutative ring S. The ring of scalarsin Ris either Sora
subring of S. Every R in the binary matrix class is a ring with commuting scalars and the
scalar product property. The three special rings mentioned in section I, the real and
complex quaternions and thereal (2 x 2) matrices, all belong to the binary matrix class.
Jacobson’s theorem [14] states that every non-commutative composition algebra
belongs to the binary matrix class. For every ring R of the binary matrix class, and for
every matrix ¢ with elements in R, the Study determinant V(a) can be defined. A com-
parison of Study’s definition [5] with equation (2.20) gives the relation

V(a) = Q det (a' a). (4.1)

If R belongs to the binary matrix class, we may map each (» x #) matrix a with
elements in R onto a (2n x 27) matrix A () with elements in S. A4 (a) is obtained from a
by letting each element [x y7 of @ become a (2 x 2) block of elements in 4 (a). The

7w

mapping a — A (a) preserves the operations of matrix addition and multiplication. The
operation of conjugation is mapped according to

Afa’) =Y(A(a)T Y™, (4.2)
where T denotes transposition and Y is the matrix

0 -1
Y=I,,><[1 0}. (4.3)
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If we write

B(a) =-YA(a), (4.4)
then

B(a') = —(B(a))", (4.5)

so that a is self-adjoint if and only if B(a) is antisymmetric.

Since S is commutative, the ordinary determinant Det (4 (a)) exists and satisfies
Axioms 1, 2, and 3 as an operation on matrices in S. Also the Pfaffian Pf(B(a)) exists
when a is self-adjoint [18]. These quantities are related to quaternion-determinants as
follows.

Qdet (a'a) = Q det (aa’) = Det (4 (a)) (4.6)
for all 4, and

Q det (a) = P{(B(a)), (4.7)

[Q det (@)]? = Det (4 (a)), (4.8)

for self-adjoint a. Equation (4.6) follows from equation (4.1) and was essentially proved
by Study [5]. Equations (4.7), (4.8) were proved by Dyson [10]. The proofs assumed that
S was the ring of complex numbers, but equations (4.6) to (4.8) are polynomial identities
and therefore hold when S is any commutative ring.

As a consequence of equations (4.6) to (4.8) we can prove the following substitutes
[19] for Axiom 2.

Theorem 3. Let R be a ving of the binary matrix class. If ¢ is any matrix over R and a
any self-adjoint matrix, then

Qdet (cTac) =Qdet (cT¢c). Qdet (a). (4.9)
If a, b are two commuting self-adjoint matrices over R, then
Q det (ab) = Q det (a)-Q det (). (4.10)

Proof of Theorem 3. Since the ordinary determinant is multiplicative, equations
(4.6) and (4.8) imply

[Q det (cTac)]? = Det (A (ct ac))

—[Det (4(c))]2 Det (A (a)) = [0 det (c' ¢)]2[Q det (a)]2. (4.11)

Since both sides of equation (4.9) are polynomials in the elements of A (a) and A(c),
which belong to the commutative ring S, equation (4.11) can only hold if equation (4.9)
holds up to a sign. The sign is seen to be plus by taking a = [ ,,. Therefore equation (4.9) is
proved. Similarly, if 2 and b are self-adjoint and commuting, ab is also self-adjoint, and
equation (4.8) gives

[Q det (ab)]?> = Det [A4 (ab)] = [Q det (a)][Q det ()12 (4.12)
End of proof of Theorem 3.

It seems likely that equations (4.9) and (4.10) also hold for any ring with com-
muting scalars and the scalar product property, but we have not succeeded in proving
them more generally. We had even less success with an extension of Axiom 2 to almost
self-adjoint matrices, which we state here as
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Conjecture 1. Let R be a ring with commuting scalars and the scalar product property.
Let a, b be almost self-adjoint matrices over R, satisfying equation (2.9) with the same value
of k. Let a’ be a self-adjoint matrix differing from a only in the kth row, and let b’ be self-
adjoint and differ from b only in the kth column. If a’ and b' commute, then

Q det (ab) =Qdet (a)-Q det (). (4.13)
In particular, for any almost self-adjoint matrix a, '
Qdet (a'a) = Qdet (a)-Q det (a). (4.14)

We did not succeed in proving equations (4.13) and (4.14) even for R in the binary
matrix class. Equation (4.13) has been verified when a, b are (2 x 2) matrices, and for an
extensive class of (3 x 3) matrices. If Conjecture 1 is taken as valid, then we have as a

corollary an extension of Axiom 1 to determinants of almost self-adjoint matrices.
We state this as "

Conjecture 2. Let R be a ring with commuting scalars and the scalar product property,
and without zero-divisors. Let a be an almost self-adjoint matrix over R. Then

@ det (a) =0 (4.15)
if and only if a non-zero vector v exists with
av =0. (4.16)

Note the strengthening of the conditions on R as compared with Theorem 2,
where we required only the absence of scalar zero-dividers.

Deduction of Conjecture 2 from Congecture 1. We have been able to make this deduc-
tion only for R in the binary matrix class. Suppose that equation (4.15) holds. Then
equations (4.6) and (4.14) imply

Det (4 (a) = 0. (4.17)

Since Axiom 1 holds for ordinary determinants over S, there exists a non-zero 2#u-
component vector V' with elements in S such that

A(@)V =0. (4.18)
If the elements of v are defined by
Vayja O
v; = [ it ] (4.19)
Vay 0

v1s non-zero and satisfies equation (4.16). Conversely, if equation (4.16) holds then
atav =0, (4.20)
and Theorem 2 implies
Qdet (a'a) =0. (4.21)

Since we assume equation (4.14) to hold and R to have no zero-divisors, either
Qdet (a?) or Qdet (a) must be zero. By equation (2.24), equation (4.15) holds in either
case. End of deduction of Conjecture 2.
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V. Conclusion

This paper has raised more questions than it has answered. The only substantial
result proved with a satisfactory degree of generality is Theorem 2. We conclude with a
list of the more interesting questions that remain open.

1. Iseveryring with commuting scalars and the scalar product property equivalent
to aring in the binary matrix class? If not, can we construct a complete classification of
such rings?

2. If Ris a quaternion algebra which is also a division ring, the Dieudonné deter-
minant det (@) is defined for all 2, and Moore’s determinant Qdet (a) is defined for
almost self-adjoint . What is the relation between the two definitions?

3. The logical connections between the multiplicative properties of Qdet (a) ex-
pressed in Theorem 3 and Conjecture 1 are not clear. Is there some more general multi-
plicative property from which equations (4.9), (4.10), (4.13) can be deduced as special
cases? What is the widest class of ring R for which these properties hold?

4. Is there any natural way to extend the definition of Q det (4) to matrices which
are not almost self-adjoint?

5. How generally does Conjecture 2 hold?

If these questions can be answered, the subject of quaternion-determinants will
finally after 125 years have achieved the level of mathematical elegance and complete-
ness that Hamilton would have wished for it. Even then, it is unlikely that the applica-
tions of quaternion-determinants to physics will ever be important. Hamilton’s dream
that the quaternion algebra would be the key to the understanding of the physical
universe will remain a grand illusion. Hamilton's faith in the fundamental significance
of quaternions was perhaps, like Kant’s four categories and Jung’s four psychological
types, a manifestation of the ancient tradition of four-fold symbolism which Markus
Fierz described in his essay Die Vier Elemente. Fierz showed how that tradition pro-
duced grotesque distortions of human thought which can still be traced in the
writings of men of science from Aristotle to Jung. He might have added Hamilton and
E. H. Moore to his list. Each of them was seized in his later years with an ambition to
reconstruct the whole of mathematics in a grand design with the quaternions playing a
central role. For each of them, the end result was, in Fierz’s words, ‘ Das Symbol wird
zum Schema und dieses zum furchtbaren Bette des Prokrustes, in das die Erscheinung
nur verstiimmelt gepresst werden kann’.
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