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Helvetica Physica Acta
Vol. 45, 1972 Birkhäuser Verlag Basel

Über die Isometriegruppe einer kompakten
Mannigfaltigkeit negativer Krümmung

Markus Fierz zum 60. Geburtstag

von Heinz Huber, Basel

(12. XI. 71)

I.

Kompakte Riemannsche Flächen vom Geschlecht g > 1 lassen nur endlich viele
konforme Selbstabbildungen zu. Dieses klassische Ergebnis der Funktionentheorie ist,
wie die Uniformisierungstheorie lehrt, äquivalent mit dem folgenden
differentialgeometrischen Satz : Eine zweidimensionale kompakte Riemannsche Mannigfaltigkeit
M mit konstanter negativer Krümmung besitzt nur eine endliche Isometriegruppe
I(M). Dieser Satz bleibt aber auch dann bestehen, wenn die Dimension von M grösser
als zwei ist. In der Tat : Es gibt auf I(M) eine natürliche Topologie, welche I(M) zu einer
kompakten topologischen Transformationsgruppe von M macht ([2], p. 166-169). Daher
muss I(M) entweder eine endliche Gruppe oder eine Liesche Transformationsgruppe
von M sein ([3], Kap. V). Wäre I(M) eine Lie-Gruppe, so müsste M nicht-triviale
infinitesimale Isometrien, sog. Killingsche Vektorfelder, zulassen. S. Bochner [1] hat
aber gezeigt, dass es auf M kein nicht-triviales Külingfeld gibt.

Die vorliegende Arbeit bringt einen neuen Beweis der Endlichkeit von I(M),
welcher ohne die Theorie der kompakten Transformationsgruppen auskommt und
sogar eine obere Schranke für die Ordnung von I(M) liefert. Es wird der folgende Satz
bewiesen :

M sei eine kompakte Mannigfaltigkeit der Dimension « > 2 mit überall konstanter
Schnittkrümmung —1. Es sei 8 ihr Durchmesser, l(p) das Infimum der Längen nicht-
nullhomotoper Wege mit Anfangs und Endpunkt p auf M, X snpl(p). Dann gilt:

peM

OrdI(M) < [f„ (68 + 5A/4 4- log4(« - l))jfn (A/4)]"+1,

X

fAx)-f(Sint)«-*dt.
0

Der Beweis erfolgt in Abschnitt III, nachdem in II einige Hilfssätze über den
Poincaréschen Halbraum bereitgestellt worden sind. Die Beweismethode lässt sich so
ausbauen, dass sie auch auf Mannigfaltigkeiten mit variabler negativer
Schnittkrümmung anwendbar wird; sie liefert dann eine Schranke für die Ordnung von I(M),
in der ausser w, S, A auch die minimale und die maximale Schnittkrümmung auftreten.
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II. Hilfssätze über den Poincaréschen Halbraum

1. Der Halbraum

H {(ux,. .,uj\u, e R,u„ >0},«>2,
mit den Koordinatenfunktionen

x, (ux,. uj =u,, 1 < i < «,

und dem Masstensor

(djdx„djdxk) x-n28ik, (i)
ist eine vollständige Riemannsche Mannigfaltigkeit mit konstanter Schnittkrümmung
—1. Ist d(p,q) die Distanz der Punkte p,q e 77, so gilt:

Cosd(p, q) l+ ix-i (p)xA (q) £ (*, (p) - x, (q))2. (2)
i=i

Daraus ergibt sich leicht das

Lemma 1. Vor.:d(p,q) < 8,8 > 0.

Beh.:

2(Xt(P)-xt(q))2<(es-l)2x2(q).
i-l
2. Unter einer Geodätischen in 77 verstehen wir eine Abbildung y : R -> 77 derart,

dass y ein Parallelfeld längs y ist. Dann ist \\y(t)\\ const; ist diese Konstante # 0, so
soll y eine eigentliche Geodätische heissen. Ist 77p der Tangentialraum von 77 im Punkte
p und A e 77p, so definieren wir: exp A p(l), wobei p die eindeutig bestimmte
Geodätische mit p(0) =p, /1(0) A ist. Dann gilt für jede Geodätische y:

y(r + t) =expty(r).
Die negative Schnittkrümmung und der einfache Zusammenhang von 77 sind bekanntlich

für folgende Tatsachen verantwortlich :

a) A ->- expA ist eine bijektive Abbildung von 77p auf 77.

b) d(p,expA) \\A\\.
c) Ist x:[a,b] -> 77 ein stückweise glatter Verbindungsweg der Punktep und exp^4,

dessen Länge gleich der Distanz dieser Punkte ist, so verläuft a ganz auf dem

geodätischen Segment {exptA |0 < t < 1}.

3. Ist y eine Geodätische und y, (t) x, (y(t)), so erfüllen die Funktionen
y,,. yn ein System von « Differentialgleichungen zweiter Ordnung, insbesondere gilt :

— | — | 0 für i-l, ...,«•dt\y2J
l. (i)

Daraus ergibt sich sofort das

Lemma 2. Ist y eine Geodätische mit

y(0) =p0 (0 0,1), y(0) p(djdxJPo,

so ist x, (y(t)) 0 für i 1, ...,« — 1.
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Lemma 3. Vor.: Ax, A„_x eHPo, det(x,(expAk))x^,ik<n_x^O.

Beh.: Ax, An_x, (djdxJPo sind linear unabhängig.

Beweis: Setzen wir

yik(t)=x,(exptAk),
so gilt für k 1, n — 1 :

y,k(0) 0, 1<»<»-1, ynk(0) l, (2)

Ak=2ylA0)-(dldx,)P(>. (3)
(-1

Nach (1) gilt:

!(iH' (U-' -¦>¦
Daraus und aus (2) ergibt sich :

y',At)=y'tk(0)-yn\(t).
Somit wird für », k «¦ 1, ...,» — 1

i

x, (expAk) ylk (1) -y,k (0) y',k (0) • f y2k (t) dt.
o

Daher folgt aus unserer Voraussetzung :

det(y'tk(0))i<,,»<„_, *0.
Daraus und aus (3) folgt aber die Behauptung.

4. Ist y eine eigentliche Geodätische, so ist auch

p(t)=y(at + b), a^O, (1)

eine solche. Zwei Geodätische y, p, zwischen denen eine Beziehung (1) besteht, sollen
äquivalent heissen : y ~ p..

Lemma 4. Vor.: Es sei T ein Element der Isometriegruppe 7(77). yx,y2 seien eigentliche

Geodätische und es gelte :

T(yi(t))=y,(t + a,), (» 1,2).

Beh.:

a) Aus «, a2 0 folgt ax a2 0.

b) Aus a, a2 # 0 folgt y, ~ y2.

Beweis von a: Nehmen wir etwa ax 0 an, so gilt V« > 1 :

d(y, (t),Yi (*)) d(T"yx (t), T»y2 (t)) d(yx (t),y2 (t + na2))

d(yi (t),y2 (t + na2)) < d(y2 (t),yx (t)) + d(yx (t),y2 (t + na2)),

und somit

%2 (t), Y2 (t + na-)) < 2d(yx (t),y2 (t)) V« > 1. (2)
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Andererseits ist y2 (t + na2) expna2y2 (t) und daher nach 2b:

d(y2 (t), 72 (t + na2)) =n\a2\- \\y2 (t)\\. (3)

Aus (2), (3) folgt aber wegen ||y2 (t)\\ # 0: a2 0.

Beweis von b: Setzen wir p,(t) =yi(a,t), so sind px, p2 wieder eigentliche
Geodätische und es gilt :

Yt ~ P-i (4)

T(p,(t))=p,(t + 1), (» 1,2).
Daraus folgt

V« e l:d(px (t + n),p2 (t + «)) d(T"px (t), Vp2 (t)) d(px (t),p2 (t)). (5)

Nun gilt aber der leicht zu beweisende1) Satz : Sind px,p2 eigentliche Geodätische und
ist px (tx) # p2(t2)Vtx, t2 e R, so ist lim d(px (t), p2(t)) œ oder lim d(px (t), p2 (t)) oo.

t—?-(-CO t—* — CO

Daher folgt jetzt aus (5) die Existenz von tx, t2 derart, dass px (tx) p2 (t2). Setzen wir
v,(t)=p,(t, + t), so gilt:

P-i-Vi, (6)

vx(0)=v2(0), (7)

T(v,(t)) v,(t+1), (»'=1,2). (8)

Aus (7) und (8) ergibt sich : vx (1) v2 (1). Daraus und aus (7) folgt aber nach 2a: v, v2.
Somit folgt aus (4), (6) die Behauptung. Ein anderer Beweis von Lemma 4b findet sich
in [4].

III. Beweis des Satzes

1. Bekanntlich gibt es eine längentreue Abbildung o-:77 -> M, welche 77 zur
universellen Überlagerungsmannigfaltigkeit von M macht; es sei 27<= 7(77) die zugehörige
Deckgruppe. Mit U e 7(77) ist auch -n a o U~* eine längentreue Überlagerungsabbildung

von 77 auf M mit der Deckgruppe/7 UUU^1. Wir werden nun, ausgehend von a,
eine Abbildung ir mit ausgezeichneter Deckgruppe konstruieren:

2. Es gibt eine längen treue Überlagerungsabbildung tt:H-*M, deren
Deckgruppe PI folgende Eigenschaften hat :

a) Es gibt ein Element T0 e PI und eine eigentliche Geodätische y0 : IR -> 77 derart,
dass

To(Yo(t))=Yo(t + l), (1)

yo(0)=A,= (0,...,0,l), yn(0)=p(dldxj„o, 0<P<X, (2)

d(T0pn,p0)=P<X. (3)

h) Zu jedem p e 77 gibt es S eil mit d(Sp,p0) < 8.

Man zeigt, dass f(t) d2 (p, (t), p2 (t)) eine überall positive zweite Ableitung besitzt. Dies gilt
sogar auf jeder einfach zusammenhängenden vollständigen Mannigfaltigkeit mit überall negativer

Schnittkrümmung.
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3. Beweis von 2:

3.1. Wir zeigen zunächst :

Zu/>, q 6 77 3 S s 27 mit d(Sp,q)<8. (1)

In der Tat : Da M kompakt ist, gibt es ein geodätisches Segment auf M, das a(q) mit a(p)
verbindet und dessen Länge < 8 ist. Der von q ausgehende Überlagerungsweg dieses

Segmentes hat die gleiche Länge und endet in einem Punkt Sp mit S e 27.

3.2. Wir definieren

/>= inf d(Sq,q), (27' E-{id}), (1)
SeS'.qeH

und zeigen :

3S0e27',?0e77: d(S0q0,q0)=p (2)

0 < p < A. (3)

3.3. Beweis: Wir wählen einen festen Punkt q e 77 und Folgen {/>fc}"_, <= 77,

{SJT-i <= 27' derart, dass d(Sk pk, pk) -> p. Dann gibt es nach 3.1(1) Rke 27 so, dass

d(Rkpk,q) < 8. Setzen wir qk Rkpk, Sk RkSkRk~l, so gilt:
5^27', (1)

d(S'kqk,qk)->p, (2)

d(qk,q)<8. (3)

Wegen (3) dürfen wir überdies annehmen, dass die Folge {qk} konvergent ist :

9k -> ?o- (4)

Wegen (2), (3) gibt es eine positive Zahl x so, dass V£ > 1

S'kqkeKq(x)={p\d(p,q)<x}.

Da andererseits wegen (3) S'kqk eS'k(Kq(8)), so folgt:

Kq(x)\AS'k(Kq(8))^0 V£>1. (5)

Da 27 eigentlich diskontinuierlich auf 77 wirkt, ist aber

{Se27|7C9(a)nS(7s:<J(S))^0}

eine endliche Menge. Somit folgt aus (1) und (5) : Es gibt eine Teilfolge {&/}7=i und ein
S0 e27' so, dass S'k= S0 V/ > 1. Daraus und aus (2), (4) folgt aber die Behauptung
3.2(2). Aus ihr ergibt sich auch p > 0, denn S0 e 27' ist fixpunktfrei. Offenbar gilt :

l(o(q))= ini.d^q.q).
Se_E

Daraus folgt nach 3.2(1) : p < l(a(q)) < A. Damit ist auch 3.2(3) bewiesen.

3.4. Es sei p : R ->- 77 die eindeutig bestimmte Geodätische mit

ri(°)=?o. Ml)=5o?o-
Dann gilt nach II.2 und 3.2(2) :

\\p(t)\\ const d(S0q0,q0) p. (1)
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Wir zeigen :

S0(p(t))=p(t+1) VieR. (2)

3.5. Beweis: Sei r e (0,1). Der Weg

lp.(t) für<e[r,l]
t -> aT (t) - (So(^(f-l)) für < e [1,1 + t]

ist ein stückweise glatter Verbindungsweg der Punkte /x(t) und S0 (^i(t)) ; er besitzt
wegen 3.4(1) die Länge L(xr) p. Daher gilt: p 7_(aT) > ^0_i(t),SOjh(t)). Andererseits
ist aber nach 3.2(1) p < d(p(r),S0p(T)) und somit

L(«T)=p i(/x(r),S0^(r)). (1)

Es sei nun A e 77M(T) der eindeutig bestimmte Vektor mit

expA=S0p(r); (2)

dann gilt nach II.2b und (1) :

\\A\\ d(p(T),Snp(T))=p. (3)

Da die Länge des Verbindungsweges xT der Punkte p(r) und S0p(r) gleich der Distanz
dieser Punkte ist, so muss xT nach II.2c ganz auf dem geodätischen Segment
{exptA |0 < t < 1} verlaufen. Daher gibt es t0 e [0,1] so, dass

p(l) xT(l) expt0A. (4)

Andererseits gilt

p(r + t) exptp.(r), (5)

und daher insbesondere

p(l)=exp(l-T)p(r). (6)

Da aber die Abbildung exp :77^(T) ->- 77 injektiv ist (II.2a), so folgt aus (4) und (6) :

(l-T)p(r)=tnA, (l-T)\\p(T)\\=tn\\A\\.

Daraus ergibt sich wegen (3) und 3.4 (1) : p(r) A. Somit folgt aus (5) und (2) :

p(T+l)=S0(p(r)), tg (0,1).

Die beiden Geodätischen px (t) p(t + 1) und p2 (t) S0 (p(t)) stimmen also im Intervall
(0,1) überein und daher auf ganz R.

3.6. Die beiden Tangentialvektoren

p(0)eHqo, p(djdxn)Ps), (p0 (0,...,0,l)),
haben nach 3.4(1) und 11.1(1) die gleiche Norm. Daher gibt es U e 1(H) so, dass

U(q0)=Po, U*(p(0))=p(djdxn)Po.

Nun haben offenbar -n a o U~l, 77= UZU~l, TQ US0 U~\ y0 U o p die in 2
behaupteten Eigenschaften.
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4. Wir kommen jetzt zu einem ganz wesentlichen Punkt unseres Beweises; wir
zeigen: Es gibt Elemente Tx, T„_x eil und zugehörige eigentliche Geodätische

Yu ¦ - •• Yn-i derart, dass

Tk(yk(t))=yk(t + 1), (k l n-l), (1)

det(*i(y*(0))),<l.*«^nÉ0 (2)

yk nicht äquivalent y0 für k 1, ...,«— 1, (3)

d(Tkp0,p0)<A8 + X + logA(n-l), (k 1,...,«- 1). (4)

5. Beweis: Wir betrachten die Punkte

qk=(f8Xk,. .,r8„_Xik,ar)eH, (k 1,. .,«- 1), (1)

r (14- a2)-1'2, a-1 (« - 1)1/2 (es - 1).

Nach 2b gibt es S,, S„_x e PI so, dass

d(Skiqk,p0)<8. (2)

Dann ist d(Sk p0, qk) < 8 und somit nach Lemma 1 :

"2 (xi (Skpo) - r8,k)2 < (e* - l)2 a2 r2 r2jn - 1,

2(xt(Skpo)-r8,k)2<r2. (3)
t,k-l

Daraus folgt aber

àet(x,(Skpn))x<l k^n_x=£0.

Andernfalls gibt es nämlich A,, A„_, e K derart, dass

n-l
2xi (SkPo)K=0, (*' !,- -,n-l),

2A2 1.
(1-1

(4)

Daraus ergibt sich :

r2 A? [ "2 (xi (SkPo) - r8,k)Xk Y <"f (*, (S^0) - ^.t)2.
L*-i J *=i

r2< 2 (xi(SkPo)-r8,k)2,
l,k-l

ein Widerspruch zu (3).
Setzen wir jetzt

Tk skToSk1, Yk Sk°Yo, (k=l ,n-l),
so folgt 4(1) aus 2(1), 4(2) aus (4) und 2(2). Wäre eine der Geodätischen yt, (k 1,

« — 1), äquivalent y0, so wäre wegen 2(2) und Lemma 2 x,(yk(0)) 0 für » 1,
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« — 1. Das widerspricht aber der schon bewiesenen Behauptung 4(2). Damit ist auch
4(3) nachgewiesen. Mit 2(3) und (2) ergibt sich:

d(TkPo,po) d(Sk T0SklPo,Po) d(T0Sk^p0,S:1 p0)

<d(TnSk1pQ,Tnp0) +d(Tnpn,pn) + d(pQ, S^ ' pn)

2d(S;lp0,p0) + d(T0p0,p0) <2d(Skip0,p0) + X

d(SklPo,Po) < d(SklPo,S:1 qk) + d(Skl qk,p0) < d(p0,qk) + 8

Daraus folgt :

d(Tkp0,p0)<28 + X + 2d(p0,qk). (5)

Aus (1) ergibt sich nach 11.1(2) :

Cosd(p0,qk) (1 + a"2)1'2 [l + (n- l)(es - l)2]1'2 < (n-l)ll2es,

e*Oo.<U < 2Cosd(p0,qk) < 2(n - l)l/2 es,

2d(p0,qk)<28 + logA(n-l).
Somit folgt aus (5) die Behauptung 4 (4).

6. Aus 7? e 7(77) und RTk TkR für k 0, 1, ...,«- 1 folgt: 7? id.

7. Beweis: Wegen 2(1) und 4(1) gilt für k 0, 1, ...,»— 1 :

R(yk (t + 1)) RTk (yk (t)) Tk R(yk (t)). (1)

Für die eigentliche Geodätische pk Ro yk gilt somit :

pk(t+l) Tk(pk(t)), (k 0,l,...,n-l).
Daraus und aus 2(1), 4(1) folgt aber nach Lemma 4b: pk ~ yk. Daher gibt es Zahlen
ak, bk so, dass

R(Yk(t))=Yk(aA + bk), (k 0,1,...,n-l). (2)

Setzen wir dieses in (1) ein, so kommt

Yk (akt + ak + bk) TkYk (akt + bk) yk (akt + bk+l).
Daraus folgt, da yk: R ->- 77 injektiv ist: ak=l. Somit folgt aus (2) :

R(Yk(t))=yk(t + bk), (k 0,l,...,n-l). (3)

Daraus und aus 4(3) folgt jetzt nach Lemma 4b: bkb0 0, und daher nach Lemma 4a:
bk b0 0 für k 1, n — 1. Somit folgt aus (3) :

R(Yk(t)) Yk(t), (k 0,1,...,n-l). (4)

Daraus ergibt sich zunächst für k 0 wegen 2(2) :

R(Po)=Po, RA(SldxJPo) (djdxJPo. (5)

Für k=l, ...,«— 1 sei AkeHPo der eindeutig bestimmte Vektor mit

exp^, yt(0). (6)
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Da wegen Re 1(H)

exp R* (A) R(expA) MA e H„o, (7)

so folgt mit (6) und (4) : exp 7?* (Ak) exp_4fc. Da exp: 77Po -s- 77 injektiv ist, ergibt sich
daraus

R*(Ak)=Ak, (k=l «-1). (8)

Wegen (6) und 4(2) gilt :

det(x,(expAk))x^,<k^n_x #0.
Daher bilden die « Vektoren

AX,...,A„_X, (d/dxJPo

nach Lemma 3 eine Basis von 77Po. Somit folgt aus (5) und (8), dass 7?» auf 77Po die Identität

ist. Daraus folgt aber wegen (7) und II.2a: 7? id.

8. Es gibt einen Punkt px e 77 mit

d(Po,Pi)<* (1)

derart, dass gilt :

AusS e 77, d(Spx,px) < X folgt : S id. (2)

9. Beweis: Offensichtlich gilt

K«(P)) =f(P) (1)

mit

f(P)= inf d(Sp,p), (LT=n-{id)). (2)
SelT

Aus

d(Sq, q) < d(Sq,Sp) + d(Sp,p) + d(p, q) d(Sp,p) + 2d(p, q)

folgt: f(q) <f(p) + 2d(p,q). Vertauschung von p mit q ergibt: |/(^>) — f(q) | < 2d(p,q).
Daher nimmt/ auf dem Kompaktum KPo (8) ein Maximum an : Es gibt einen Punkt px
mit d(p0,px) < S derart, dassf(p) <f(px) für ahep e KPq(8). Daraus folgt wegen (1) :

l(TT(p))<l(T7(px))VpeKPa(8). (3)

Nach 2(b) ist aber n(KPo (8)) M. Somit folgt aus (3) : /(tt^,)) A. Daher ist wegen (1)

f(px) X. Daraus und aus (2) ergibt sich aber die Behauptung.

10. Wir betrachten nun den Normalisator

n* {Uei(H)\unu~1=n} U)

und die Abbildung U ->- U von 77* in I(M), welche folgendermassen definiert ist :

Û(p) rr(U(q)), qerr-l(p), peM.
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Diese Abbildung ist ein Homomorphismus von 77* auf I(M) mit dem Kern 77. Daher
wird

Ord7(M)=[77*:77], (2)

und wir haben nun diesen Gruppenindex abzuschätzen.

11. Zu diesem Zwecke betrachten wir das kartesische Produkt

§ 77"+1 {p =(£,,...,^+1)|^e 77}.

Wir machen § zu einem metrischen Raum, indem wir die Distanz der Punkte
p (px,. .,pn+x), q (qx,. qn+x) definieren durch

d*(V,q)= Max d(p„q,). (1)
l<i<B+l

Die Kugeln dieses Raumes sind kartesische Produkte:

£„ (r) {q e $>\d* (p, q) < r) BPl (r) x • • • x BPn+l (r) (2)

Bp(r)={qeH\d(p,q)<r}.
Es sei m das bezüglich 7(77) invariante Mass auf 77:

dm x~"dxx A • ¦ • A dx„.

Dann gilt :

m(Bp(r))=cJn(r), (3)

wobei cn eine nur von n abhängige positive Konstante ist und

r

fAr)~j(Sint)»-ldt. (4)

o

Das Mass m auf 77 induziert ein Mass m* auf dem kartesischen Produkt § 77n+1.

Wegen (2), (3) gilt:

™* (fl„ W) Et m(B (r)) c^/T1 (r). (5)
.-i '

12. Es sei jetzt h eine natürliche Zahl < [77*:77]. Dann gibt es Elemente
Vx, Vh ePI* derart, dass

V,*Vj iüri^j, (1)

d(V,p0,p0)<8. (2)

In der Tat : Wir wählen zunächst Ux, Uhe PI* derart, dass U, U~l $ PI für » # j.
Nach 2(b) gibt es S, ePI so, dass d(S, (U,pn),p0) < 8. Die Elemente V, S, U, haben
dann die gewünschten Eigenschaften.

Nun betrachten wir die Punkte

?o (Po,--;Po)e& (3)

Pt (VtPu V, T0px, V, Txpx, ...,V, Tn_xpx), (» 1 h).
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Dann ist nach 11(1)

d*(Vo,v,)= Max {d(p0,V,px),d(Pn,V,Tkpx)}. (4)
0< k«.«-1

Wegen (2) und 8(1) gilt:
d(Po, V,px) < d(p0, V,p0) + d(V,p0, V,px)

- d(Po, V,po) + d(p0,px) < 2S. (5)

Ferner gilt für k — 0, 1, ...,» — 1 :

d(Po, V, Tkpx) < d(p0, V,p0) + d(V,p0, V, Tkp0) + d(V, Tkp0, V, Tkpx)

d(p0, V,p0) + d(p0, Tkp0) + d(p0,px)

<28 + d(p0,Tkp0).

Daraus folgt nach 2(3) und 4(4) :

d(Po, V, TQpx) <28 + X,

d(p0,V,Tkpx)<68 + X + logA(n-l), (k 1,. .,n- 1). (6)

Aus (4), (5), (6) ergibt sich nun:

rf*(Po,p.)<6S + A4-log4(«-l), (» 1 h). (7)

Setzen wir

Ru^VAVj, l<i,j<h, (8)

so gilt wegen T0, Tx, Tn_x ePI, RtJ ePI*:

TkiRr/TkRtJen, (k 0,l,...,n-l). (9)

Ferner gilt :

rf(V7?f/ TkR,jpx,px)=d(TkRi]px,Ri]Tkpx)

< d(Tk Rupx, Tkpx) + d(Tkpx, R,j Tkpx)

d(Rupx,p,)+d(Tkpx,RuTkpx)

d(VjPx, V,px) + d(V, Tkpx, Vj Tkpx).

Daraus folgt wegen (3) und 11(1) :

d(TkiRT/TkR,Jpx,px)<2d*(p„pJ), (k 0,l,...,n-l). (10)

Damit zeigen wir nun :

d* (Pt, Vj) > A/2 fiirtVy, 1<»,;'<ä. (11)

In der Tat: Aus d* (p„-pj) < A/2 folgt wegen (10) und (9) nach 8(2) : RtJ Tk TkRu für
k 0, 1,...,«— 1. Daraus folgt aber nach 6: RtJ id. Somit muss wegen (8) und (1)

i=j sein.
Die Ungleichungen (11) besagen aber, dass die Kugeln

£p.(A/4), 1<»<Ä,
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paarweise disjunkt sind. Andererseits sind diese Kugeln wegen (7) enthalten in der
Kugel fiPo (68 4- 5A/4 4- log4(« - 1)). Daher gilt :

2 tn* (£p, (A/4)) < m* (2Po (68 4- 5A/4 + log4(« - 1))).

Daraus folgt nach 11 (5) :

h < [/„ (68 4- 5A/4 4- log4(« - l))//„ (A/4)j»+'.

Da nun diese Ungleichung für jede natürliche Zahl k < [77* :77] gilt, so schliessen wir,
dass [77*: 77] endlich ist und sogar

[77* :77] < [/„(68 + 5A/4 + log 4(« - l))//.(A/4)]"+1.

Wegen 10(2) ist damit unser Satz bewiesen.
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