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Helvetica Physica Acta
Vol. 45, 1972 _ Birkhéiuser Verlag Basel

Uber die Isometriegruppe einer kompakten
Mannigfaltigkeit negativer Krimmung

Markus Fierz zum 60. Geburtstag
von Heinz Huber, Basel

(12. XI. 71)
IO

Kompakte Riemannsche Flichen vom Geschlecht g > 1 lassen nur endlich viele kon-
forme Selbstabbildungen zu. Dieses klassische Ergebnis der Funktionentheorie ist,
wie die Uniformisierungstheorie lehrt, dquivalent mit dem folgenden differential-
geometrischen Satz: Eine zweidimensionale kompakte Riemannsche Mannigfaltigkeit
M mit konstanter negativer Kriimmung besitzt nur eine endliche Isometriegruppe
I(M). Dieser Satz bleibt aber auch dann bestehen, wenn die Dimension von M grdsser
als zwei ist. In der Tat: Es gibt auf /(M) eine natiirliche Topologie, welche I(M) zu einer
kompakten topologischen Transformationsgruppe von M macht ([2], p. 166-169). Daher
muss /(M) entweder eine endliche Gruppe oder eine Liesche Transformationsgruppe
von M sein ([3], Kap. V). Wire /(M) eine Lie-Gruppe, so miisste M nicht-triviale
infinitesimale Isometrien, sog. Killingsche Vektorfelder, zulassen. S. Bochner [1] hat
aber gezeigt, dass es auf M kein nicht-triviales Killingfeld gibt.

Die vorliegende Arbeit bringt einen neuen Beweis der Endlichkeit von I(M),
welcher ohne die Theorie der kompakten Transformationsgruppen auskommt und
sogar eine obere Schranke fiir die Ordnung von I(M) liefert. Es wird der folgende Satz
bewiesen:

M sev eine kompakte Mannigfaltigheit der Dimension n > 2 mat iiberall Ronstanter
Schnittkriimmung —1. Es sei 8 thr Durchmesser, [(p) das Infimum der Léingen nichi-
nullhomotoper Wege mit Anfangs und Endpunkt p auf M, X = supl(p). Dann gilt:

peM

Ord I(M) <[f, (68 + 5A/4 + log 4(n — 1)) [f, (\/4)]"*!,
ful®)= f (Sin#)"! dt.
0

Der Beweis erfolgt in Abschnitt III, nachdem in II einige Hilfssitze iiber den
Poincaréschen Halbraum bereitgestellt worden sind. Die Beweismethode ldsst sich so
ausbauen, dass sie auch auf Mannigfaltigkeiten mit variabler negativer Schnitt-
kriimmung anwendbar wird; sie liefert dann eine Schranke fiir die Ordnung von I (M),
in der ausser 7, 8, A auch die minimale und die maximale Schnittkriimmung auftreten.
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II. Hilfssitze iiber den Poincaréschen Halbraum
1. Der Halbraum

H={(u,...,u)|lu,eR, u,>0}n=>2,
mit den Koordinatenfunktionen
RpWis0 0 ally) =Y l£in,
und dem Masstensor
(9/0x;,8/0x,) = %37 8y, (1)

ist eine vollstindige Riemannsche Mannigfaltigkeit mit konstanter Schnittkriimmung
—1. Ist d(p,q) die Distanz der Punkte p,q € H, so gilt:

Cosd(p,q) =1 +453" (Hra' (@) 3 (3, (B) — 7 (@))*- @)

i'-l

Daraus ergibt sich leicht das
Lemmal. Vor.:d($,q) < 6,8 > 0.
Beh.:

n—1

2 (% (p) — % (@)* < (€® — 1)24% (g).

i=1

2. Unter einer Geoditischen in H verstehen wir eine Abbildung y:R — H derart,
dass y ein Parallelfeld lings y ist. Dann ist |y (#)|| = const; ist diese Konstante # 0, so
soll y eine eigentliche Geoditische heissen. Ist H, der Tangentialraum von H im Punkte
pund 4 € H,, so definieren wir: expA4 = u(1), wobei p die eindeutig bestimmte Geo-
dédtische mit u(0) = p, 1(0) = 4 ist. Dann gilt fiir jede Geoditische y:

y(T + 1) = exply(r).
Die negative Schnittkriimmung und der einfache Zusammenhang von H sind bekannt-
lich fiir folgende Tatsachen verantwortlich:

a) A — expA ist eine bijektive Abbildung von H, auf H.

b) d(p,expd)=|A].

c) Ista:[a,b] - H ein stiickweise glatter Verbindungsweg der Punkte p und exp A4,
dessen Linge gleich der Distanz dieser Punkte ist, so verlduft « ganz auf dem
geoditischen Segment {exptA4|0 << 1}.

3. Ist ¢ eine Geoditische und y,(f) = x;(y()), so erfiilllen die Funktionen

Y1, - - - Yne€in System von z Differentialgleichungen zweiter Ordnung, insbesondere gilt :
d ’
() =0 firi=1,...n—1 (1)
dt \ y2

Daraus ergibt sich sofort das

Lemma 2. Ist y eine Geoditische mit

Y(0) =po=(0,...,0,1), 9(0) = p(9/0x,),,,
soist x;(y(f) =0fire=1,...,n—1.
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Lemma 3. Vor.: A,, ..., A,y € H,, det(x;(expA )1 <1,k <n-1 # 0.
Beh.: Ay, ..., An_y, (0/0%,),, sind linear unabhéngig.
Bewers: Setzen wir
Y (f) = x, (expid,),
sogilt firk=1,...,n—1:
Yu(0) =0, 1<i<n—1, yu0)=1, (2)

Z yik a/axi) (3)

Nach (1) gilt:
@ (yu
—1=1]=0, (¢,k=1,...,n-1).
at (y,?x) o =L
Daraus und aus (2) ergibt sich:

Yie®) =Y (0)‘J’n2k (#).
Somit wird fiirz, k=1, ..., n—1

% (expAy) =Y (1) — ¥ (0) =5 (0 fynk

Daher folgt aus unserer Voraussetzung:

det (¥4 (0))1 <1, k <n—1 # 0.
Daraus und aus (3) folgt aber die Behauptung.

4. Ist y eine eigentliche Geoditische, so ist auch
p(t) =vylat +b), a#0, (1)

eine solche. Zwei Geoditische y, u, zwischen denen eine Beziehung (1) besteht, sollen
dquivalent heissen: y ~ u.

Lemma4. Vor.: Essei T ein Element der Isometriegruppe I(H). y,, y, seien eigent-
liche Geoditische und es gelte:

Ty:@)=v:¢+a), (=1,2).

Beh.:

Ausa,a,=0 folgta,=a,=0.
Ausa,a, #0 folgty, ~ y,.

ZE8

Bewers von a: Nehmen wir etwa a; =0 an, so gilt Vu > 1:

dlyy (), y2 (&) = a(T"y1 (), T"y2 (t)) = d(y: (1), y2 (¢ + nay))

d(yy (1), y2 (t + may)) < d(yy (1), 1 (1) + d(y, (), y2 (¢ + nay)),
und somit

d(yy (t), y2 (t + nay)) < 2d(y, (8),y,(f)) Vn>1. (2)
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Andererseits ist y, (¢ + na,) = expna, y, (f) und daher nach 2b:

d(yz (8), y2 (t + may)) = nlay| - [y, (). (3)
Aus (2), (3) folgt aber wegen ||y, (¢)|| # 0: a; = 0.

Beweis von b: Setzen wir u,;(f) = v, (a;t), so sind u,, u, wieder eigentliche Geo-
datische und es gilt:

Yi~ Hi (4)
Tp () =pat+1), (1=1,2).
Daraus folgt

VneZ:d(u, (¢ +n),p ¢ +n) =d(T"p (@), T" py () = d(py (), 2 (8)).- (5)

Nun gilt aber der leicht zu beweisende') Satz: Sind u,, u, eigentliche Geoditische und
ist w) (£)) # pa (£2) Ve, ¢, € R, soist im d(u, (2), p, (f)) = o oder lim d(u, (£), p, (f)) = .
t

t— -+ =0

Daher folgt jetzt aus (5) die Existenz von ¢,, ¢, derart, dass u, (¢,) = u, (£,). Setzen wir
Vi (t) = !‘Li (t! + t), SO gllt'

K~ Vi, (6)
v1(0) = ,(0), (7)
T(Vi (t)) =V (t+ 1)’ (7'= 1!2) (8)

Aus (7) und (8) ergibt sich: v, (1) = v, (1). Daraus und aus (7) folgt aber nach 2a: v, = v,.
Somit folgt aus (4), (6) die Behauptung. Ein anderer Beweis von Lemma 4b findet sich
in [4].

ITI. Beweis des Satzes

1. Bekanntlich gibt es eine lingentreue Abbildung o: H — M, welche H zur uni-
versellen Uberlagerungsmannigfaltigkeit von M macht; es sei X < I(H) die zugehdrige
Deckgruppe. Mit U € I(H) ist auch 7 = 0 0 U~! eine lingentreue Uberlagerungsabbil-
dung von H auf M mit der Deckgruppe IT = UZU~!. Wir werden nun, ausgehend von o,
eine Abbildung 7 mit ausgezeichneter Deckgruppe konstruieren:

2. Es gibt eine lingentreue Uberlagerungsabbildung #:H — M, deren Deck-
gruppe IT folgende Eigenschaften hat:

a) Es gibt ein Element T, € IT und eine eigentliche Geoditische y,:R — H derart,
dass

To(yo(®) =vo(t+1), (1)
Yo (0)=P0= (O» o 1 ] 1): 7}0(0)=P(a/axn)po’ 0<P‘<~’\: (2)
a(To po, Po) = p<A (3)

b) Zu jedem p € H gibt es S € Il mit d(Sp,p,) < O.

') Man zeigt, dass f(t) = d?(p, (), p, () eine iiberall positive zweite Ableitung besitzt. Dies gilt
sogar auf jeder einfach zusammenhingenden vollstandigen Mannigfaltigkeit mit iiberall nega-
tiver Schnittkriimmung.
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3. Beweis von 2:
3.1. Wir zeigen zunichst:
Zup,ge HIS e Xmit d(Sp, ) < 8. (1)

Inder Tat: Da M kompakt ist, gibt es ein geoddtisches Segment auf M, das o(g) mit o(p)
verbindet und dessen Linge < § ist. Der von g ausgehende Uberlagerungsweg dieses
Segmentes hat die gleiche Linge und endet in einem Punkt Sp mit S € 2.

3.2. Wir definieren

p=_inf d(Sq,q), (2'=2Z-{id}), (1)
5eX’,qeH
und zeigen:
ISoe 2", 90 € H: d(So90,90) = p (2)
0<p<A (3)

3.3. Bewers: Wir wihlen einen festen Punkt ¢ € H und Folgen {$;}%_; < H,
{Si}5-1 = 2" derart, dass d(S; py, pi) — p. Dann gibt es nach 3.1(1) R, € 2 so, dass
A(Rypr,q) < 6. Setzen wir g, = R, p,, S; = R, S, R, !, so gilt:

S.e2’, (1)

A(Sk g 9) —> P (2)

4(qr, ) < 9. (3)
Wegen (3) diirfen wir iiberdies annehmen, dass die Folge {g,} konvergent ist:

9k = Jo- (4)

Wegen (2), (3) gibt es eine positive Zahl « so, dass Vk > 1

Sk € Kq(o) ={pld(p,9) < o}
Da andererseits wegen (3) S, ¢, € S, (K,(8)), so folgt:

K, () NS, (K,(8)# & Vk>1. (5)
Da 2 eigentlich diskontinuierlich auf H wirkt, ist aber

(Se 2K, () NS(K, () # 2}

eine endliche Menge. Somit folgt aus (1) und (5): Es gibt eine Teilfolge {%,}%_, und ein
Sp € 2" so, dass Sy =S, Vj > 1. Daraus und aus (2), (4) folgt aber die Behauptung
3.2(2). Ausihr ergibt sich auch p > 0, denn S, € 2" ist fixpunktfrei. Offenbar gilt :

l = inf d :
(o(g) = inf d(S7,9)
Daraus folgt nach 3.2(1): p < (o(g)) < A. Damit ist auch 3.2(3) bewiesen.

3.4. Es sei u:R — H die eindeutig bestimmte Geoditische mit

p(0) =qo, p(l) =Sy 4.
Dann gilt nach II.2 und 3.2(2):

()| = const = d(Sq g0, o) = p- (1)
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Wir zeigen:
So(u(®) =plt+1) VieR. (2)
3.5. Beweis: Sei 7 € (0,1). Der Weg

w(?) firte[r,1]
t— o (f) =
adl So(pu(—1)) firtell, 1+ 7]

ist ein stiickweise glatter Verbindungsweg der Punkte u(7) und Sy (u(7)); er besitzt
wegen 3.4(1) die Lange L(«,) = p. Daher gilt: p = L(«,) > d(u(7),So (7). Andererseits
ist aber nach 3.2(1) p < d(u(7),Sou(7)) und somit

L(a,) = p=d(u(1),So (7). (1)
Es sei nun 4 € H,(,, der eindeutig bestimmte Vektor mit

expAd =Sou(r); (2)
dann gilt nach II1.2b und (1):

41l = d(u(r), So u(r)) = p. 3)

Da die Linge des Verbindungsweges «, der Punkte wu(7) und Sou(7) gleich der Distanz
dieser Punkte ist, so muss «, nach II.2c ganz auf dem geoditischen Segment
{exp?A|0 < ¢ < 1} verlaufen. Daher gibt es #, € [0,1] so, dass

u(l) = o, (1) = expto 4. @
Andererseits gilt

wlr + 1) = expp(r), (5)
und daher insbesondere

w(1) = exp (1 — 7)fu(r). (6)

Da aber die Abbildung exp : H ,,, — H injektiv ist (II.2a), so folgt aus (4) und (6):
(L=7)p(r) =t 4, (1 —7)lla(7)ll = bo I All

Daraus ergibt sich wegen (3) und 3.4 (1): i(r) = A. Somit folgt aus (5) und (2):
p(r+1) =S (u(r)), 7€(0,1).

Die beiden Geoditischen u, (f) = p(f + 1) und p, (£) = S, (1(?)) stimmen also im Intervall
(0,1) tiberein und daher auf ganz R.

3.6. Die beiden Tangentialvektoren
p0) € Hyy p@)0%)p  (Po=(0,...,0,1)),

haben nach 3.4(1) und II.1(1) die gleiche Norm. Daher gibt es U € I(H) so, dass
U(go) =20,  Usx (11(0)) = p(0/0%) .

Nun haben offenbar 7 =co U™}, [I=UZU™!, Ty=US, U™}, yo=Uo pu die in 2
behaupteten Eigenschaften.
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4, Wir kommen jetzt zu einem ganz wesentlichen Punkt unseres Beweises; wir

zeigen: Es gibt Elemente T, ..., T,_, € IT und zugehorige eigentliche Geoddtische

Yis - -+ Ya_p derart, dass _
Tk(‘yk(t))z'yk(t_i'l)’ (kﬁl’ :”’_1)1 (1)
det (x; (v& (0))1 <i,k <nt #0 (2)
yi nicht dquivalent y, fiir k=1,...,n—1, (3)
A(Typo,po) <48 +A+1logd(n—1), (k=1,...,n—1). (4)

5. Bewers: Wir betrachten die Punkte
Qo= "81y,. . 78y war)€H, (R=1,... ,n—1), (1)
=1+a?712 gl=(n—-1)V2(-1).
Nach 2b gibt es Sy, . . ., S,_, € Il so, dass

d(Sk" g o) < 8. (2)
Dann ist 4(S; $¢, ¢x) < 6 und somit nach Lemma 1:

Z (% (Skpo) —78p)? < (35 —1)2a2r2 =rijn—1,

2, (%4 (Skpo) — 78,)2 <2, (3)

Daraus folgt aber

det (x; (SkPo))1 <1,k <n1 # 0. @)
Andernfalls gibt es namlich A,, . . ., A,_; € R derart, dass

n—1
2% Skp)A =0, (=1,..,n-1),
k=1

S i
k=1
Daraus ergibt sich:
n—1 2 n-1
XN = [ 2 (% (S o) — 781 ] <k21(xi Sk Po) — 0%,
n—1
r? -<-t§ 1 (%; (Skpo) — 704,

ein Widerspruch zu (3).
Setzen wir jetzt

Tk=SkTOS;1’ 'yk=sko'}’0, (k=1,...,n—1),

so folgt 4(1) aus 2(1), 4(2) aus (4) und 2(2). Wire eine der Geodidtischen y,, (=1, .. .,
n — 1), dquivalent y,, so wire wegen 2(2) und Lemma 2 #,;(y,(0)) =0 fir:=1, .. .,
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n — 1. Das widerspricht aber der schon bewiesenen Behauptung 4(2). Damit ist auch
4(3) nachgewiesen. Mit 2(3) und (2) ergibt sich:

A(Typo, Po) = 4(Sk To Sk po, po) = 4(To Sk po, Sk bo)
<d(ToSi" po, Topo) +d(Topo, Po) + &(Po, Sk Po)
= 2d(S;" po, po) + d(To po. Po) < 2d(Si* po, Po) + A
aA(Si" po, Po) < A(Si" Po, Sk ' 9 + d(Si" 4 Po) < A(po, ) +
Daraus folgt:
A(Typo, Po) <28 + A+ 2d(po, q1)- (5)
Aus (1) ergibt sich nach I1.1(2):
Cosd(po, q) = (1 +a V2 =[1 + (n — 1)(e® — 1)2]/2 < (n-1)1/2¢2,
P01 < 2 Cosd(pg, i) < 2(n — 1)1/2 63,
2d(po, 9x) <206 + log4(n —1).
Somit folgt aus (5) die Behauptung 4 (4).

6. Aus ReI(H)und RT, =T, Rfirk=0,1, ..., n—1 folgt: R=1d.

7. Beweis: Wegen 2(1) und 4(1) gilt fiir =0, 1, ..., n—1:

Ry (t+1)) = RTy (v (8)) = Ti R(yx (8))- (1)
Fiir die eigentliche Geoditische u, = R o v, gilt somit:

pe+1) =T, (u 8), (k=0,1,...,n-1).

Daraus und aus 2(1), 4(1) folgt aber nach Lemma 4b: u, ~ y,. Daher gibt es Zahlen
a, b, so, dass

Ry @) =y (amt+b), (R=0,1,...,n—1). (2)
Setzen wir dieses in (1) ein, so kommt
i (@t + ag + b)) = Tiye (@t + by) = i (agt + b + 1).
Daraus folgt, da y,:R — H injektiv ist: 4, = 1. Somit folgt aus (2):
R('yk(t))='yk(t+|bk), (k=0,1,...,n—1). (3)

Daraus und aus 4(3) folgt jetzt nach Lemma 4b: b,b, = 0, und daher nach Lemma 4a:
by=0by=0firk=1, ..., n—1. Somit folgt aus (3):

Rye@) =@, (B=0,1,...,n—1). 4)
Daraus ergibt sich zundchst fiir £ =0 wegen 2(2):
R(pO) =P0: R* ((a/axn)pu) = (a/axn)po' (5)

Firk=1,...,n—1sei A, € H, der eindeutig bestimmte Vektor mit

exp Ay = yx (0). (6)
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Da wegen R € I(H)
exp R« (A) = R(exp4) VAeH,, (7)

so folgt mit (6) und (4): exp R« (4,) = expA,. Daexp: H, — H injektiv ist, ergibt sich
daraus

Ru(A) =4y, (R=1,...,n—1). (8)
Wegen (6) und 4(2) gilt:

det (x; (exp Ax)) 1<,k <n1 # 0.
Daher bilden die » Vektoren

Ay, ., Ay, (090m),,

nach Lemma 3 eine Basis von H, . Somit folgt aus (5) und (8), dass Ry auf H, die Iden-
titdt ist. Daraus folgt aber wegen (7) und I1.2a: R = 7d. -

8. Es gibt einen Punkt $, € H mit

d(po. 1) < (1)
derart, dass gilt:
AusS ell, d(Sp,,p,) <Afolgt:S =1d. (2)

9. Bewers: Offensichtlich gilt

Um(p)) =f(2) | (1)
mit
f(p) = inf d(Sp,p), (II'=II- {id}). (2)
Sell’
Aus

4(5q¢,9) < d(Sq,Sp) + d(Sp, p) + d(p,q) = d(Sp,p) + 2d(p,q)

folgt: f(g) < f(p) + 2d(p,q). Vertauschung von p mit ¢ ergibt: |f(p) — f(g)| < 2d(p,q).
Daher nimmt f auf dem Kompaktum K, (3) ein Maximum an: Es gibt einen Punkt $,

mit d(po,p,) < & derart, dass f(p) < f(p,) fiir alle p € K, (8). Daraus folgt wegen (1):
Um(p)) < Um(p1))VD € K, (3). (3)

Nach 2(b) ist aber (K, (8)) = M. Somit folgt aus (3): /(w(p,)) = A. Daher ist wegen (1)
f($,) = A. Daraus und aus (2) ergibt sich aber die Behauptung.

10. Wir betrachten nun den Normalisator

IT* = {U e I(H)|UITU! =T} (1)
und die Abbildung U — U von IT* in I(M), welche folgendermassen definiert ist :

0(p) =n(UW), gen(p), peM.
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Diese Abbildung ist ein Homomorphismus von IT* auf 7(M) mit dem Kern I1. Daher
wird

Ord I(M) =[1I*:11], (2)

und wir haben nun diesen Gruppenindex abzuschitzen.

11. Zu diesem Zwecke betrachten wir das kartesische Produkt

H=H"'={p=(p1,-- Par) |1 € H}.
Wir machen § zu einem metrischen Raum, indem wir die Distanz der Punkte
P= (b1, Pus1), = (g1, - -, §ny1) definieren durch

a*(p,q)= Max d(p;q)- (1)

1<i<n+}
Die Kugeln dieses Raumes sind kartesische Produkte:
2, () ={qeHld*(p,q) <r}= B, () x «++ x B, () (2)
B,(r) ={gc Hld(p,9) <7}

Es sei m das beziiglich I(H) invariante Mass auf H:

dm=x"dx, N -+ Adx,.
Dann gilt:
m(Bp (7)) = Cnfn (7’), (3)
wobei ¢, eine nur von # abhingige positive Konstante ist und
falr) = [ (Sinty~tar. (4)
0

Das Mass m auf H induziert ein Mass m* auf dem kartesischen Produkt § = H"*!,
Wegen (2), (3) gilt:

n+1

m* (L, (7)) = [T m(B, () = ;™' fa*! (7). (5)
t=1
12, Es sei jetzt % eine natiirliche Zahl <[II*:IT]. Dann gibt es Elemente
Vi, ..., V,ell* derart, dass
ViV, firi#yg, (1)
A(Vipo, Po) < 9. (2)

In der Tat: Wir wihlen zundchst U, . .., U, € I[T* derart, dass U, U;! ¢ IT fiir ¢ # .
Nach 2(b) gibt es S; € [T so, dass &(S; (U;p), o) < 6. Die Elemente V; =S; U, haben
dann die gewiinschten Eigenschaften.

Nun betrachten wir die Punkte

Po=(Po,- - Do) €D (3)
pi= (Vipl, Vi TOPJ» Vi Tlpl:- Ry Vi Tn—lpl)’ (i =1,.. -:k)-
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Dann ist nach 11(1)
@* (po, Py) = Max {d(pg, Vip1),4(po, Vi Tud1)}- 4)

0<k<n—1
Wegen (2) und 8(1) gilt:
d(po, Vip1) <@(po. Vipo) +d(Vido, Vip1)
= d(po, Vipo) + d(po, £1) < 28. (5)
Ferner gilt fiir 2=0,1, ..., n—1:
A(Po, Vi Tip1) < @(po, Vito) + @(Vipo, Vi Tipo) +a(Vi Tipo, Vi Ty 1)
= d(po, Vipo) + d(po, Tipo) + d(po. P1)
<28 + d(po, Tipo)-
Daraus folgt nach 2(3) und 4(4):
@(po. ViTop1) <28+ A,
A(po, ViT b)) <68 +A+1logd(n—-1), (k=1,...,n—1). (6)
Aus (4), (5), (6) ergibt sich nun:

a* (po, P;) <68+ A+logd(n—1), (=1,...,h). (7)

Setzen wir

Ry=V7ilV, l<ij<h, (8)
so gilt wegen Ty, T, ..., T,_; €ll, R;; e IT*:

TH'RGF Ty Ry ell, (R=0,1,...,n—1). 9)
Ferner gilt:

A(T' R Ty Ryypr, p1) = AT Riypr. Riy Tu k)
<d(TwRyypy, Tapy) + (T pr, Riy Tupy)
=d(Ry;p1,01) + ATy p1, Ry Tichy)
=d(V;p1.Vip)) +a(Vi Tupr, V; Tudy)
Daraus folgt wegen (3) und 11(1):
AT Ry Ty Ry Py, 1) <2d* (pypy), (B=0,1,...,n—1). (10)
Damit zeigen wir nun:
a*(p,p) = A2 furi#g, l<i,j<h. (11)

In der Tat: Aus d* (p,,p;) < A/2 folgt wegen (10) und (9) nach 8(2): R;; T\, = T Ry, fiir
k=0,1, ... n— 1. Daraus folgt aber nach 6: R,; = 7d. Somit muss wegen (8) und (1)
1 =7 sein.

Die Ungleichungen (11) besagen aber, dass die Kugeln
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paarweise disjunkt sind. Andererseits sind diese Kugeln wegen (7) enthalten in der
Kugel £, (65 + 5A/4 + log4(n — 1)). Daher gilt:

i m* (2, (A/4)) <m* (£,, (68 +51/4 +log4(n —1))).
i=1

Daraus folgt nach 11(5):
h<[f, (68 + 5)A/4 + logd(n — 1)) /f, (A/4) "1,

Da nun diese Ungleichung fiir jede natiirliche Zahl % < [IT*:I]] gilt, so schliessen wir,
dass [II*:1I] endlich ist und sogar

T*:I1] < [f,(68 + 5A/4 + log 4(n — 1)) [f,(A/4)]"*".

Wegen 10(2) ist damit unser Satz bewiesen.
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